Inequalities for penetrable sphere model systems*
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We make use of certain inequalities derived for mixtures with a nonnegative interaction between
particles of different species and no interaction between particles of the same species to derive
bounds on the thermodynamic functions of these systems and of their one component, “penetrable

sphere model,” analogs.

. INTRODUCTION

Recently there has been interest in a class of binary
fluid mixture models with repulsive interactions between
unlike molecular pairs of particles and no interaction be-
tween like molecular pairs.!® The total potential ener-
gy of such a mixture of N, particles of type A and Ng
particles of type B has the form '

Np Np

U(%i‘):zz u|x; - v;]), wn=0,

i=1 j=1

(1.1)

where the x;’s are the positions of the A particles and
the y;’s are the B particle positions, These mixtures
can be related to thermodynamically equivalent pure
fluid systems which have become collectively known as
“penetrable sphere models.”

In a recent paper® we have shown that certain in-
equalities which are analogous to the FKG inequalities™
for lattice systems are valid for these two component
systems. In particular inequalities between the average
joint densities for the A and B particles were derived.
In this note we shall combine these inequalities with
various known relations between the thermodynamic pa-
rameters and the pair distribution functions to derive
some bounds on the former. Some of the resulting in-
equalities have been previously derived by Widom, 2 for
a particular form of the pair potential, on the basis of
purely thermodynamic arguments.

1. INEQUALITIES FOR TWO COMPONENT SYSTEMS

Using the standard definition* to relate the correla-
tion functions gy, (%, <+ +, X;, Y1, 22+, ¥a) :gl,k(xl; y5 to
the average joint density of having / A particles at posi-
tions Xy, ---,X; and % B particles at positions y;, «++,¥,

”z,k(xz,yk)EPi\P%gz,k(xl,Yh) ’ (2-1)

where p, and pg are the average densities of the A and
B particles. We have the following inequalities between
the correlation functions®;

L1y o X = gy (%) gy, o(x) =1, (2.2)
g e(x", ¥ ) =g1,0(% g0,y ") (2.3)
Lo, 1Y “k)zgo,z(y I)go,k(yk)?—l . (2.4)

For the (pair) radial distribution functions we have
&,0(n) =g(r; A A)=1,
a,1(n)=glr;A,B)=1,
&,2(n)=g(r;B,B)=1,

(2.5)
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where # is the distance between the two particles.

These radial distribution functions can be related to
various thermodynamic quantities, for example, one has
the compressibility relations'!

(2.6)

where i=A,B and j=A, B, B is the reciprocal tempera-
ture, 8=(k7)™", and we have assumed we are dealing
with a three dimensional system. From (2.5) and (2. 6)
we obtain

B (opi/ o) =piis +dmpip, [ Lot 4,5y = 1]r2 dr,

B-l

8pA - 9pp 804 - %) <0 (2 7)
5 . .

> pa, B = and

Ha Pas g Pe> 9up 9OHa
The last of these inequalities can also be obtained direct-
ly from the FKG inequalities.

We shall now present some additional results obtained
from the radial distribution function inequalities for the
two specific systems studied in detail, the Widom-
Rowlinson model' and the Gaussian mixture model, ®?

In the Widom~Rowlinson model the potential between un-
like pairs is

u(v)=wo, <R
=0, =R (2.8)
giving a hard core of radius R between A-B pairs. The
Gaussian mixture model is constructed so that the Mayer
ffunction is a Gaussian, - e‘“’z, therefore the potential
is

Bu(r) = =1n[1 - exp( — ar?)] , (2.9)

where « is some positive constant, and 8= (k7).

Using the virial theorem one can obtain the following
equation for the pressure of these two-component mix-
tures:

478 * L du(v
Bp:pA+pB——3—pApsf0 VS—Z(V—)g(v;A,B)dr (2.10)

and more specifically Bp=pa+ps ++7paps R’2(R; A, B) for
the Widom—Rowlinson model. Using this equation and

the center inequality of (2. 5) we have

BP=pa+pp+Vopaps, UVo=+TR? (2.11)

for the Widom—-Rowlinson model. For this case, only
the contact value, g(R; A, B) contributes to the integral.
For the Gaussian mixture model we have

Bp=pa+ps+ (77/01)3/213.4955(5/2, 1)

where £(5/2,1) is the generalized zeta function.® For
this model we also have a bound on the interaction ener-

(2.12)
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gy per unit volume.

E=3p,pedn [ v?u(r) dr (2.13)

lil. ONE COMPONENT SYSTEM INEQUALITIES

To obtain the one component image of the two compo-
nent system the integrations in the grand partition func-
tion of the mixture are carried out for the B particle
positions giving

= (B, Zp, zp) = exP[BPA]

4% o[
:N - AT 1 dxl oo AdeA

><exp[2}3 W(xb °0%y xNA)] s (3- 1)

where
Na
W(Xy,e e, xNA) = fAdyeXp[— B ; (x 'Y)]

and A is the volume of the system. It can be shown that
(3.1) can be written as a single component fluid grand
partition function

='(B, 2) = explBp’ Al
N
S R B R
(3.2)

where the prime indicates quantities for the single com-~
ponent system. The correspondences between the two
systems are given by

v(B) = - [, dstexpl - Buls - x)] - 1} »
pl =p- ZB/B s

(bn(xly ey xn)

n
("UU(B) f {exp[ -B Z (%, ~ Y)] - 1});
(B) i1
(3.5)
where € = zgvo(8)/B. Note that the many body potentials
&, depend explicitly on B and implicitly also on A, In
addition v, also depends implicitly on x near the bound-
aries. These implicit dependences disappear however
in the thermodynamic limit, A—<,

(8.3)

2=z, exp| ~ zpvo(B)], (3.4)

It is easily seen that there is the following correspon
dence between the distribution functions of the two sys-
tems

(3.6)

and therefore from (2. 2) we have that for the one-parti-
cle system there is a positive correlation between par-
ticle positions, i.e., gi{xy, -+, x;)=1. This is in
marked contrast to the behavior of the radial distribution

,0(Xy, v 00, Xg) = ny(Xy, 000, X))
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functions in a system with pair potentials () (which are
positive for small values of %) where g(») oscillates
about the value one.

It follows now from (2.7) [or directly from the analog
of (2.6) for a one component system)] that, for fixed g,

ap/ez=p/z, (3.7

where p is the density in the one component system.
Equation (3. 7) is the “inverse” of the relation, p= 2,
which is known to hold for a one component system with
nonnegative interaction potentials. !®

orp=z,

The bounds on the pressure (2.11) and (2.12) can be
transcribed into bounds for the one component system
giving, respectively,

T ~P0+(1+0-06ef—do)y—sedy? (3.8)
for the Widom-Rowlinson model and
T=—-00+[1+0£(5/2,1)~ e
- 0E(5/2, )]y - 0ePE(5/2, 1)»? (3.9)

for the Gaussian mixture model. Here the following di-
mensionless quantities have been used,

9=Be, d=v(U)/e, m=Bp'v,

and (U) is the one-component interaction energy per unit
volume.

Y= pUy, (3- 10)
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