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We consider an Ising spin system with ferromagnetic pair interactions.

Combining the old

Griffiths inequalities with the recent Fortuin-Kasteleyn-Ginibre inequalities we obtain some

new bounds on the correlations and thermodynamic functions.
interest in the neighborhood of the two-phase region of these systems, 2 8,, h~0

These bounds appear to be of
(B is the

reciprocal of the critical temperature, and % is the external magnetic field), where they yield
relations between singularities in the spontanuous magnetization m*(8) and the susceptibility

x (B, h):

e.g., m*(B) is upper semicontinuous, and a discontinuity in m*(8) at 8, implies that

the susceptibility cannot be bounded (near % =0) by an integrable function of z as f— 3, from

the left.

I. INTRODUCTION

We consider an Ising spin system, or lattice
gas, on a d-dimensional lattice Z?, enclosed in a
finite box A; i.e., at each point ¢ of the lattice there
is a spin variable o; =+ 1 and a corresponding occu-
pation number p;=3(o; +1)=(0, 1). For a given
boundary condition, which corresponds to a speci-
fication of the o; (and thus the p;) for i outside A,
the spin and lattice-gas Hamiltonians are given,
respectively, by

HS(A)=—% 27 25 JG=-j4)o;0;
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J( —j)pj> +const, (1.2)

where J(i —7)=J(j-4)>0 is a translationally invari-
ant stable potential and

u=2Mh-a),
h is a uniform external magnetic field, u is the
corresponding chemical potential, and the constant
in (1. 2) does not depend on the configuration inside
A.
Let A, B, denote subsets of A and let

H Oi5 Pa= H Pi -

ica
The spin-correlation functions are given by

0<a=2J(i-j)<o . (1.3)

(O 4= > 04 e-BHs(A)/Z;e-BHS(A)
gi=+1
iEA
=M, (A; {BJ}; B =m,(4;8, B, (1.4)
where
h=ph=%i+a, [p=pu, a=pBa, (1.5)

o

We also find some inequalities among the critical indices.

and we write m(A; B, 1) when we wish to consider
a fixed pair potential. Taking the thermodynamic
limit, A - with the external field #+0,

lim,, {0, ),=(0,) exists and is independent of

the boundary condition, translationally invariant,
analytic in % for Re%#0, real analytic in $>0, and
has “good” clustering properties.! The (o, ) satis-
fy the obvious symmetry relations

M(A; {8}, k)= (= 1) m(a; {8}, 7o),

where | Al denotes the number of sites in A.

We shall make use of the following results:
(i) M(4; {8J}, %) is a nondecreasing function of the
[8J(i ~7)] and of % for BJ(Z ~#)20 and %> 0 [Griffiths
and Kelly and Sherman?® (GKS) inequalities], and
(ii) if flo,,, Oipy oves 0;.) is a nondecreasing func-
t1onoftheoilfor—1<o <1,4,1=1, ..., n, e.g.,
Fellieals(0; +1)]=py, orf [EieAO'i"O'A] then
(f;, ..., 0;)) considered as a function of {8J}
and of ﬁ is a nondecreasing function of the [BJ(i —4)]
and of fi, for BJ(i—j)>0 and [i arbitrary [Fortuin,
Kasteleyn, and Glnlbre (FKG) inequalities].

We now define

M*(A; {pJ}) =

(1.6)

lim M(4; {8J}, k) =m*(4; B)

e O*

for fixed {J}, (1.7)

where the existence of the limit is guaranteed by
GKS. When A cons1sts of a single sitei, M(i; {8J}, h
=M(@i; {87}, h)=M ({87}, h) independent of i, for

%+0, because of translational invariance. M({8J}, )
is the magnetization per site and its limit as

h—~ 0+, M*({BJ})=m*(g), is the spontaneous mag-
netization. The reciprocal of the critical tempera-
ture g, is defined for a given {J} by the inequalities

m*(6)=0 forB<Bc,
m*(B)>0 for g>8, .

This definition of 8, is unique since by GKS m*(g)
is monotone in 8. Indeed, it can be shown* that
when m*(g)=0, i.e., m(8, k) is continuous at %=0,

(1.8)
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then m(4; B, %) is also continuous at %=0 for all
A, and m(A; B, 0)=m*(A; B) exists and is indepen-
dent of the boundary conditions.

II. INEQUALITIES FOR MAGNETIZATION

We now make the following observation, which is
central, to what follows: If we change the pair in-
teraction {8J}~ {84} +{6 (8J)} (with {5(8)} translation-
ally invariant) and at the same time also change h
in such a way as to leave [ unchanged, i.e., 6%
=5a=Y,6[BJ(i —7)], then, according to FKG, the
expectation values (f(o;,, ..., 0;,)), described in
Sec. I, will be monotone in {§(8J)} independent of
the sign of . Now, if <0, an increase in the
strength of the interaction {5(8J)}, keeping 7% fixed,
will lead to a decrease in (0,), while an increase
in % for fixed {8J} will lead to an increase in {o,)
for |Al odd (GKS). (The opposite happens for
Al even.) Hence by combining a {6(8J)} witha 6%
and using FKG appropriately, we can obtain new
inequalities between the changes in (o, ) produced
by a change in the pair interactions (or the temper-
ature) and those produced by a change in the ex-
ternal magnetic field.

Applying these ideas to M({gJ}, ) leads to the
following lemma.

Lemma 1. For an Ising spin system with ferro-
magnetic pair interactions J(; - j),

M{BdY, )< M{BJ +6(BNY, R)<M{BJ}, h+ba),
(2.1)
0<M{gd}, 1) — MEBT - 6 (BN}, )

<M{BJ -8}, h+6&)-M{BI-5@BI} R,

(2.2)
whenever

6[8J(i ~f)]20, BJIG-j)-08[BIG~4)]>0, >0
and
ba =21, 6[8IG - 7)]>0 .
Proof. According to FKG
M{BJ +6(BI)}, ! + da)> M({8d}, i)
for 8[BJ(i —7)]>0. Letting %’ + 8d@=~h gives
M({BJ +8(BJ)}, = h)2M{BJ}, - h—- 8&) .

Using (1.6) (with |A|=1) yields the second inequal-
ity in (2.1). We now set {8J + 6(8J)}={BJ’} in this
inequality and obtain

MBI }, )< M{BJ" — 8(B)}, h + 8@)

(2.3)

which is just the second inequality in (2. 2). These
inequalities are thus valid for all k. The first in-
equalities in (2.1) and (2. 2) follow from GKS when
h> 0.

Letting 72 - 0+ in (2.1) and (2. 2) yields

M*({BJ}) <M*({BJ + (BN < M{BJY, 8@) ,  (2.4)
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0< M* ({8} — M*({BJ ~ 6(BN)})
<M({BJ - 6(BI)}, &) - M*({BJ ~ 68J})
= [ X (s - (80}, myan (2.5)

where x({8J}, n)= M ({BJ}, n)/8n is the susceptibility.

Now let {6(8J)}~ 0 in (2. 4) in such a way that 6&
-~ 0; then we see immediately that M*({8J}) is “up-
per semicontinuous.” Similar results hold for all
correlation functions M*(4; {8J}). [This result can
also be obtained, by different methods, without
making use of FKG. %]

We can state this more precisely in the following
way:

Definition. A sequence of translationally invari-
ant ferromagnetic pair potentials {BJ},, v real,
will be called monofone (increasing) in y if

(B - §)],2[8IG = 7)1, 2.0
We write
{6‘]}7"{&]}70 if &7521 (B —j)]v‘ &70 ’
when y -~ v,.
Lemma 2. Given a monotone sequence of poten-
tials {BJ},~ {8J},,, then we have
Lim M*(A; {gJ},) = M*(A : {gJ},) .

79

for y>vy’.

Covollary. TFor a fixed interaction J(i — j) the
correlation functions m*(4; B) are upper semicon-
tinuous in B. In particular, for spontaneous mag-
netization m*(B), we have m*(8,)=1limg. grm*(B).

The results of Lemma 2 and its corollary may
be applied to Dyson’s hierarchial model.® Dyson
showed that for this model (the reader is referred
to Dyson® for details) there exists a sequence of
pair potentials {J,} such that for y >y, there exists
a phase transition at some finite 8, while for ¥ <v,,
m*(B)=0 for all B<o., For y=v, the long-range-
order parameter (thermal average of spin-spin cor-
relations at infinite distance in zero magnetic field)
jumps discontinuously at 8=8,, where B, is the
critical temperature for {J,o}. Thus m ¥ (8)2m> 0
for B>pB,. According to our results, then m,‘a(ﬁc)
>m and m3 (B,) =1im, .z mX*(Be) .

Using (2. 4) for fixed {J} and 68=05, we see that
the magnetization satisfies the inequality

0< [m*(B+8) —m*(g)]/d
<[m(B, @) - m*(®)l/6  for 5>0.

Letting 6— 0 in (2. 6) we see that

(2. 6)

dm*
ap

where

e
><*(I3)=},1‘r101+ P m(B, M) .

(B+) < ax*(B),

(2.7
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Hence if the right derivative of m*(B) is in-
finite as B— B, then the susceptibility x*(8) must
also become infinite as g - B,.

It is usually assumed’ that for Ising systems in
two and higher dimensions, m*(8) and x*(8) behave
for B2 B, as powers of (8 - B,) and m(B,, %) as a
power of i: m*(8)~ (8- B,)%, x*(B)~ (B-B,)"",
m(B,, k)~ k' for BZB,, wherey’, B, and &' are
“critical exponents” (8’ and &' are usually called
B and 8). Equation (2.7) implies that®

B +y'>1. (2. 8)
In addition, by (2.4) we have

m(B,, k) zm*(B, +h/ ) (2.9)
and thus (as pointed out by Griffiths®)

& >1/8. (2.10)

We now consider the limit 6(8J) -0 in (2.5). It
is then clear immediately that a discontinuity in
M*({gJ}) implies that x({8J — 6(BJ)}, 1) cannot be uni-
formly bounded, for 1>0, by an integrable function
¥(n). We state this more precisely in the following
form.

Lemma 3. Given a monotone sequence of poten-
tials {8J},~ {8J},, and x({BJ}, m) < ¥(n), for n>0, as
¥y =Yg with ¥(n) integrable at =0, then

lim M{gJ},)=M{J},) ,
77
so that M({8J},) is “continuous” at .

Keeping {J} fixed we see that a discontinuity in
m*(B) at B, implies that x(8 - 8, 1) is not bounded
by any integrable function ¥(7) as 6~ 0+. Further-
more, since X(8, 1) is, for systems with ferro-
magnetic pair potentials, monotone decreasing® in
7, a discontinuity in m*(8) at B, implies that
limg .o, [6X*(8o— 6)]> 0 so that x(By— 6) diverges at
least as 5! as 6—0+.

These results are applicable to Dyson’s hierar-
chial model discussed earlier.

HI. INEQUALITIES FOR (g, 0;}

While the spin-pair-correlation functions (o;0;)
do not themselves satisfy the FKG inequalities,
the averages [(o;)+{0;)+(0;0;)] do. Applying the
methods and notation of Sec. II to these averages
we readily find upon changing 8 to 8+ 6 and & to
+ab that, for fixed {J}, m*(i, j; B) is upper semi-
continuous and that

|m(i, j; B, o+ 8) = m (i, j; B = 6, 1) |
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<2[m@, h+ad)-—m(B-06 k). (38.1)

Various inequalities can be derived from (3.1); we

shall only mention one here. Letting % - 0+ and

using GKS for m*(i, j; B), we find

0<m* (i, §; B) —m*(, j; B - ©)
< 2[m*(B, ab) —m*(8)]+2[m* () —m*(B-0)] ,

(3.2)

where the second term on the right side of (3. 2) is

identically zero for B<p,. The internal energy per

site, u*(8), of the spin system at 2 =0 is given® by

— Ly, m*(,4; B)J@ —7) for B<B,. Hence the specific

heat at h=0, C*(B), satisfies the inequality

C*(B) < (aB)?x*(B) , B<B, .

It follows from (3. 2) and (3. 3) that if C*(8) diverges
at some value of B, say =8, (as Onsager found in
his solution of the two-dimensional Ising system
with nearest-neighbor interactions), then either
m*(B) has a singularity at B, and thus 8y>8,, or
X*(8) diverges at B;, or both.

This lends further credence to the universal be-
lief that for Ising ferromagnets with translationally
invariant pair potentials all correlation functions
are real analytic in # and B for 0<B<B,.

In terms of the critical indices, "

(3.3)

C*(B)~ (B=B.)*, Xx*(B)~(B-B.)" for RSB, ,

(3. 3) implies that a<y. [a is here a critical index
and should not be confused with the @ of Eq. (1.3). ]
Choosing B=8, in (3. 2), and assuming that m*(8,)
=0, (3.2) yields an inequality between the divergence
C*(B) as B—B; and the divergence x(8,, ) as n- 0+,
the divergence of the latter being the “stronger.”

IV. REMARK ON ANTIFERROMAGNETS

The FKG inequalities remain valid also when the
external magnetic field is not uniform. Indeed, the
direction of the field at different sites need not be
the same. Results derived from these inequalities
can therefore be applied in a straightforward way to
antiferromagnets, since it is only necessary to fix
the spins on one of the sublattices to transform the
antiferromagnetic interactions to ferromagnetic
ones. *!® The reader is referred to Refs. 4 and 10
for details.
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The temperature-composition phase diagram of V;_Cr,0, with 0<x<0.025 is found to con-
tain four phases: rutile (R), normal monoclinic VO, (M;), and two monoclinic phases
(M, and IIZ;,). For M, with x=0.024 at 298 °K, 2az~ ay=9.0664, 2cr™ by =5.7970, agp~cy
=4.5255 A, and $=91.88°. The M, and M3 regions are separated by a volume discontinuity.
There are two types of V atoms in these structures. The first type form pairs and the sec—
ond type form zig-zag chains along the by axis. This contrasts with VO, where all the vana-
dium atoms are paired. The structures R, My, and M3 with x=0.024 have been refined from
single-crystal x-ray data. High-pressure resistivity and x-ray measurements vs temperature
give dT (M= R)/dP=~ (0.9 0.1) °K/kbar and V — Vy,==0.11 cm®/mole VO,. At higher
pressures dT (M3;— R)/dP=(0+0.2) °K/kbar. These results cannot be simply interpreted in

terms of the homopolar bond model proposed for the M; phase of VO,.

I. INTRODUCTION

Many of the vanadium oxides exhibit tempera-
ture-induced metal-insulator transitions.!'? Those
in V,0; and the Magnéli phases V,0,,.; (4<n<8) are
distinguished from the transition in VO, as only in
the latter is there no antiferromagnetic phase.
Recent studies of V,0; doped with Cr and Ti have
led to a generalized phase diagram for the sesqui-
oxides®* and this diagram has been interpreted in
terms of a Mott transition from itinerant-to-lo-
calized-electron states.® The experiments reported
in the literature on doped VO, indicate that this
transition is quite different. The addition of Ti, 8
Cr," Al,” or Fe” leads to phases at room tempera-
ture which have different structures from the nor-
mal monoclinic phase of pure VO,. It is not clear
if these different phases are related as they have
been reported as having orthorhombic, ” mono-
clinic, *® or triclinic® symmetry by x-ray-diffrac-
tion methods.

Recently, Villeneuve ef al. reported a phase dia-
gram for the system V,_,Cr,O, which is based on
magnetic susceptibility, electrical resistivity, and
powder-x-ray-diffraction measurements. ® They
find on adding Cr a sequence of phases with in-
creasing temperature of monoclinic to orthorhombic
to tetragonal (rutile) with the insulator-to-metal
transition being associated with the latter crystal-

lographic transition. The metallic phase is more
dense than the insulating phase, in contrastto pure
VO, where the insulator is slightly more dense.
This implies that the transition temperature of
Cr-doped VO, will decrease with increasing pres-
sure. As crystals of VO, doped with 2.4-at. % Cr
were available from the earlier studies of Mac-
Chesney and Guggenheim, }° a complete determina-
tion of the crystal structure of the intermediate
phase was undertaken and measurements of the
pressure dependence of the transition temperature
were made. In the course of this work it became
necessary to study the low-Cr-concentration region
in more detail and this was done using ceramic
samples.

This paper is divided into four parts. The tem-
perature-composition phase diagram is given in
Sec. II and the temperature-pressure diagram for
crystals of VO, +2.4-at. % Cr in Sec. III. The
crystal structure is given in Sec. IV for three dif-
ferent temperatures corresponding to three dif-
ferent phases. Finally in Sec. V this work is re-
lated to current theories for the metal-insulator
transitions in VO,.

II. TEMPERATURE-COMPOSITION PHASE DIAGRAM

The phase diagram was determined using both the
single-crystal sample of Vj g7¢Crg.0240; and ceramic
samples made in different ways. The sequence of



