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1. lntrodnctlon and’ mnlu

: Aulf-nddin;wdkoflmgthTontbed-dimendondhtﬂcez‘hneolkethnd
points w(s) € Z4, 0 < s  T', such that |kw(s+1) —w(s)|] = 1 and w(¥’) ¢ w(s”) for
_all0 € o, < T. We denote by Ar(d) the number of such patlis starting from
. the origin. lthm‘hlrdtomthﬂthu!eﬂﬂlﬂmr«f‘"log:\r(d) n(d)
SImpleaﬁlihﬂthlt26<a(2)<”lhdﬁ‘llm

af2) =e. Mtbovnluuda(d)ﬂ‘d(&mulmwmmuhﬂywlthhigh
accuracy (see ths recent book by Madras and Stade [1]) altliough the exact values
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are still unknown. In particular, 2.61987 < a(2) < 2.63816, thus the ‘natural’
conjecture a(2) = e is likely to be wroung. g

Two problems naturally arise in connection with self-avoiding walks. One is the
asymptotics of Ar(d) as T — 0. A natural conjecture is that as T o0

Ap(d) ~ AT DT, (BY
The second is the behaviour, as T' -+ 00, of the mean square displacement of the
self-avoiding walk R .
Vo =A™ Y HDIP 2
© e w{0)=0,
ot

Here ku| is the length of the walk and [I -} is the Euclidean norm in R*. Assuming
that Vir ~ D(d)T?¥, the main questions are to find the values of y(d) and ¥(d)
or at least to prove their existence. .

Self-avoiding walks play an important role in many areas of physics, for example,
physics of polymers, quantum field theory, and soon. That is why the main concepts
mdevelopedonthephypiallevel;seethebooknbyﬂory[Z] arid by de Gennes [3).
In pacticular, it is generally believed that 7(2) ~ 11/32, 7(3) ~ 0.162 and ¥(2) =
0.75, ¥(3) = 0.59, ¥(4) = 1/2 with logarithmic corrections in the asymptotics of Vi,
and 7(d) =0, v(d) =1/2for d> 4. In other words, the answers strongly depend
on dimension, as often happens in statistical mechanics.

"1t is clear from a general point of view that self-avoiding walks behave more and
more like simple random walks as the dimension grows. The first mathematical
results of this type appeared lp'thepaperbyBﬁdgeiandSpeneet[A].' In that paper
the so-called weakly self-Avoiding walks were introduced and studied in dimensions
d 3 5. In this model every random path w is permitted and given a statistical
welght .

Ww) = (24T H Q -EJu(u(a))Mﬂc)))‘- (1.3)

tch,7) '
where the product is taken over all intervals ¢ = [I{t),r(¢)] on the time axis (that
is, on Z*) belonging to the main time interval [0, 77 and, for any z,y € z4,

_ 1 ifz=y, . ‘
6"'—{0 ifz#y (1.4

The small parameter 0 <€ € 1 measuresth_epenaleyforinmsection. Whene =1,

only strictly self-avoiding walks have non-zero statistical weight. We define the

partition function (statistical sum) )

E(T) = ) W(w) (1.5)
w: =T, w(0)=0

and the probability distribution

Paw) = ’_:"((_;7’ (1.6)

Self-avoiding walks In five or more dim i polymer expansion approach 405

The main result proved In [4] says that the mean square displacement grows lineariy
with T and the normalized displacements (w(T)-w(0))//(T) obey the central limit
theorem. '

expansion method. Themethodmextendedinnseﬂeaofpapmbyﬂuaand
Slade [5}, [6], where the following results were obtained for d>5and T — 00!

U] ¥(d) =0, that is, (D~ A(d)d’(‘ﬂ_';
(il) »(d) = 1/2, that is, V. ~ D(d)T; 4
(i) the probabillty _distribution of the normalised displacement
(w(T) - w(0)/ (T) converges to 8 Gaussian distribution. :

Thebaaictoo!sintheapptoachof[ﬂ,[ﬁ],[l)mbqaedonmethodsofﬁmc-
tional analysis. At the same time the problem is purely probabilistic. Therefore it
seems worthwhile to develop a direct probabilistic or better a statistical mechanical
approach leading to the results above. This is in fact the main goal of the present
paper. As we shall show below, the model of self-avoiding walks can be interpreted
as a one-dimensional contour model of statistical mechanics. The statistical weight
of the contours decays like some power of their lengths, where the power depends
on the dimension of the walk. Hence the standard techniques of equilibrium sta-
tistical mechanics and in particular cluster or polymer expansions (sce Appendix)
can be applied to this system. A similar approach, combined with a finite memory.
approximation and renormalization-group ideas, was in fact used in the paper by
Golowich and Tmbrie [7]. We believe that our method is more direct and simple.

Wendwdescribet:heremdtaoﬂhiquperin:ﬂomdgtail. We define the partition

function .
E@T)= . 3 W), (17)
i jl=T, w(0)=0, w(T)=s 4 '

where W(w) is given in (1.3). (Technically it is more convenient to consider the
statistical weight (1.3) with the product taken ovet all intervals ¢ strictly belonging
to [0,T]. This does not change the results and for £ = 1 it meana that the self-

avoiding polygons are included in the ensemble of self-avoiding walks.) The effective

small parameter in our problem is €/d. That is why our method can be used either

for atrictly self-avoiding walks (e = 1) and d large enoughorford>5and ¢ small.

‘The probability of golng from the origin to the point z € Z4 during the time T is

9(z,T) = 'f———_.f:’z;r?- ‘ (18)

For any z = (zV,...,2(9) € Z4 and any k = (k®,... k) € R? we use the

standard notations

< ’ d
21 = Z(z(n)z! =]l = Va3, K= E("“’)’. k] = VR,
- = (1.9)

4
(k . x) = Z z(‘)k(‘)
‘fl
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and define the Fourier transform of g(z,T) as
Gk, T) = Y *?g(=,T),

24

k€ (—x,7) © o (110)

Let u(d) = min (2, £-%).
Theorem 1.1. Whend > 5 onde/d is small enongh, there exists.a constant D >0
snch that the mean square displacement Vir of w(T) is given by

Vr= Y #%(s,T) = DT(1 + R(T), (1.11)
) s€Z!
where :

) [R(T)| < const T*~“ e /d, (1.12)
Furthermare the scaling limit of the distribution of the end-point is Gaasian in the
sense that X i / DT

: Im-G (7:,-7) = exp (-—ﬁk’) . (1.13)

Theorem 1.1 establishes the diffusive behaviour of the self-avoiding walk. In the
course. of its proof we exhibit, vis the polymer expansion, exact expressions for
D,E(T) and G(k,T) with k* <log T/T. ‘ ‘

" The rest of the paper is ocganized as follows. In the next section’ we introduce
all the necessary notations and explain the ideas of the proof, which is performed
by induction on T. §3 contains our induction hypothesis and verifies Its first step.

. §§4-6 contain the main’ step of the induction and §7 finishes the proof of
Theorem 1.1, The Appendix collects all needed facts from the theory of polymer
upam. ) o

§2. Laces and the idea of the proof

Following the idea of [4], we use laces to construct an appropriate representation
for the quantities we are interested in. The expressions written in terms of laces
then serve as an input for the polymer expansions.

We start by opening all brackets in (1.3) and representing pictorially every indi-
cator function Su(i)smir(t)) 38 the corresponding interval ¢ on the time axis. The
partition function (1.5) can be clearly treated as the sum over all poesible collec-
tions of intervals belonging to the main interval [0, T]. Such a collection of intervals
can be uniquely partitioned into connected components of intervals. Given a con-
nected component of intervals one can uniquely construct a lace corresponding to
this component according to the following rule,

(i) Select the iongest interval starting at the leftmost point of the component;
this is the first interval, &) = [I{t:),r{t1)], of the lace.

(i) Then consider all intervals of this connected component that contain r(t)
internally. Find among them those with the rightmost end-point. Choose
from these the longest one. This is the second element, ¢; = [I{t2),r(42)), of

- the lace.

(iii) Repeat until the rightmost end of the component is reached.

(L) = (?d)"" )
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The above rule produces a lace, which can be characterized abstractly as s
collection L = {t1,... ,tnz)) of n(L) time intervals t; = [I(t;),r(t:)] such thal
I(t) < Htr) < r(t) < r(tig) for i = 1,... ,n(L) —~ 1 and {N Y = B for
i’ # i £ 1. We use the notations

n(L)
L) = U ti(L); L(L)= [l(‘)),l(‘z)]; Iz.,([,)_,([;) = lr(‘n(b)—l)v"(‘u(b))];‘
=1 .
In(L) = (l(t,g./,.,..).‘r(t,,./,)] for even mn; .
Im(L) = [r(tm/a-1/2):{tm/24373)] for odd m # 1,2n(L) — L.

Obviously I(L) = UM~ I,(L) (see Fig. 1).

. L4 t2 ts .t fn—1 tn
Y l‘ﬂa)‘r(‘n) T A ) B L) ‘e — — T ()
[N fa. [N te tn—1 in
= T nY Y o === P fomemy r~— -
N et N et N’ T ———y
: h Is I» ld h I I Iau-1
' A

Figure 1. Lace and corresponding time intervals

Wemyﬂ;ﬂmintqutismwﬁbfewitﬂthelweL:{t;}lfth(L)mdfor
gome i either ¢ C & or £ C (t; Utipt) \ k-1 We write 2 < L if ¢ is compatible with

L (ses Fig. 2 and Fig. 3).
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Figure 2. Intervals (se.—) compatible with lace
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Figure 3. Intervals (~— ) non compatible with lace

The meaning of this compatibility condition is the following. Take a connected com-
ponent of intervals which contains the lace L and an arbitrary number of intervals
compatible with L. Then the lace constructed from such a connected component
coincides with L. .

With every lace L = {;} we associate the lace portition function
n(L)
IT (~ebouwematrieacam) IT (1 ~ eogenoeon)

<L

wt w(i(1(L)))=0, i=}
wi=H(L)] .
(21)
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and the statistical weight of the lace

2n(L)-1 -1 ' .
wi==0 (1 2a) (22)
m=1
where we put E(f) = (/1) for any time interval I = [I(]),r(I)] with length
[l = (D) = 1), :
The partition function (1.5) can be written in the form
s =s@o,m=_Y , J[=E) (23)
A=k, WA
an(L;)-1
= ¥ . [Owwy II =UmEd
{Lyciomn m=1

where the sum is taken over all collections of mutually ezternal laces from the
interval [0, T]: mutually external means that I(Ly)NI(Lj) = @ for any Ly, Ly €
{L;}. Whenever we write {L;} G I we mean that for every j either n(L;) > 2 and
KL;) € Torn(Ll;) =1 and I(L;) € I. lterating (2.3), we come to the final

expression
sm= Y, JIwE) (2.4)
{L)glo.T) J

where the sum is now taken over all compatible collections of laces: a collection
- {L;) is called compatible if for any Ly, Lj» € (L;} either Ly, L are mutually
external or Lj C In(Ly») for some m. The right-hand side of (2.4) is a typical
cluster or contour representation of the partition function E(T} with laces L playing
the role of contours and Z(L) being the contour partition function (see (8}, [9}, and
the Appendix). i

To derive an appropriate expression for E(z,T) we introduce a apace-time lace L
as a collection & = ({t1}, {m}), where L(C) = {t} is a lace and {z} is a family
of space displacements satisfying the relations .

1 +z2=0;

Tae + Zas41 + T2042 = 0, 8= 1L,2,... ,H(L) -1 (25)

Zan(e)-2 + Tan(e)-1 = 0.

ding to the displacements satisfy-

We observe that only the trajectories correspon
they make a non-zero contribution

ing (2.5) are compatible with the lace L, that is,
to (2.1).
2n(L)-1
Wepntz(L) = Y 2m(C); the notations (L), L(L), ti(L), Im(L), Tm(L) =
=1

#(In (L)), I(£) are self-explanatory.

The space-time lace partition function is given by

T (1 -eoaumueron)-

(L) = @)~ T (-
wi w((1(£)))=0, [wI={(£L)] 1<L(L)

o Im (L))~ (i (£))=2m{K)
(2:6)

‘given by the polymer expans
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fn contrast with.(2.1) we have omitted the first product, because in view of (2.5) all
the & in this product are identically 1. Now E(z, T') can be written as

B, T)= 3, p(z—z::(b,), T~ Eu(c,-n) [ ECT Y
{£i)=clo.T) J j )

where p(z, T) Is the probability of the standard random walk going from the origin

to the point z € Z4 during the time T.
. With every lace L there is associated a random variable £y, having the distribn-

tion _ . ‘
Pr{f, =z} = E(0) T E® (28)
Le L(L)Y=L, s(L)=2 .

and we denote by Vy, the corresponding mean square displacement

Vo=, 2 Pr{L ==} (29)
€2

We prove Theorem 1.1 by induction on the size of the system. Let
q(s) = néaznsg(z,a), V= Z z%g(z,) and u = min (2,4-%). In the induction

=€Z¢
hypothesis (see §3) we suppose that forall t <T

[]
3 s%a(s) < hyd™! : (2.10)
=) . . :
and
(1-med')sVi<(+ hed™M)t. (2.11)

Here and below hy, ha, ... denote positive absolute constants, Using (2.10) and the
property of ‘repulsion’, which is characteristic for the self-avoiding walk, it is not
hard to verify that .

(D) WD) <ed™?, (212)
Le W(I(LY)=0, JHL)IKT

This immediately implies the absolute convergence of the polymer expansion for
log E(t) with ¢ < T. Similarly it ls possible to deduce from (2.11) that for laces L

with [I(D)| < T ,
Vi < (L)l (2.13)

Using the control over the Gibbs distribution * -
pp (L) =EM)™" S, TIwwa), (2.14)

(Lo, {La)2{Ls) 3
jon, one can derive an exact expression for the mean
square displacement

Vo= Y gD =T- 3 (I0I=Vou (@), @19
s€Z¢ Lo,
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where pp(L®®) = E(T)™' - E(L) - Z([o, (X (L)) - 1)) - E(r(I(L)) + 1,T]) is the
probability (correlation function) that the lace L
laces inside the interval [0,T]. The fact that |pr(L**)| < |W(L)|etnte4 ™", and
the substitution of (2.12), (2.13) in (2.15), easily lead to (2.11) when t =T.

To obtain (2.10) when t = T, we study the Fourier transform of g(z,t) and

ohtain the bound

T
(2m)~¢ /{_' l‘Zt‘:lG(k,t)ldkshld", o (2.16)

t=1

which clearly implies (2.10).
The way to establish (2.16) again lies in the polymer expansion, but now for the

partition function,

E(k,T) = 3 e *EET), kE[-T x}°. (2.17)
z€Z¢

According to (2.7)

Ek,T) = C(H)T Skl 218)
, ung‘;;mm IJI C(rED

where
Sk,L)= Y Z(L)eth=LN (2.19)
. L: L{L)=L
and - ‘
OB = L cosk®, k= (RO, KA), (2.20)
, 2,005

denotes the Fourier transform of a single step of the standard random walk.
Obviously . . .

G(k,L) = 5_,:(_’(%“1 : 221)
is 'a chara_ceeristic function of the random Wle £1. Therefore, defining
3n(L)-1 -1 o
wiey =20 TT 25m@) (229
m=1
2n(L)-1 =1
~woetn( 11 Gl In(D)
m=3]
one can rewrite (2.18) as
=(k,T) L=t ok 1(L
cHT ~ > IwkL) ’El »c,f(k)ll-((bﬁl)' (2.23)

{Lsy=gloT) J

is external ip the ensemble of
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Iterating (2.23), we get the final expansion

sk T =C®T Y, TIWkLy) . e
{L;¥clom §
where the sum is taken over all compatible collections of laces (see (2.4)).
Given a value of k we now partition all laces L onto k-small and k-lorge oned. We
say that the \ace L is k-small if log |m(L)] >—log|C(k)|forallm=1,..., 2n(L)-1"
ha|Im (L)}
and we say that L is k-large if there exists m such that l%;—llli"-((—:)—)'l- < —log|C(K)-
2
Here ha is some large absolute constant. For our purposet'i" it is enough to put
ha = 15. A restricted partition function is defined by
sm=cy Y [Iwer, @
© o A{LsycloT
sum is taken over all compatible collections of k-small laces only. In fact,
ion hypothesis an additional assumption that
—hed™ T (2.26)

where the
we include in our induct

SC(R)He N < Z(k, 1) SEWOCE!
for any t < T and k satisfying C(k) > 0. Substituting (2.26) into (2.22), we observe
that the statistical weight W (k, L) for k-small Iaces remaing small enough to have
an absolutely convergent polymer expansion for log Z (k,T). In turn this polymer
expansion allows us to obtain (2.26) for Z(k,¢t). _

Finally, the estimate (2.16) can be obtained from (2.10), (2.26) and the repre-
sentation X .

=)= Y, 112 (k, L((LsY) TIEC, Ly)s (2.27)

{Li)temgloT] T 4 -

all collections of mutnally external k-large laces and

where the sum is taken over
(Ly)). This completes the

intervals I ({L3)%**) from the complement [0, 7]\ (U;I
induction step. )
In the region log T
og
- < B
logC(K) < o7
E(k, T), and we have the polymer expansion

= i x log(sT)
for log E(k,T). Since logC 7 < hasT for s large enough, the polymer

" (2.28)

all laces are k-small. Hence Z(k,T) =
k

expansioh for log = (\—’;_;,aT) implies Theorem 1.1 with
p=i- Y (D) -Vi)ueoll™): (2:29)
RZ WH(L)=0 '

L*) in the infinite time interval (—oo0,00) i8

Here the correlation function pioo(
Z(T) is absolutely

a well-defined quantity because the polymer expansion for log
convergent for any T. ‘
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§3. Induction hypothesis and lnitial step

We formulate the induction hypothesis as a set of assumptions, which are sup-
posed to be true forall ¢ < T — 1:

(i) for g(s) = :negg(z,a) and 4 = u(d) = min (2, g - ;) we have

[ 2
Yol Shd™l i >0; L@
BrET , ‘
(ii) the mean square displaoemebt of the self-avoiding walk V; = }: z?g(z, ¢)
’ z€Z4

satisfies the estimate
‘ QA-pt<Vis(1+8)¢, (3.2)
where 8 = 3h,ed™! is the main small parameter of our calculations;

(iii) given k such that C(k) > 0, the reduced partition function Z(k,t) satisfies
the inequalities

E()C(k)I+HO < Z(k,t) S EQCH)I MM, by > 0. (3.3)

Note that both hy and hj are assumed to be independent of d and in the definition _

of u an arbitrary nuinber from the interval (1, ) can be taken instead of %
We begin our induction with the evident direct calculations

EM=E@2)=1, ¢(1)=4q(2) =-2—l-d, Z(k,1) = C(k), Z(k,2)=C(k)’, (34)
which establish (3.1)-(3.3) for ¢ = 1,2. In' the next three sections we establish
(3.1)-33)fort="T. ® '

‘ §4. Tnduction step: estimation of [W(L)| and |W(L)|Vz

Given alace L = {&}, we partition the family {I;n(L)} into subfamilies {l,'ﬂ; L)}
and U:.’.;' (L))} according to the rule:
(i) the interval L. (L) giving
(ii) from every pair ‘ .
(Il(L)l Iﬂ(L))) (IS(L)I I‘(L))l"‘l . N )
(Im‘—l(L)» Im'+l (L))r seey (IQH(L)."Q(L)I Iﬂn(L)-—l (L)) if m* is even,
or
(Il (L)u IQ(L))l (ID(L)t IJ(L))" sy (Im'-—ﬂ(L)l Im'-—l(L))l
* (Tmear (L), Tmesa(D))s o vs (Tanqry-2(E)s Tanqry-3(L)) if m* is odd,
the interval with the maximal length is included in (I:n;(l'))’ while the
interval with the minimal length is Included in (I::.;.(L))'.

- . .
ng;a}‘)((’l’_' | (E)] i8 included in {Im; n);

Self-avoiding walks }n five or more dimensl polymer expansion approach 413

Clearly the numbers of intervals in (l,'"; (L)) and (1,’,’17 (L)} are n(L) and n(L)*1
respectively. Note also that some l{,’,;, (L) may have zero length, while always
|I.'n;(L)| 2 1. Let

m=eo a(mg@). (a1
=1 .

Lemma 4.1. The statistical weight of the lace L = {t;} can be estimated by

WD) < M(D). (42)

Proof. Take any space-time lace £ = ({t:}, {x,n}) with L(L) = L. A trajectory w
making a non-zero contribution to Z(L) passes through the poiots yi = w(l(t)) =

‘w(r(t;)) in the following order:

Yy
Yotlr Yoo 5=1,2,-..,H(L)—1, -
Yn(L) <o
and
T =t — Y

Zan(L)—1 = ¥n(L) ~ Un(L)-1}
Tm = Ym/2 ~ Ym/2+1 '
Tm = Ym/243/2 = Ym/2-1/2

for even m;
‘for odd m # 1, 2n(L) — 1.

'

Consider an abstract graph I'(L) with ri(L) vertices labelled by y;, and 2n(L) — 1
edges labelled by In(L), such that the gdge labelled by I, (L) joins the vertices

labelled by

va and form=1; '

Yn(r) and Yn(L)-1 for m = 2n(L) - 1;

Ym/a and Ymya41 for even m;

Um/243/2 80d Ymja_rj2 foroddm A1, 2n(L) ~ 1.
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The graph I'(L) represents schematically the space structure of the trajectory w
see Fig. 4). :

Ya W4 Yy s Yn-3 ¥n—-1
h s B W ’ Yn-2 Yn
Labeling of vertices of I'(L)
Ik Ik hs Iy  an—s
L] /Ia\lW/Te\ls I2n-1
Is K In I N Din-s
Labeling of edges of I'(L)

Figure 4. Graph ['(L)

According to our partiton rule, if we delete from (L) all edges labelled by
he intervals from {I:"j(L)), then the remaining edges (that is, edges labelled by
he intervals from {I7. (L)}) form a connected tree-like subgraph (L) of [(L)
sontaining all the vertices of ['(L). )

Clearly 0 < (1 — e8,qe))wir(en) < V- Hence for any ¢ < L the absolute value of
he right-hand side of (2.1) only increases if we exclude from the second product
{1 t < L having I(t) and r(t) not in the same In(L). On the other hand, the
ight-hand side of (2.1) modified in such a way coincides with

m(L)-1
(=™ 3 I =) EmL)- (4.3)

Li L(L)=t m=1

[hus, by the definition of g(t),
an(L)-1

wiise® Y [ 9G@m@ia@) (44)
L L(L)=l m=1
(L) nE)-1
<@ La(y@l) 3 TT o(zmyEnltnge)
=1

UL L(L)=L J=1

' n({L)-1
=M@ ] ( Y o(emp |1:;;.(L)|))=M(L);

J=1 :"}: €zd

where in the last two equalities we have used the facts that the displacements
£(I", (L)) are independent (tree-like structure of (L)) and g(z,t) is a proba-

bility distribution.
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Lemma 4.2, For any lace L = {t;) the mean square displacement of its end-point
Vi, satisfies the bound

n(L)-1
IW(LWVel < ML) 3 Vi, (45)
=1
Proof. By definition
v ﬂn(L‘)-l -1
W(L)VL=( II E(I...(L))) Y =(e)? E(r), (4.6)
m=xl L L(L)=L :

and cancelling in (2.6) all factors corresponding to ¢ < L with I(¢) and r(¢t) not in
the same I,,(L), we come to the estimate

an(L)~1
W(Vel ™D Y =(L)* I 9(@m(@), n@)D- A7
Li L(L)=L m=1

According to our partition rule (the structure of [3(L)) we can find a family of
constants {@y,. .. ,@n(5)—1) taking the values 0 or 1 such that

n(L)-1

z(L)= Y, az (I’,,’,j;(t.)). o . (4.8)

=

Because of the independence of z(I:,’,g. L)),

n(L)—1 -

n(L)
wawe<e® [a(@]) X =@ TI o (emy@ i)
=

Li L(L)=L j=1
n(L)-1
M) Y o T whys (amp g (D))
=1 ,"},Eza .
n(L)-1 ,‘
<ML Y VI.'_";,(L)v , (4.9)
j= '

which proves the lemma.

§5. Induction step: convergence of polymer
) expansions for log E(T) and log Z(k,T)

Tn this section we apply the general theory of polymer expansions (see Appendix)
ta the particular case of lace models. We consider the models defined on the
interval [0,T). So the corresponding laces have [m(L)] € T — 1, which allows us to
exploit the induction assumptions.
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emma 5.1. To every lace L = {t;} we assign the ata!iatlical‘ weight

. n{L) —
w(k) =2 (@n(@) = 1* ]| |ty (23] ' M(L). (5.1)
. 2
7icn for B samall enough
S WP <m(b)g, (5.2
L7

here the sum is taken over all laces L' incompatible with L (sec (A.3)).

Yoof. Acéording to the compatibility rule for laces
n(L)
T ow@)entP gy Y w(L)e” (5.3)

LAL =1 L' 1(L)31(s(L))
. or I{L')3r(k(L))

g:lI) Y w)em.
L': I(L")>0

Laces L' with fixed n(L'} may have (2n(L') — 1)2n(L)-1 different partitions of
1e set {I;n(1')} into subsets {I:"; (L")} and {I,‘,";,(Lf)}. If I(L') 5 0, then the origin
n appear at any of [I(L')] < (2n(L') - 1)L+ (L") points of this interval. Hence,
it § small enough :

-1 T—1
Z w(Ll)eﬁn(L')ﬂ < z 2(2n — l)lzn—l (E I'(I')“—lq(l_')ee’ﬂ)
Ly i{L')30 | R n=1 Ie=1

n-1 T—1 ‘;“
<11 (): Z(l})"-'qu;oee"ﬂ)

j=1 \Ij=1 =0 .
T=1 R
< Y 2(2n - 1)'2"7! (hid~'ee™) (2hyd~ee®)""

n=1

< 3ehyd™t = 4.
(549

In what follows we need a number of direct corollaries or modifications of our
asic calculation (5.4). They are all listed below and hold true for g small enough.

. n(L) .
S %) - Dltwe 01 M@ [T [T TP < (55
L: I{I{L))=0 Jj=1 .
3 2(2n(L) = V)¥{Ime (D)]*M(L)eF < B; (5.6)

Lii(1(L))=0
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T 202n(L) = 1)*{me (D)]* ML) < haed™'B; .7
L: I(1(L))=0,
n(1)>2 .
Y. 20n(L)- 1)M(L)e*"(E)8
L: I(1(L))=0,

e (L)1215

T-1 -1 TN
< Y 22m- 1)’2"-'( p q(r)ee’ﬂ) II (Z 3 q(l,')seﬂ’)

n=1 I*=I3 =t \p=11y=0
71
<3 ) o)
I°=13
™1 -
<3(B)™ Y () ell)e
1°=13
< (Ig)™"Bi o T (58)
3 22n(L) = Dl (D) M@)EDP < ()P, - (59)

L:'1(2(L))=0,
e (L) 1S

According to Lemma 4.1, [W(L)| < w(L) for any lace L with [I(L)] < T.

Hence, Lemma 5.1 verifies condition (A.3) of Theorem A.1 (see Appendix) and
Theorem A.1 holds true for all E(t),t < T. This means that for log Z(T) one has

an absolutely convergent polymer expansion of the form (A.4).
For k such that C(k) > 9-75 we define T(k) as the solution of the equation

log C(k) = _I%ETT' (5.10)

For k such that 0 < C(k) < 2777 we put T(k) = L. ‘
Lemma 5.2. For any k-small lace L its atot't'atical weight sotisfies the bound

n(L) X
Wk, Dl < M) T |y @] (5.11)
. i=l .

Proof. Since the lace L is k-small, we have
Bk, I (L)) = 2(k, In(L)) (6.12)

for any m = 1,2,... ,2n(L) — 1. Therefore it follows from (3.3) that

thadin ()l ¢ Zndm(L))
C(k) < SI(D) G(k, Inm(D)). (5.13)
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tearly |G(k, L)] < 1 and

an(L)-1 . -1
ol =|wocen( T 61n) | e

m=1

2an(L)-1

< w(L)| H C(k)~t+haAlIm (L]
m=1

In(L)—1 I4ha8) e (L
<ME) ] (L) Sl

m=1 t

n(L)
<u@ ] |t o]

=1 '

r 2h3ﬂ < 1.

Lemmas 5.1 and 5.2 verify condition (A.3) of Theorem A.1 for W(k, L) and prove
e absolute convergence of the polymer expansion for log Z(k,t),t < T.
»mma 5.3. For k such that C(k) > 0 the reduced portition function Z(k,T) is
unded by
E(T)C(k)TO+hP) < Z(k,T) < S(T)C(k)TU—PA), o (515)

oof. We need to estimate
|log Z(k,T) ~ log E(T) — T log cx)l
< Y wkn-wml+ Y W@l (519)

=|L3i)Cl0, 1) o =]L{ T):
T (l,a)l&?(h) 3 ul:'.‘ (l%)[&?(k)
iere
© W(k,x)=r(x) [JWk, L)™ (5.17)
§ L.
d -
W(x) =r(x) [[ WL~ (5.18)
§

rst we suppose that C(k) > 275, According to (A.6) the second sum in (5.16)
less than

I < > W (L)
LCl0,T1: Ve (L)>T(K) w3l L[0T e (L)>T(X)

ST Y, MLe#

Lt i (L))=0,
Hps (L)]>T(K)

STTk)™B
< =T 2h;Plog C(k),

(5.19)

here we have used (5.8) together with the definition of T'(k).
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To estimate the first sum in (5.16) we observe that

W(k,7) = W(x)"zg" :; (5.20)

where

plk,7) = [T Gk, L™ (5.21)
i
and
2n(Li)~1
vt =[] II G*InL)™ (5.22)
[ m=1} ,

are the characteristic functions of the random variables with the mean square
displacements

Ve = EatVlu : (5.23)
1
and
2n(Li)-1 o
Vea=Y a0 3, Viewo (5.24)
i m=1

respectively. 1t follows from (3.3) that

1< l/’(k,ﬂ')—l < G(k)-(l-Huﬂ) ool (5.25)

and clearly

(W (k, %) — W(m)] < (W @Ik, =)™ = Dlelk, )l + W (DI - w(k,_r)()s )

< W)l (‘—'f;i—,f%’ﬂ +(1- o).

The first term in the last line of (5.26) can be estimated by means of (5.25):
log (k, %)
k™

In(L)-1 a

< ~2log C(K) (zm(zn(bo—l)llm-w.-)l)[I( II lr".(LoI’*i) ~
] ' m=]

(5.27)

< C(k)-(H-Iuﬂ) i ad (L) (_ log C(k)(1 + h3pB) E CqII(L()I)
[}
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: 2
To estimate the second term we apply Lemma 4.2, the bound C(k) < exp(— ;&) '

and the Taylor formula:

d d
W@ - (k7)) < IW(r)l% Ezw':,(vk.w)k‘"k("' (5.28)

o=1r=1
< WIgH Vo
' n{L¢)-1
< —d logCROM(m) a1 +8) Y My (L)l
[ =t

< —d log CIM(m) Y- () = Dl (L)
i

Here M(x) = r(x)[1, M(Li)™, ¢! (vk,x) denates the second partial derivative of
¢(k, ) at the intermediate point vk, 0 < v < 1, and we have used the fact that
(k, x) is the characteristic function of a symmetric random variable (in particular,

o (0,x)=0fors=1,... ,d). Now

—2lgCk) Y. W) (E ay(2n(Ly) = Difme (L‘)|) (5:29)
w=|LeICl0,T): L
Vi, s (L4)IST(K)

2n(Li)~1 N
xI‘[( II ltm(La)lﬂ?)

. m=}

< -2lgCk) Y,  (2n(L) = Dim- (L)l

Lclo,1):
[l s (LIST(R)

-fn(L) ay
x Y alLmW@I]] (II |1:,,.,(L‘)|‘% )
w=(L{¢): #3L . i j=l'
n(L)
< -2logC(k) TZ M(L)(2n(L) - D{me (D) H ll:"i (L)I’% 2n(L)8
L: W(1(L))=0 =1
< - log C(k) TH,

. logE(N)| =

jon spproach 421

Self-avoiding walks iP five or more di i polymer exp

where we have used (5.5). We observe that for any polymer x the function (k. x)
is the product of the quantities G(k, L) only over those L € v with n{L) > 2. Hence

_adlegC(R) Y Mm Y eu(n(L) — Dilme (LIl (5.30)

w=|L71Cla,T]: L n(L4) 32
Vi, e (L)IST(R)

<-2dlogCl) 3 (@D -Dime@) 3o ol )M (n)
: LC[0,T): n(L)33, . w=[Li): %ol
e (LNST(K)

<24 1ogCR)T Y (n(L) = Dl (D) ML)
! L H{I(L))=0, ' '
a(l)23
< —d logC(k) T hued™'P
= —log C(k) T haeB, o S

where we have used (5.7). L
1f0 < (k) < 2~ ™7, then Z(k,T) = C()T and (5.15) is reduced to the estimate

5 winl< T W@IO? <-Ts0® LA 631
Sy log 2

) Lclo ] ,
which follows from (A.6) and (5.5). Clearly (5.19), (5.29)-(5.31) imply (5.15) with
hs = 2ha + 1 + hye + 3ha. o '
Lemma 5.4, The mean square displacement Vr of o weakly self-avoiding walk of
length T satisfies the estimate WVr-T|<BT. _

Proof. For a fixed configuration of mutually external laces the cormponding mean
square displacemnent is the sum of mean square displacements of laces and mean
square displacements of simple random walks on time intervals between laces:

iV + (T -X |I(L'1)I)- Hence .
Vo= Y, b (L)) (T =Y - V:.,)') (5.32)
. 7 - ,

(Ls}=clo,T) oy
=T- ¥ (L)L) - Vi)
LC[0,T]
: an{L)-1 .
=T- ), #T(L)_( S Vi - VL).
LC[o,T] m=1 ,
where the last equality follows from Lemma A.5. In view of Lemma A4 and the
bound (A.6)
an(L)~1
> uT(L)( Y, View - VL)
Lcfo,m | m=1 :
2n(L)~-1 :
< 3 wE)ent” ( Y Viewr + VL). (5.33)
LCla,T] . m=1
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Using Lemmas 4.1 and 4.2, the right-hand side of (5.33) can be estimated from
above by ‘ '

an(L)-1 © n(L)-1 _
z M(L)ezn(l:)ﬂ( Z Vi@ + Z V,:“) (5.34)
LCfo, T} m=1 j=1 )
: " fan(L)-1 n(L)-1
T Z M(L)cln(b)ﬁ( Z Vi) + Z V':")
Ls ] I(L))=0 ’ m=1 =1 J
<T Y MEDE(1+ p)En(L) — llme (L)
L l(I(L))=0 . ‘
< AT, '

where we used the induction hypothesis (3.2) and the relation (5.5).
Lemmas 5.3 and 5.4 lead to the induction sssumptions (3.2) and (3.3) when
t=T.
§6. Induction step: estimate of T tuq(t)
In ;h'm section we show that the induction assumption (3.1) is true when ¢ =T..

Lemmn 68.1. Forh:hin(l,%—%) we have

-
3 ottg(t) Sd™h ‘ (6.1)

=1
Proof. Qur calculation is based on the representation ey
sen = Y 20 L0Ey) [J5k. L), (6:2)
{L;}=gloT) * j :

where the sum is taken over all collections of mutually external k-large Jaces. The

Intervals I,({L;)""***) form the complement [0,T]\ (U; F(Ly)). The cluster expan-

sions for (¢),¢ < T (statements (A.4) and (A.6) of Theorem A.1) and (5.5) imply

that ‘
an(L;)-1

g 1’[5(1,({1,,-)'»“‘))[1 II s(Im(L,))sexp(zﬁZn(L,)). (6.3)
r J m=] ) J

1t follows from (6.3) and the induction assumption (3.3) that

CEE e

< I'I Z (k;Ir({Li)"cl‘)) HIG(k.Lj)W(Lj)lczp"(L')
3

iy v SUAL)
< Y C(k)(l-h.ﬁ)(T-E,IJ(u)l) [IM@ ;)eonLa),
{L Y emglo,T] b)
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In view of (6.4)

T T .
Sean <@ [ S ekolde
=1 [-mx)? o)
r41

T t ' ‘
caf ey 3 e

t=1 =0 3 igbbsptirdapyymit i=1
5;20, Y>T(N)

r
« 11 ( M(L)e’"(”") dk.
i=1 \L: (I(L)=0,JI(L)]=t .
(6.5)

As we know g(1) and g(2) exactly, it is sufficlent to estimate 2{__, t*g(t) only. The

contribution to the right-hand side of (6.5) coming from the terms correspon
to r = 0 does not exceed .

T
O ML ety

: _ 9|C(k (1-AsB)8 -
e[, oy d <t (68)

to be small enough and hy is an abaolﬁte constant. Here the

where g is assumed
|(l—h,ﬂ)3(u; <

exponent —} comes from the rough estimate (27)~¢ " IC(k)
constd-?.

The contribution of the case r = 1 and E:_'_f: 8 = 0 to the right-hand side
of (6.5) is estimated by

(2m™ / 2n(L) - 1)*|me (D)|* M(L)e* ™ dk
[~=* L ga(Ly=on(L)32, )
s (LT ()

< (@) / heed™ fdk = Shes?d " hid ™, 67

[~=x]?

where we have used (5.7) and the fact that the lace L with |F(L)] =t and n(L) =1

does not contribute to C(k,t). )
In the last three cases we exploit the simple inequalities

T(K) "
T < 2h; (6.8)
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and :
t* < (2 1)* (] %)) {
< (or-+ 1) max  gpax, (), () (6.9)

The contribution to the right-hand side of (6.5) coming from the terms with
r22and2:1'a;=oisboundedby

T .4

an | Z( > (2n(L>—1>'|rm-(L>l“M(L’°’"(m)

-l a2\ Lag@=o,’ '
{Tae (DT()

. r—-1
. X ( > M(L)e"‘(""’) dk (6.10)
. . L:(J(L))=0, .
' ‘ e (DFT(®) .
ol . : "
< (211’)"/ Zr"rﬂ'dk '
l"v'l‘ r=2

<168% = 1dleld  d !,
where the additional factor r takes into account the number of possible values of §
at which ln(t?xg_ t; is attained, g i8 assumed to be small enough, and (5.6) has been

used in the first inequality.
+1 " . \
r>1, T/ s >1,and Kl}lg.rx“(f}') > ll%a(xr(t‘), then the right-hand side

of (6.5) does not exceed . .

T oo
@2x)* /1- Z(2r+1)-(r+1)(Zav|0(k)|('—hfﬂ)-)- . T (6.11)

L =t =1

’f (,i__?, |(;(k)|(|-h.ﬁ)-)r

. r
x( S M@ dk
. L: 1(J(L))=0,

Vo (L)PT (D)
- 2AC(k)|-0D)
< (2m)¢ /
(@) |—-x,x]? (1 - |C(k)|(l-haﬂ))u+|

T .
“ T\
x ;(% +1)4(r+1) (___——————l - IC(k)l('”"””) dk

_ CR) -8
RO e T a2

< hod~172(2hap) < hred~thd™", -
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where (r + 1) is the number of possible values of i at which (Jmax 8 is attained,

B is assumed to be sinétll enough, he, b are absolute constants, (5.8) has been used

in the fitst inequality, and (6.8) has been used in the second inequality.
+1 " .
wr 1, T e 21, and . gt?:'x“(a}') < lngl‘aztr(t‘), then the right-hand side

of (6.5) does not exceed

T [d . . .
—d u (1-hsB8)s
@n) /l_m]‘ S + 1+ 1)(§ ) ) o1

r=1
X (i 'C(")'("""""f)r ‘ !

=0

. » ( >
L: i(I(L))=0,
e (D)2 T(X)

r—1
x( Z [ M(L)ezn(L)ﬂ) dk
L 4(1(1))=0,
e (D)I2T(E) ¢

(2n(L) = V)" Ime (D)} M( L)sﬂn(b)p)

<@ [ oo

T r-1
. BT (k)™
x g(zr +1)4r(r+1) (_._-———-——1 my C(k)w-'--m) . dk

(1-Mf) T
<o [ r e D (2hap) ™ o
i - r=i .

< hyd~ 1836 < hoed~Amd™",

!

unt the number of ways of choosing with & > 1, the
t the number of ways of choosing a value of i
ed to be small enough, hs, hy are absolute constants,
d (6.8) has been used in

where (r + 1) takes into acco
factor r takes into accoun

giving maxigigr ¢ J is assum
(5.6) and (5.8) have been used in the first inequality, an

the second inequality.
Clearly 17g(1) + 2%¢(2) = £4-!. Hence for any By > §+ hs the Inequality (6.1)

follows from the estimates (66), (6.7) and (6.10)-(6.12) for e/d small enough.

The induction step i8 completed.
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§7. Proof of Theorem 1.1

Theorem 1.1 easily follows from the variety of facts established in the previous
sections. The calculations below are quite standard for the polymer expansion

tpchnique. Let
D=1- Y peo(L™)(H(L)] - V1)
L: i(J(L))=0
2n(L)-1 )
=1- Y I‘oo(L)( 'Y View —VL)-
L: K(I(L))=0 . m=1

it follows from (5.34) that |D 1| £ B. More precisely,

n(L)-1
LD -vrl=l Y { X View- VL) (1p (L) = too(L))
Lo\ m=)

2n(L)-1 ]
( Y V- VL)uoo(L)
L: JI(L)IST, m=1

1(L)o,T}#e,
KE)NT+1,00)#@

) an(L)-1
-T Z ( Y Vl...(z.)—VL)uoo(L)l-
L:(I(L))=0, * m=1
INL)>T

According to Lemma A.5 and the bound (A.6),

el D] < W (L),

(7.1)

(7.2)

(7.3)

In view of Lemmas 4.1 and 4.2, and similarly to (5.34), the absolute value of the

second sum in (7.2) does not exceed .

) 2n(l)-1
panweos( "y Vi + Vi)
L ()=, I(L)KT m=1 -
< Y . dussumpmuents
L: (I(L))=0, |I{L)IKT
<7 Y 202n(L) - 1)¥)Ime (D)[*M (L)Y
L: {(I(L))=0 ‘
< T3748,

where we have used (5.6).

(74)
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Similarly, the absolute value of the third sum in (7.2) does not exceed

2n(L)-1
T Y (W(L)| e’"(")"( Y Vet V,,) (7
La(I(L)=0, [>T m=1 .
T T Y 22n(L) = V)|Ime (L)IM(L)e*™D)?
L §(1{L))=0, {(L)>T . .
<TT'™B,

§

where we have used (5.9). ‘ s ‘
Finally, to estimate the absolute value of the first sum in (7.2) we use Lemma A

an(L)-1 ' ,

3 ( Y, Viaw -VL) (17 (L) - poo(L)) @
Lcle,m)  m=l ' : ‘
) - ) ¥ (L nW ()
= - Via(t) T Vi all,*® x

i Lglzo,n( m=1 SR x:w3L, I(x)0lo.TI#2 )

an(La)-1 o
=- > W(w)( 2 m( Y Viewo —VL.)).

=L I(m)N0TI#®, Lo N om=t

(=)o, T) #@

. s

where (0,7 = (~00,00) \ [0,7] and I{x) = Up,ex (2.
Given the polymer x = [L{*] entefing the right-hand side of (7.6), we denote
L;» the lace giving maxy,ex,L,Cj0,T] |I(1_7;)| and observe that

min(l(I(Lp)),T—-r(I(L‘.)))sl[(L,-)] Y« (i

Liew, LiClo,T]

= r(x) [T, wo(Ly)™. Lemma 5.1 estahlishes

Let wo(L;} = 2M(L;) and wo(7) ;
) of Theorem A.1. Thus one can estimate fr

wo(L) the truth of condition (A.3
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above the absolute value of the right-hand side of (7.6) by

9~ Epiglor wo(w)(g(l+ﬂ) Z a; |I(L.;)|) |

=|L7 )
" l’,('l) r:(g,'#&?ﬂ' LiClo,T) (7.8)
< Y rSucen®umi0+plEe) Yo
w=|L{%): 1(m)]0,TI#2, . LiClo.)
I(x)n{o,T)"#B
o0 '
4 _ 3
<X b S 2 twe(mp(+ ALl

w={Li¢: Lo (x)=L\
. Drggpomy =1

L: |I(L)IST,
ai(I(L))<eli(L)| ot
9<T-r(l(b))<-ll(b)l

2 Y dI) 3

2 *wo(m) 5 (1 + A I(Le e

N
"iMe

L: }(I(L)=0 ’ =[L): Lie(m)=
HA A R
o0
=30+8) Y HOP Y2 3w
L: {(1(L))=0 =1 ={LT4): Lo (x)=L,
LT | i
<3048 Y 6@ woD)
Li [{I{L))=®
[t{{3]1<y
<10+ Y, 22n(L) = ) e (D)|*M(L)e*™ P
Lt WI(L))=0

<2078,

where in the last inequality we have used (5.6). Now (1.11)-(1.12) is a consequence

of (7.4), (7.5) and (7.8).
To get (1.13) we observe that for given k and T and 5 large enough

_ "k \  log(sT)
logC (ﬁ) < TysT . (7.9)

Since G(k,T) = E(k,T)/E(T), using polymer expansions for log(C(k)TE(k, T))
and log Z(T) we get

o) -e( &) o 5, (0 (Gp) ) o

Clo,sT)

Obviously
oT
T
) = exp (—-2—&’42) . ' (711)
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Differentiating (5.20), it is not hard to check that for given k and = = [L{']

lim (W (%,r) - W(r)) -’:—,— = -21& ,z::, wi(0,%)

- ;-?W(r) (2‘: @ (’"‘fﬁ" Vim@t = V@,))-H (7.12)

m=1

Let

waen = (" (757) - W"") %(?"“ (anza - Dt @) -
(7.13)

Then the limit of the series in the exponential term in (7.10) is equal to

i [Eer T (G(D) ~ Dlle (D) T alLmWakym)  (T19)
' =3L o

-0 8 Ly I{I{L]}=0
2 X
CE S (-t @) Y othmWeks)
LCl0T) xoL, '
. wN{0,0T)*#2 : f

LD (D) = Dl () S 2Ltk )]
wdL

8 L: I{L)nl0sTi#e ,
HL)MeTHL, )22 . .

Using the translation invariance, it is not hard to see that

BT S (80(0) - Dl O T ol Wil m)

»3L .
cor 2 () o

{ of Lemma 5.3 that the sum on the right-hand side of (7.15)
re as 8 — oo this sum tends to

Ls i(1(L))=0

1t follows from the proo
converges uniformly with respect to s. Therefa

er Y %W(w)(f‘:a;(mﬁ—lv,_u,,—VL,)) (7.16)

w: 4(J(x))=0

- an{L)-1
1 31
= —-ak’T Z ( Z Vi) = VL) z a(L,x)W(x)

L: (I(L))=0 m=1 w3L
C an(L)-1 ‘

Ster v (X o - V1 i)

L iIE)=0 > m=) :

- _ (=D, :
2d )
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A calculation similar to (5.26)—(5.28) shows that

In(Li)—}

|We (K, )] < const dM(r)H( II II.,.(L.-)P’G)
‘ i

m=1

and by arguments similar to (7.2)-(7.8) the absolute value of the expressions in the
gsecond and the third lines of (7,14) can be estimated from above by

2
— const d%‘(Ta)’"“‘"’!' , (7.18)

and for ha > 15 it tends to zero as s — oo. This completés the proof of Theorem 1.1.
. Appendix.
The polymer expansion theorem

Consider a finite or countable set ©, whose elements are called (abstract)
contours and denoted by 6, &, and so on. We fix some reflexive and symmetric
realtion on © x ©. A pair 8,8 € © x 0 is called incompatible (§ £ &) if it
belongs to the given relation, and compatible (0 ~ &) otherwise. A coliection {f;}
is called a compatible collection of contours if any two of its elements are compat-
ihle. Every contour 8 is assigned a {generally speaking) complex-valued statistical
weight, denoted by w(6), and for any finite A C O an (abstract) partition function
(statistical sum) is defined a8 : :

zw= Y [Twen, (A1)
{0,164 J"

\

where the sum is extended to all compatible collections of contours 0; € A. The
empty collection is compatible by definition, and it is included in Z (A) with statis-
tical weight 1.

A polymer x = [67*] ia an (unordered) finite collection of different contours
8, € O, taken with positive integer multiplicities ay, such that for every - pair
¢, 6" € n there exists a sequence ¢ =0;,0;,... .0, =0"€x with 8, o 0i,44»
j=12,...,8—1. The notation x C A means that §; € A for every 0; € x.

With every polymer x we associate an (abstract) graph (%) which consists of
¥, o vertices labelled by the contours from » and edges joining every two vertices
labelled by incompatible contours, It follows from the definition of I'(x) that it is
connected, and we denote hy r(x) the quantity

rm =[[@d X D)7, (A2)
]

r'cr(s)

where the sum is taken over all connected subgraphs I' of I'(x) containing all the
¥, o vertices, and || denotes the number of edges in [V. For any 8 € x we denote
by a(8, =) the multiplicity of 8 in the polymer %.

The polymer expansion theorem below is a modification of results of {10] and {11}

proved in [12].

(7.17)
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Theorem A.1. Suppose that there exists a function a(f) : © — RY such that for
any contour 8

3 (w(@)le® < a(6). (A3)
0 90 ]
Then, for any finite A, )
log Z(A) = Y w(x),’ (A.4)
*CA
where the statistical weight of a polymer x = [6{"] is equal to
w(n) = r(x) [] w@:). ~ (AB)
: .
Ma'rwver, the series (A.4) for log Z(A) is absolutely convergent in view of the
estimate
T a@mhu()] < [w@)le®, (A8)
w: x50

‘which holds for any contour 6.
Corollary A.2. For any polymer n = [6}]

Ir(e)l < pin (2@, m) ' ju@)le=®) [T lw@i™. (A7

Proof. We denote hy 8° the contour from 1r such t.hat

a(?'.w)“lw(o‘)lf“"’=;r‘lé3 (a(q‘.x)"lw(o‘)le"-"’)- | .‘(A.S)‘
According to (A.6) '
o', D@l < Y o, 2)wE)] < wE)e ), (A9)
w': w'30" .

and (A.7) now follows from definition (A.5).

Corollary A.3. For any function b(0) : © — R we consider the modified statis-
tical weights of contours w(@) such that

|5(6)] = |w(6)le=*"). (A.10)

Then for the corresponding statistical weights of polymers (x) we hove the bound

(@) < pin (a0, w0l exp( - Tad(8)). A1)

Proof. Substituting (A.7) into the definition of @(x), we immediately get (A11).
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Suppose that for a given compatiblility relation for contours one can find the
maximal statistical weight w(6) satisfying (A.3) with some a(8). Then Corollary A3
says that for smaller (in absolute value) statistical weights (@) of contours the

corresponding statistical weights of polymers decay exponentially.
For any finite or infinite A C © we define the A-correlation function of the
compatible collection {8} CAas :

T w, (A12)

pa({8;D) = (A"
(H1cA: (1) 2(01 ¢

and put pa(9) = pa({6}) Wel denote by F(6) the set of all contoura'O' €0
incompatible -with 0 (the forbidden set for 8). Then it follows from the polymer
expansion-(A.4) that .
pa(0) = Z(A) " w(@)E(A \ F(9)

AL3
= w(f) exp (- E w(w)) . (A-19)
nCA: 3gen il
A simple expression for pa(0) is given by the following lemma.
Lemma A.4. ForanyAEGnndnnyoeA <
@ = Y, alxu) (A14)

xCA: w20

Proof. We fix any 0€ A and change tl;e statistical weight of this @ from w(f) to
w(v, ) = vw(d). We denote by Z(v,A) the partition function calculated via (A.1)
with w(v, 8) taken instead of w(f). Then ‘ :

h dlog Z(v,A)

o) = " (A15)

=1

On the other hand, in view of (A-4) '

«nosf(u.A) - dwfiv_-w_) = Y a@mum, (A6
v =1 xCA vV le=1  wCA: w20

where w(v, x) is defined by (A.5) with w(v,0) insteadof w(6).

Suppose that the partial order < is defined on 6 in such a way that ¢ < 0 implies
that & ~ @ and conversely @ ~ 0 implies that either euIren@ vI(@)) =@ or
& u I{0") C I(6). Here I(6) denotes the set of contours

I(0)={0‘66|0‘ <8}, . (A7)
called the interior of 9. Two contours 8 and @' are called mutually ezternal if
eulI(e) nEuiE) =0 Clearly the partition function Z(A) can be represented

in the form
zn =Y [[w@)zU@:), (A.18)
I
where the sum extends over all compatible collections of mutually external contours
only. We introduce the notation F*=(0) = FOU{F €O {6 < 6'}. Then
(@) = Z(A) " w@) Z(A \F*(0)) (A.19)
{s the correlation function of @ a3 the external contour (see (A.13)).
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Lemma A5. Let us fir a function Vo : © + Rt such that for the porameter v
varying in some interval containing 1 the modified statistical weight

ey 2U1O)
L w(v,0) = vYw(d) Zo.00) (A.20)
with . : .

' ZwA) = Y [Ivw@)zue). -~ (A21)

{o,3cA 4

satisfies (A.6) for some (). For any A C© we put

A= Vm“d‘"). - (A.22)
#CA N :
Then . N
e X we(Tae Vi) = X2 06~ Vien) 40 (420
. [ [=1.

#=(07V1CA i
1

Proof. A_ccording to definition {A.21),

dlog Z(v A)I
W= — ] - : A24
dv =1 ( )
On the other hand, : :
2N = Y Tw.o) T (A25)
{e;3cA 4

and in view of (A.4)

dlog Z(v,A) _ dw(v,7)
dv | - Z dv

. Y W(T)(Zm (Ve, -Vl(n))).
v=l alotiCA i

_ ; (A.26)
where w(v,7) is defined by (A.5) with w(v,8) instead of w(d). Using (A.14) we
easily get .

T wm (; ay (Vo, — Vm.)))

*x={071]CA

=Y (V-Vie) 2 a@,mwim) = 3 (Vo — Vi) (0, (A.2D)
x36: nCA

6CA oCA

=1 xCA

which proves the lemma.
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On the centre of the Sklyanin Poisson algebra

V. P. Cherkashin

The ground ring K is assumed to be s field of characteristic 0,

Tha goal of this paper Is to compute the centre of tha Skiyanin Poisson algebra ({1, 12},
English p. 13) by starting out from (ke fact that this algebra is 8 homotopy deformation of the
algebra of the one-dimensional trivial extenalon of
the Lie algehra so(3, K). The maln concepts and facts are given in detail In [3].

1. Tha homotopy algabra. Let £ be a Poisson algebra with associative multiplication (u,v) =
wv and commutator (%,v) —+ [u,v], 8,v € 5. We denote by Hmt$ tha set of solutions of the
family of linear equations cycl(__,'.)((u,u][w,ll) = 0, w,0,w € 9, wilh respect to t € . 14
t € Hmt 5, then the K-apace % with the associative multiplication of the Poisson algebra and
the commutator (u,v) - ¢ju, v} is » Poisson algabra, which is called a homotopy of £ and denoted
by.$H(¢). :

Hmt$ contains the centre Z(5)) of the Lie algebra % and is a subalgabra of the iatl
algabra . Moreover, we have tha following resuit.

Proposition. Hmt ) is un ideal of the Lic algebrs 5.

Proof. ‘Tha following ideotity holds In s Poisson algebra:
cyd ,(l"-"][“’rl"ln) = l‘l‘fzcl,([“-"]["v‘])] _(

[CR K

o )(llz.ul.v]l#:.el)
- oy (l".[’-"ﬂl"l‘]); cyd D(lu,u][[:,lu],ll), t,u,v,w, €N

(.,(.,.],. (w.wijuw

Corollary, Hmt$ it w subslgcbra of the Poision algebra 5.

It i curions that Hmi % appears under certain deformations.

Let u be a Lie algebra. Suppose that § = £(a) := the Poisson algebra on tha symmetric algebra
S(u) with canonical commutator, d € N, ¢ € §4(x), and b := K - e @ # is the one-dimensional
trivial extension of the algebra a, and suppose that in S(b) we are given the skew-symmetric
mualtiplication
[usv)e = def=Mu,t], leo,ule s=[ugl  wvES
subject to tha Leibnits identity with respect to multiplication In S(b). If ¢ € Hmt %, then g :=
(S(b).[ ]+) is a homogeneous Poisson algebra of degree d. For ¢ € Z(5) we have g = £(b)(d¢$").

The centre Z(g) obvously contains Z ().

2. Strictly regular elemants. The centre Z($) in & subalgebra of the Iative algebrs .
Let z € %, let Zg(z) be the centralizer of x in the Lis algebra 9, and let Z($)[z] be the subalgebra
generated by z [n the assoclative algebra $ over Z (f). The centralizer Zp(x) certainly contains the
algebra Z($)lz). An element = s said to ba sirictly regular in § if Zp(z) = Z(9H)l=) (<. [4), p. TV).

It is not hard to soe that the centre Z(g) contains the subalgebra Z(5)leé + q) generated

the element ¢f + q in the algebra S(b) over Z(5).







