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I. INTRODUCTION

Statistical Mechanics of Non-Equilibrium Processes like other
physical theories has two aspects: (1) the mathematical investigation
of certain well-posed, that is, mathematically formulated problems, and
(2) the proper mathematical formulation of physical phenomena. It is
wise, I believe, to separate these two parts of the problem and this talk
is primarily about some of the progress that has been made in recent
years in the mathematical theory of measure preserving transformations.
Since the dynamical flow in the phase space, which describes the time
evolution of a Hamiltonian system, is an example of such a transformation
this work has, in my opinion, much relevance to statistical mechanics and
to the question of irreversibility. The progress in this field is the
result of the work of many people: Hopf, Kolmogoroff, Sinai and others,
most of whose names and work I shall not have a chance to mention. (A

small bibliography is given at the end).

II. EQUILIBRIUM ENSEMBLES

Let me begin by recalling briefly the situation in equilibrium
statistical mechanics: There is a‘purely macroscopic theory, thermodynamics,
which states that agreat variety of the properties of a large system, of a given
quantity N § N = particle number«wlﬂé% contained in a volume V, which is

in equilibrium, are determined once its energy E is known. This information

about the system is contained in a function S(E,N,V), the entropy, which is
extensive, that is, S(E,N,V) = V s(E/V,N/V) = V s(e,p) and which has certain
convexity properties that insure thermodynamic stability. From s(e,p) the

pressure, temperature, etc., can be found. (If, instead of specifying e,
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the energy per unit volume, we specify the temperature T = Bql (in
units in which Boltzmann's constant is unity) the 'thermodynamics' is
determined by the Helmholtz free energy A(B,N,V) = Va(B,p), which is
related to the entropy by a Legendre transformation.)

Now, according to statistical mechanics, as developed by
Boltzmann, Gibbs, Einstein and others, these thermodynamic functions for
macroscopic systems are obtainable from a knowledge of the microscopic
structure of the system by well known formulae. The microscopic nature
of the system is specified by its Hamiltonian which we assume to be the

sum of a kinetic energy term and a potential energy term

gas: e
Hy(x) = 131'55 Py + U(xyseeesmy) s (1)

where m 1s the mass of a particle, I;» p; are the position and momentum

3
vectors of the ith particle, I, €=y By €ER™ and x = (51""£N’El""pﬂ)

is a point in the phase space I' of M (=6N) dimensions. We shall say
that x specifies the 'dynamical state' of the system. To obtain the
entropy S(E,N,V) of this (classical) system, we define the energy surface
SE by the relation HN(x) =ifiSfor S ¢ SE and equate the entropy to the

logarithm of its 'surface area',

do (%)
s = aalsyl IS = [ R 2

E
where ch is the M-1 dimensional surface area element on SE induced

by the Euclidian metric on I and |VH| is the length of the gradient of
(Similarly, A(B,N,V) ~ 8n{fexp[-ﬁHN(x)]dx}.)
The statistical mechanics of Gibbs does not stop at giving

formulae for the thermodynamic potentials S(E,N,V) (or A(B,N,V)), it

HG
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interprets these formulas in terms of 'ensembles' or probabilities: i.e.,
if f(x) is a real valued function (dynamical observable) of the dynamical
state of the system which is accessible to macroscopic measurements, the
results of measuring its values in an equilibrium system with energy E
will have a probability distribution obtained from a normalized probability
measure, given by
-1
|SE| ch(x)/|$’H(x)l ; xSy (3)
dp (x) =

0 = x £ SE =
The probability demsity by given in (3) (which is left invariant by the
dynamical flow in I) is usually called the Gibbs micro-canonical ensemble
density. Thus, according to statistical mechanics, if we make many obser-
vations on one system or on a collection (ensemble) of equilibrium systems
with energy E (having, of course, the same Hamiltonian) then the average

and mean square deviation of £ are given by

(E(x)) = Jf(x)duo(x) » ([f(x) - <f>]2) = I[f(x) - (p1? du (%) . (&)

For measurements which take a certain amount of time to perform

the appropriate dynamical functions are of the form

- l T
£.(x) =5 J'of(xt)dt s (5)
and

T
- 1
Gy =1 | Cwpa- @ (6)
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where X, is the point in the phase space or dynamical state of the
system at time t 1if x is its dynamical state at t =0, and in (6)
we have used the fact that duo(x) is time invariant, duo(xt) = dpo(x).
x, is obtained from x through the solution of the Hamiltonian equa-

tions of motion

;L BB sploslone % p, = - 2 N
i~ 2p, Be "% 0 E oy

together with 'boundary conditions' on the surface of the region V in
IB;. (The boundaries usually taken to be reflective, i.e., the component

of the velocity vy is reversed when the ith particle hits the boundary.)

In particular, thermodynamic quantities like the pressure
are equated in statistical mechanics with the ensemble average of the
corresponding dynamical observables.

The two aspects of equilibrium statistical mechanics are then: (1) the
investigation, for a given Hamiltonian, of the actual form of the thermodynamic
functions and other expectation values, such as those which enter in the scattering
of X-rays by fluids or crystals, and (2) an understanding of why the predictions of
statistical mechanics work as well as they do in relating the observed properties
of an equilibrium macroscopic system to the corresponding ensemble averages.

Considerable success has been achieved in the first aspect and
there is no doubt at all that statistical mechanics works for macroscopic
systems. The fact that the systems are macroscopic is very important here.

Indeed it is only in the so-called thermodynamic limit in which the size
of the system formally becomes infinite, N + =, V + =, N/V + p, E/V + e, that the
statistical mechanically computed entropy per uni; volume (or free energy

per unit volume), s(e,p) (or a(B,p)) have the right thermodynamic stability
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properties. It is also only in this limit that the most striking aspects
of equilibrium phenomena, phase transitions, have an unambiguous qualitative
meaning; they correspond to (mathematical) singularities of s(e,p) or
a(B,p). One can also show, in the thermodynamic limit, the equivalence of
various ensembles in predicting the results of macroscopic measurements.

The justification of the use of ensembles is in a much less
satisfactory state at the present time. Some of the elements entering
into an explanation are: (1) the special nature of the dynamical functions

which are accessible to measurement in macroscopic systems: they all have

small dispersions, e.8., {[(f2> - {f721/4f>2} is very small, (the dis-

persion actually goes to zero in the thermodynamic limit when {f) can be
identified with a thermodynamic quantity), and (2) the ergodic hypothesis:
lim fT(x) = 1lim l/T[Tf(xt)dt = f exists and is independent of X for
g festn o
almost all x, X € SE and f£(x) € Ll’ fLeuly (|f(x)‘) = f]f(x)‘duo(x) < =,
It is easy to show that when the system is ergodic, = {f(x)).
Hence, if the 'effective time' T, in macroscopic observables ET(x), were
comparable with the time involved in ﬁhe ergodic statement, i.e., with the
T necessary for fT(x) to become approximately equal to f for almost
all dynamical states X, we would have an "explanation'". This is, how=
ever, clearly not the case since if it were true we would never observe
non-equilibrium phenomena (except possibly for dynamical states X

which lie on trajectories whose measure is zero in which case the er-

godicity property would be irrelevant). It is, however, true that if
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a macroscopic system is observed for a 'very long time', then the time
average of the macroscopic observables £(x) agree with the predictionms
of equilibrium statistical mechanics. Hence some ergodicity property for
macroscopic observables seems necessary, but not sufficient to justify the
Gibbs formalism.

The property of small fluctuations of macroscopic observables
also seems more of a necessary than a sufficient condition for justifying
the Gibbs assumptions. It helps us in understanding how a macroscopic
system whose dynamical state keeps on changing all the time can have macro-
scopic observables f(x) or fT(x) which appear to be constant in time,
i.e., the system appears to reach and remain in an equilibrium state.

The property of small fluctuations, which can actually be proven
quite generally, may also have some relevance to the question of ergodicity.
If the fluctuations in f are small then f(x) ~ (f) for most
x € SE which implies that starting with a 'typical' x, f(xt)'~ {f) for
most of the time t which in turn makes it plausible that
T_IJTf(x,t)dt‘+ (f) as T + = for almost all x, i.e., that the system
is eggodic with respect to the relevant' £f(x). (Ergodicity itself does
not however require large systems and does not imply small fluctuatioms.
Consider a simple one-dimensional osciilator H = (Fdnips wlfRimiass
This system is ergodic on each energy surface with (pz) = mE, (pa) = 3/2(9%}2.
Ergodicity is thus not incompatible with large fluctuations.)

I feel therefore that much further work is necessary to explain

the applicability of the ensemble method to equilibrium phenomena. This
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is even more so when we come to a discussion of non-equilibrium phenomena
where we shall again adopt the ensemble, or probability, method with or

without a good 'explanation'.

III. NON-EQUILIBRIUM ENSEMBLES

There are two entirely equivalent ways in which to proceed. The
first approach which builds directly upon what we have already discussed
for equilibrium systems is as follows: We coqsider what Penrose calls a
'compound observation', measuring first the value of a dynamical function

f(x) and then at a time t later, measuring the value of a dynamical

function g(x). An appropriate dynamical function for measuring the
correlations in this compound observation is the explicitly time-dependent
dynamical function f(x)g(xt) whose expectation value, in an equilibrium

ensemble, should be given by

<3(t)f> - Jg(xt)f(x)no(x)dx = Js(x)[f(X_t)uo(x_t)]dX,t

a Jg(x)f(x_t)uo(x)dx . (8)

You will recognize (g(t)f) as a time dependent correlation function in
an equilibrium ensemble.
An alternative way of looking at Eq. (8) is to think of

[f(x)uo(x)] as a non-equilibrium ensemble density at time t =0, i.e.,

we set u(x,t = 0) = Ku (x)f(x) where K is a normalization constant
o

f(x) can 'always' be made positive by adding a suitable constant). The
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ensemble density at time t, p(x,t), then satisfies the Liouville equation

au(x,t) = (H,u) = -iLp

- : : )

where (H,u) is the Poisson bracket with the Hamiltonian, and L 1is the

Liouville operator'. The solution of (9) is
w(x,t) = exp[-itL]u(x,0) = U_ u(x,0) = w(x_,,0) = Kf(x_t)uo(x} « 7(10)

U, is a unitary operator Ut¢(x) = m(xt) on functions in LZ(P),
[|q:(x)|2du.o < =, {g(t)fy in (8) is then the expectation value at time t

of the dynamical function K_lg(x) in a system represented by an ensemble
density W(x%,t). The interpretation of (g(t)f) in terms of non-equilibrium
ensemble densities is particularly clear if f(x) and g(x) are character-

istic functions of some sets

1,x€A 1,x€B

0,x¢A ° g(x) = {O,xfB 4 (11)

A:BCSEsf(x)-{

(A and B could correspond to regions in SE where some dynamical functions
F(x) and G(x) have values a and b respectively, or are in the ranges
(al,az), (bl'bz)') Calling po(A) the measure (volume) of A with respect

to the equilibrium measure duo

uo(A) = J duo(x) s ”b(B) = JBduo(x) >

A
then p(x,0) = f(x)po(x)/ub(A) represents a normalized ensemble density

which is concentrated 'uniformly' in A. Calling UA=A, with
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{ + B

At the set of points {x: X_,

ensemble density concentrated uniformly in At. The expectation value of

€ A}, then p(x,t) = f(x_t)po(x)/uo(A) is an

g(x) in this non-equilibrium ensemble is then
Jg(x)u(x.t)dx = [uO(A) ]_ljg(xt)f(x)duo(X) =p (A N B) /(&) > (12)

which is simply the measure of the overlap of the set At with' By di@Ey,
it is the '"fraction' of systems in the ensemble (all of which were originally

in A) that are in B at time t.

A. Mixing Flows

Pursuing this analysis further, it seems reasonable to say that
a necessary condition for a system to 'approach equilibrium' is that, after
a '"long time', the ensemble density u(x,t) becomes 'spread out' over the

whole energy surface SE’ ti8si;

u (A, N B)
uo(A) £ -

> po(B) , for all sets A, B, with finite measure. (13a)

When the Hamiltonian flow has the property (13a) then the system is called

mixing, a notion introduced by Hopf in 1934. The property of mixing may



=10~

also be expressed directly in terms of the time dependent correlation

functions; it can be shown that a system is mixing if and only if
(R(EYE) ===t LE¥ 4@} ' » (13b)
whenever f and g are in LZ’
J|f|2du0<“,J|s|2duoc~ -

Mixing is related in an inverse way to the notion of 'dynamical
stability' of a flow. Suppose we start out with two phase points
Xy € SE and follow their trajectories L yt. We can then ask the question

of "how close' X, and ¥ will be if x and y are close, i.e., given
an & > 0 does there exist a & > 0 such that |xt » yt| = esfor=allaiie,
if |x - y| < §? If the answer is yes, then the system is said to be
dynamically stable. Clearly, a system which is mixing is dynamically un-
stable since an M-1 dimensional ball of radius & centered on x will
spread over the whole energy surface SE as t > =,

The property of mixing is stronger than, and implies, ergodicity.
(It follows from (13a) that At = A => uo(A) = [ub(A)lz or uo(A) =0 or
1 which is true iff the system is ergodic.) It represents the kind of
'loss of memory' which Gibbs expected that 'coarse graining' in some way
or another would bring about. Note however that a Hamiltonian system
which is mixing in the forward time direction is also mixing in the backward

time direction, i.e., (13) holds also with t - -t. Mixing, or still

stronger properties on the flow, which we shall discuss later, may thus
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be necessary, but are (by themselves) certainly not sufficient to give
time a direction. What these mixing properties show is that initial
non-equilibrium ensemble densities of a certain type (those which are
'smooth' with respect to dub) will approach, in a certain well defined
sense, the equilibrium ensemble density. (More on this later.)

Until recently there was no example of a dynamical system
which is mixing. Recently, however, Sinai was able to prove that a
system consisting of a finite number N, N = 2 hard spheres (or hard
disks in two dimensions) confined to a cubical box is a mixing system.
(Only part of the proof has been published so far.) It follows, therefore,
in particular from Sinai's work, that for a finite system of two or more
hard spheres in a box, in two or three dimensions, the velocity auto-
correlation function of any particle, say particle one, approaches zero
as t > =,

<Vl(t)v1> e (vl> (vl) =0 . (14)

This is indeed remarkable and contrary to some folklore opinion
which holds that it is necessary to go to an infinite size system in order
to obtain a true decay of the correlation functions when t - «. Here,on
the other hand, this is shown to be true for a system consisting of N,

N = 2, particles, as long as N is finite. (It is presumably true also

for an infinite system, but this is far from proven.) The usual reason for
the belief in the necessity of going to an infinite system is that for a

finite system, one always has a finite Poincare recurrence time for each
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dynamical state x and hence it is thought that the time correlation
functions too will have such 'recurrences'. Note however that the mixing
definition is meaningful only for sets of positive measure and that the
equivalent decay of correlation functions definition applies only to square
integrable functions (with respect to duo). What mixing therefore implies
is that the times when different systems, which were initially together in
the same set A (which can be as small as desired as long as uo(A) > 0),
return to the heighborhood of A' are so different from each other that
eventually the set At spreads out uniformly over all of SE. This is
 the important property of mixing flows which does not follow at all from
ergodicity alone, and is in particularly striking contrast to what occurs
in assemblies of oscillators such as harmonic crystals where all the phase
points have the same periodicities. (Finite quantum systems behave like

oscillators, c.f., remark at the end of Section C.)

B. Transport Coefficients

The study of time correlation functions, such as the velocity
auto-correlation function in (14), plays a central role in the statistical
mechanical theory of non-equilibrium phenomena. Their importance stems
from the fact that linear transport coefficients, such as heat conductivity,
viscosity, etc., may be expressed as integrals over time (from t =0 to
t = ») of the time correlation of appropriate dynamical functions (Einstein-
Green-Kubo). These functions represent the 'fluxes' associated with the
transport processes in question. A well known example of such a 'formula'
is the Einstein relation between the self-diffusion constant D and the

integral of the velocity auto-correlation functionm.
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It might appear from (13b) that for mixing systems these transport
coefficients could be defined meaningfully, without going to the thermo-
dynamic limit of an infinite size system, as long as [{g(t)f) - {g)<E)]
approached zero sufficiently rapidly to be integrable. Such is, unfortunately,
not the case since the flux functions whose time correlations are of interest
for transport coefficients can generally be written as Poisson brackets
with the Hamiltonian H, i.e., £ = (F,H), g = (G,H), and for mixing systems
it can be shown that when £, g, F, G are all square integrable with

respect to dpo then,

r'T
lim | (£(t)g)dt = {(F,H)G)
T+ ‘0
(15)
T
lim | {£(t)f)dt =0 :
Toe ‘0 :
Thus for a finite mixing system confined by a wall,
T
lim f (vl(t)vl}dt = 1lim <ql(T)vl) =0 i (16)
g M T

since

2 2
s (ql'H) and Jvldub < @ b fqldpo < @ .

Note that when 9, is an angle variable, e.g., in the case of periodic
boundary conditions, then 4 # (ql,H) and (16) need not hold. We would
still have, however, {v,(t)v;> ~ 0 Aif the system is mixing.

When the system is not mixing, the limit T - = in the above

integrals need not exist. It is still true however that for any finite

sys tem
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— —

lim J(f(t)f}dt = 1lim "%f {F(T)F) = 0 , if it exists. (17)
T T

This is so since,
T 5
EMF) = FMFOYIED? = F2 (18)

so that when F is square integrable d/dT(F(T)F) can either oscillate
or approach zero.

These time correlation integrals will therefore, if they exist
at all, be equal to zero in any finite system. (The interesting fact is
that they do exist for mixing systems). The Einstein type formulae for
transport coefficients can therefore be mathematically meaningful only in
the thermodynamic limit.

One of the most important problems in 'rigorous' statistical
mechanics, at the present time, is therefore to investigate, and hopefully
establish, the existence in the thermodynamic limit of the time integrals
used in the Kubo formulae. Unfortunately, it seems impossible to even

tackle this problem before one proves the existence of a time evolution

in the thermodynamic limit. This has been established so far, for a

general class of systems, only in one dimension (Lanford).

C. Spectrum of Liouville Operator

There is an intimate relation between the mixing properties of
the flow and the spectrum of the Liouville operator L (iL is the
generator of the unitary operator Ut). It can be readily shown that if

the spectrum of L is absolutely continuous (except for the eigenvalue
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zero) then the flow is mixing. The space on which L acts here is the
Hilbert space of complex valued square integrable functions with the
measure dpo(x).

Ergodicity, mixing and absolutely continuous spectrum are
members of a hierarchy of increasingly stronger conditions on the flow
(or the Hamiltonian H which generates it). It has been shown that

absolutely continuous spectrum => mixing = ergodicity ,
but not the converse. Mixing does however imply that L has no discrete
eigenvalues other than zero which is a simple eigenvalue. Such a
property of L dimplies in turn that the system is at least weakly
mixing (the converse is also true). A weakly mixing system is one in
which

T
i 3
1im~E-I0]uo(At N B) - pb(A)uo(B)|dt =0 : (19)

Toseo

An eigenfunction corresponding to the eigenvalue zero is of
course, any constant oﬁ SE. It follows already from ergodicity that
the eigenvalue zero is simple, i.e., constants are the only eigenfunctions
of L with eigenvalue zero. The converse is also true, i.e., if zero is
a simple eigenvalue of L then the flow is ergodic.

This may be a good place to note that, due to the discrete nature
of the energy spectrum for finite quantum systems confined to a bounded
domain V, there will be no mixing (decay of correlations) in such a system.
For such quantum systems we do not therefore gain anything from the use
of ensembles and we are forced to look at the infinite volume limit for

signs of long time irreversibility. The remarkable thing about Sinai's
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result is that it shows that finite classical systems can and do have
purely continuous spectra. (Note that when Planck's constant h -+ 0
the number of energy levels between some fixed E and E + AE becomes
infinite.)

D. K-Systems

Sinai's method of proof that a system of hard spheres is
mixing is based not on the study of the spectrum of the Liouville operator
but on showing that the "flow' of the hard sphere system on SE is
similar to the 'flow' of a free particle (geodesic flow) on a surface of
negative curvature. Such flows are known to be very unstable and were
shown by Sinai to be K-flows. Here K stands for Kolmogoroff who in
the mid-fifties introduced the notion of a K-flow or a K-system. It
can be shown that a K-system is also mixing. Indeed, K-systems seem
in some way to have the right kind of 'randomness' which might lead to
irreversible kinetic equations like the Boltzmann Equation or the hydro-
dynamic equations. I shall therefore try to explain what they are.

Imagine the energy surface SE divided up into k disjoint

cells Ai, 1wl aaey Ky

Zuo(Ai) = 1 p.o(Ai n Aj) =0 .

This collection of sets {Ai} is called a partition A, A = {Ai}; the
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Ai are the 'atoms' of A. Since uo(Ai) is the probability (in the
micro-canonical ensemble) of finding the system in Ai’ Kolmogoroff de~-
fined the 'entropy' (not to be confused with the thermodynamic entropy)

of this partition h(A), in analogy with information theory entropy, as

h(A) = - Zub(Ai)zuuo(Ai) ‘ (20)

Clearly, h(A) = 0, with the equality holding if and only if
uo(Aj) = 1, for some j, i.e., there is complete certainty that x € Aj.
(We shall generally ignore sets of measure zero, setting po(C)8nuo(C) =0
if uo(C) = 0, and writing Aj = SE when pb(Aj) = 1,) The maximum
value which h(A) can take is #&nk corresponding to uo(Ai) = k_l for
all f = 1, .oy ks

Given two partitions A = {Ai}, i=1, ..., k and B = {Bj},
j=1, ..., my we denote the 'sum' of the partitions A and B by
A v B; AvB is the partition whose atoms are all (non-zero measure) sets
A, N Bj. The entropy of A v B is,

h(Av B) = 2 ub(Ai nBs

o j)Bnuo(Ai n Bj) s (21)

The 'conditional entropy' of a partition A, relative to a partition B

is defined as

h(A/B) = Eub(Bj){iuo(Ai/B

Yiou (A, 7B}, (22)
3

3

where

uo(Ai/Bj) = p (a0 Bj)/“b(Bj) .



~18s

For a given flow operator Ut’ and some fixed time interval =,

we construct the sets UA_, U, A, ... and define U A as the partition
s IR A | T

whose atoms are the sets {UTAi}' Kolmogoroff then sets

1 n-1
h(A,UT) = lim = H(_v UjTA) . (23)
e j=0

It is readily shown that h(A’UjT) = jh(A,UT). The K-S entropy of the

flow UT is defined as (S for Sinai)
h(UT) = s:p h(A,UT) = ht .

where h 1is now an intrinsic property of the flow. It was shown by Sinai
that a system is a K-system iff h(A,UT) > 0 for all nontrivial partitions
A, i.e., for partitions whose atoms are not all of measure zero or one.
K-systems are in some sense 'random' even when the flow is entirely
deterministic. T4 see this suppose that the atoms of the partition A, {Ai},
i=1, ..., k, correspond to different possible outcomes of the measurement
of some dynamical function £(x), i.e., if x € Ai then the result of the
measurement will be as etc. (Since the set of outcomes of the measurement
is finite, being equal to k, k < =, the measurement is a 'gross' ome. It
need not however be restricted to measuring just one property of the systemj
we can replace f£(x) by a finite set of functions.) The probability (in

the micro-canonical ensemble) of an outcome a, is uo(Ai) = p(ai). Now if

4
these dynamical functions were measured first at t = -T, and then at t = 0,
the joint probability that the result of the first measurement is aj and
the result of the second is ays is equal to the probability that the
dynamical state of the system x at the time of the present measurement

t =0, is in the set A, n UTA , i.e., p(a,,a,) = po(Ai n UTA ). The

] : 3
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conditional probability of finding the value a,, if the result of the

i’

previous measurement was a,, is p(ai/aj) = p’o(Ai n UTAj)/LLo(UTAj)

j’
= |.|.O(A.i n UTAj)/uo(Aj). In a similar way the probability of finding the

result a at t = 0, given that the results of the previous measurements

i
at times -1, -2T, ..., —-0OT wWere ai 3 ai PR - S
i 2 n
p(ai/a 1,...,ain)- }J.O(Ai n U“I:Ail PO | U A )/u. (u Ailﬂ U od} U Ai )5 +426)

It can be readily shown that

n
h(A,UT) = 1im h(A/ v UkTA) = lim {—Zp(ai sy eeesdy )
e k=1 n—o 1 2 n

(25)

k
X[ Zipl@,/a, yeoss@, Yonpa, /@, somsnGs )]} .
i=1 ‘ il in = il in

Hence h(A,UT)n-O for all non-trivial partitions implies that no matter
how many measurements of the values of f(x) wé make on a system at times,
=T, ..., =0T, the outcome of the next measurement is still uncertain. (N.B.
the measurements are 'coarse' since uo(Ai) >0).

To see the kind of 'irreversibility' associated with K-systems, I
shall use as an example one of the simplest kind of K-systems; the transfor-
mation of a two-dimensional square known as the baker's transformation. This
is a discrete transformation, repeated at time intervals T, on the points
x = (p,q) in the unit square (p and q are just labels which are meant

to suggest, but have nothing to do with momentum and coordinates),

<x
i
1

1A

(2p 32 Q) if

Ux=10_ (p,q) = {- } = x_ (26a)
(2p~-1, —{q + 1)) 5 LE

o= ©
1A
1A

P
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(Coaftie md zos o GTTETTES w1 segmopat

The baker's transformation

Using as our equilibrium ensemble density duo(x) = dp dq, UT

is a measure preserving, reversible, one to one transformation

%P’2Q) ,qu'ﬂ%} (
U x=18_(pq) = § =X : 26b)
¥ # (——P-IZ 29 = 1) ,%Eqﬁl .

The K-S entropy for this transformation is h(UT) = In2.
Following Penrose let us consider now a Gibbs' ensemble density
i |
which at t =0, is u(x,0); f I w(p,q30)dp dq = 1. We have, as in the

(o] (o]
dynamical flow case, u(x3nT) = u(x_nT;O), or

( ; {u-(% P»+2q;07T) y TP LR PR %
w(p,q; (n + 1)7) = pu(U__(p,q);nT) = . @7
% u(i—-;—R,Zq - 1;n7) , if %E 4s1

We now define a reduced ensemble density (momentum distribution

1
function) W(p;iT) = I w(p,q3;jt)dq. It is readily verified that W satisfies
)

the relation

Wps(n + D7) = SWE pioe) + WG p + o] (28)

Eq. (28) is an exact, irreversible, 'kinetic' equation, for the

momentum distribution function, i.e., W(p3;t) determines W(p;t”) for
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t’ > t, but not for t” < t, coming from a reversible Liouville equation
for the Gibbs ensemble density u(p,q3;t). As time progresses the momentum

distribution function approaches its equilibrium value; lim W(p;nt) = 1,
oo

in measure (i.e., almost everywhere) if W(p;0) is smooth. This can be

seen from (28) by considering the derivative of W,

d 1l.d

- o e — - d— .

1
") | ey p
so that sup %;‘W(p;jT) is a monotonically decreasing function of j.
P
If we consider on the other hand the projection of u(p,q;nt)
1
on the gq-axis, K(q;nt) = f u(p,q;nt)dp, then K(g;nt) will be determined
0
by K(q;(n + 1)T), but not by K(q;(n-D7 and sup dK(p;nt)/dp will be

non-decreasing as n -+ =. The roles of q and p are reversed if one

looks at negative values of n for a given w(x;0). It is therefore
clearly necessary to choose properly the reduced description of the
system if one is to get irreversible behavior. (Alternatively, one has
to consider properly restricted initial distributions; Penrose, private
communication.)

It should also be pointed out here that any kinetic equation for
some projection of the full ensemble density which, like Eq. (28), holds
for arbitrary initial densities p(x3;0), even when these and the correspond-
ing measures (dx;0) are singular, must have the property of leaving
singular parts of the initial reduced distribution (here W(dp;0)) singular.
This means that it is impossible to have a kinetic equation which is valid
for all initial distributions and at the same time acts (like the Boltzmann

or diffusion equation) to smooth out initial singular distributions.
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