HAMILTONIAN FLOWS AND RIGOROUS RESULTS IN NONEQUILIBRIUM STATISTICAL MECHANICS
J. L. Lebowitz

I. INTRODUCTION

| will begin my talk by calling your attention to Art Wightman's lecture, Statistical Mechanics
and Ergodic Theory: An Expository Lecture, given about two years ago not far from here at the
sympmiu.rn in honor of Professor George Uhlenbeck at Northwestern in 1969 [2]. Wightman's
lecture has now been published [13, and | urge you strongly to read it. It describes in a physicist's
language many of the ideas developed by mathematicians in the last 40, and more particularly in
the last 20, years for the study of the qualitative features of the time evolution of isolated
dynamical systems [3].

These concepts on the one hand are of central importance to the understanding of nonequi-
librium phenomena in physical systems and on the other hand are almost entirely unknown in the
statistical mechanics fraternity, a goodly many of whom are gathered here today. (At least they
were unknown before you all heard the lectures by Professors Smale and Ornstein this morning. )

Even the nomenclature of this work, such as mixing flow, K-system, are rorely or not at all to be

found in any of the many books on statistical mechanics and kinetic theory written for physicists
in recent yeors or, for that matter, in the physics journals. Even when time evolution, irrevers-
ibility, and approach to equilibrium are discussed in the standard books (4], all that iz usually
mentioned is something about ergodic systems and the Birkhoff theorem that a system is ergodic if
and only if the Hamiltonian flow in phase space, restricted to o surface of constant energy, is
metrically transitive. The latter means that the energy surface is not decomposable, in a

"o

"sensitive way, " into separate parts which are left invariant by the flow.
Now | believe that almost all real physical systems are "essentially" ergodic. Indeed, this

is necessary for understanding why equilibrium statistical mechanics, which includes a description
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of fluctuations in thermal equilibrium, works so well in the real world. | think, however, that

just ergodicity alone is not sufficient for either the understanding of irreversible phenomena or--
and this is perhaps even more important to those of us who make a living working in this field--
for the existence of the integrals which we use in the computation of transport coefficients, such
os the diffusion constant, viscosity, etc. [5]. What is necessary is something stronger which fs
more like Hopf's mixing flow or still stronger.

| want to devote my lecture to (1) defining these concepts in ways which are useful to
statistical mechanics, (2) discussing the role of the thermodynamic limit, where systems become
very large or infinite, in the study of irreversible phenomena, (3) relating these concepts to some
simple mode| systems which have been worked out explicitly, or almost explicitly, by various
authors, some of whom are in this audience, (4) raising some questions about the time evolution
of quantum systems which do not fit in a simple way into the structure of ergodic theory, mixing
flows, etc., the thermodynamic limit being essential for mixing in quantum systems, (5) questions
about the existence of a heat conductivity in random harmonic crystals, and finally (6) to a few
remarks about some recent work on the metastable state of systems with very long range interactions.

I would like to make it clear ot this point that (1) this talk does not contain even all the
rigorous results known to me in this field, much less all those known to others, and (2) nonrigorous
does not mean incorrect any more than rigorous means relevant or interesting.

| have in particular left out all discussion of kinetic equations. These equations asseciated
with the names of Boltzmann, Pauli, Kirkwood, Born and Green, Prigogine, van Hove, Bogolubov,
and Uhlenbeck, to mention just a few, have played and continue to play a central role in our
understanding , interpretation and prediction of nonequilibrium phenomena. (Boltzmann's great
H-theorem will have its centenary next year.) Some of these equations, like the Boltzmann
equation, may be exact ot all times in special limiting situations [such as the Grad limit for
hard spheres; particle density n ~ =, particle diameter a = 0, mean free path £ = (na ®)* remaining
finite]. Other equations may be valid only asymptotically (in the Prigogine-van Hove type of
equations these conditions are clearly stated), or may hold only approximately. In any case
their physical validity is a question to be settled first by experiment and only later, if we ever
get clever enough, by rigorous mathematics. -

I could continue with other things | have left out--Green-Kubo formulas, master equations,
Brownian motion, hydrodynamics, etc.,--but | think | had better start on the few things which |

do want to discuss.

Il. ERGODICITY, MIXING, AND DECAY OF CORRELATIONS

Since most of these concepts, and many more, are presented and defined in a clear and
precise way in Wightman's lecture [1] and in the book by Arnold and Avez [37, I shall only
sketch here the definitions which | need for this talk. | shall use the physicist's language, which

sometimes sacrifices precision and generality for the sake of simplicity and familiarity.
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Consider a conservative classical system of particles with canonical variables G Py i=1;
. - ., 3N. The state of the system is represented in the N-dimensional phase space T by a
point x = {qi, pi]. The time evolution of the system or its representative point in T, X, Lor x(t)],
is governed by the canonical equations of motion coming from a time independent Hamiltonian
H(x),

N
H=) BB Wiy oo oGyl Vi it} >-K K< @)
=1

We assume in addition that the coordinates of the system are confined to a finite region of
space Aby rigid walls (or by some external potential which can be put into V), or that the system
moves on some N-dimensional torus (periodic boundary conditions). (When the particles have hord
cores, these con also be thought of as internal walls.) Under these conditions the motion of the
system, i.e., the flow in T space, will be confined to a (6N - 1) = dimensional energy SE which
is piecewise smooth and has finite "area, " given by the equation

H(x)EE=H(xf); ~mst S, (2.2)

The time evolution of any function f(x) is given by

df(t)/dt = (F(t), H) = iLf,

ir)l= f(xf) = flexp [itL1x) = explitLIf(x) = U‘F(x},

where L is the Liouville operator corresponding to the usual Poisson bracket. Thus if p(x,0)

(2.3)

describes some Gibbsian ensemble density in T af t =0, then the ensemble density ot time f is

given by the solution of the Liouville equation,

t) - (4, p)=-iLp (2.4)

plx,t) = expl-itL] p(x,0)=U_ plx,0)=pix_,0). (2.5)
U!’ is a unitary operator, and i is introduced so that L is self-adjoint.
Every p(x,t) (which may be singular), which is nonnegative, defines a measure it on T.

Thus if A isany set in T,

uA 1) = [ pixt)dx = [ px_, 0)dx = [p(c_,,0)dx_, = [ p(x,0)dx = u(h_0). (2.6)
A A A A_r
The third equality following from the Liouville theorem that the volume element dx (Lebesque

measure ) is invariant in time. We shall always assume that p is normalized:

MED= [ plx,t)dx = [ plx, 0)dx =1. (2.7)

OF particular importance in statistical mechanics are time independent measures (or ensemble
densities),

p(x,t)=p(x,0) =p (x),  uA,t)=u_(A). (2.8)

Particular examples of such time invariant ensembles are the micro-canonical and canonical

ensembles. The first of these is
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[ e e Y
|grad Hix)|

duo = (2.9a)
0 , otherwise

,xESE,

where d0 is an element of the "surface area" of an element of the (2N - 1) dimensional energy

surface SE and

oF)= |
%

do

= (2.9b)
]grad HI

which is finite by virtue of our assumption that the system is confined to a bounded region of
physical space, A. The canonical ensemble measure is even more familiar:
duo =Z'exp[-BH(x)] dx, B >0, (2.10a)

where B > 0 is the reciprocal tzmperature and

z=[expl-BE] Q(E) dE=2(8, N) (2.10)
is a normalizing constant. Another useful ensemble is the generalized microcanonical ensemble

used by Griffith [6] in considering the thermodynamic limit problem in equilibrium statistical

mechanics
duo _ const. dx, for {x; Hix) = E}, 2.11)
0, otherwise
The grand canonical ensemble has as its domain the disjoint union of the phase spaces FN of
systems in A having different numbers of particles N, N=0, I, . . ., Xy € rNr Xy =
(g_.l, Ce s Qg By s B N). The lower bound on the potential energy -K in equation
(2.1) has now to be written as K =BN, B < = independent of N. Its invariont measure is
= =1 L = - 1
du_ = =% (N1)* expl ﬂ[H(xN) uN1d dxy g (2.12a)
with
E= ) (NI)* explB u NIZ(B, N). (2.120)
N=0

We shall now restrict our ottention to the microcanonical measure, given in equations (2.9),
for some particular SE. ;
Definition A. Ergodic System (Birkhoff). A system is said to be ergodic on an energy

surface SE if and only if

T .
fx) = lim Tj Flx, )t = [t = <o (2.13)
[ s o
for all f(x) in L.I ;
J 1Rl du, < =, (2.14)

and for almost all x. The latter means that the set A consisting of all points x for which equation
(2.13) fails has zero measure, uO(A) =0.
Definition B. Mixing Flow (Hopf). The Hamiltonian flow en S is called mixing if and only if
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lim p (A N B)=u (A)p(B), U (Sg)=1 (2.15)

[
for all sets A = SE and B = SE of positive measure uO(A) > 0. Af = UrA is the set of points into
which A is carried in a time t by the action of the time evolution operator Ut; i.e.; At = {x:xd EAL.

The significance of mixing is thus that the fraction of systems of the ensemble originally in
the set A that are located in some set B af time t approaches, ast — =, the ratio of the volume
of B to the volume of SE'

fabte ) pailiy B); p(S.)=1 2.16)

_E;(A)_ - HO( :HO(E . (2.

This property of mixing is stronger than and implies ergodicity [31. It represents the kind of
irreversibility which one always hoped that "coarse graining" in some way or another would bring
about. The most remarkable thing though is that Sinai [7] was actually able to prove that a
system consisting of a finite number N (N = 2) hard spheres (or hard disks in two dimensions)
confined to a box is a mixing system.

To make the meaning and significance of mixing even clearer and more directly connected
with the formalism commonly used in statistical mechanics, we define, as usual, the correlation
functions

6D = [ fx)ox)du , (fa) = (FO)g) - (2.17)

It can then be shown, ([3]: Theorem 9.8) that
B'. A system ismixing if and only if
(f(t)g) :: (Fy (g) (2.18)

for all square integrable functions fand g; i.e.,
T <=, [lof® du <= (2.19)

It follows therefore in particular from Sinai's work that for o finite system of two or more hard
spheres in a box, in two or three dimensions, the velocity autocorrelation of any particle, say
particle one, approaches zeroast = =,

(vl(t)v.|> —_— (vl> (v‘) =0. (2.20)

¥ oaiem

This is indeed a remarkable result and contrary to some folklore which holds that it is neces-
sary to ga to an infinite size system in order to obtain a decay of the correlation functions. Here,
on the other hand, this is shown to be true for a system consisting of N (N = 2) particles, as
long as N is finite. (It is presumably true also for an infinite system, but this is far from proven. )
The usual folklore reason for the belief in the necessity of going to an infinite system is that for
a finite system one always has a finite Poincaré recurrence time. Note, however, that the mixing
definition is meaningful only for sets of positive measure and that the equivalent decay of corre-
lation functions (B') applies only to square integrable functions (with respect to duu). What
mixing therefore implies is that the times when different systems which were initially together in
the same set A [which can be as small as desired as long as uo(A) > 0] return to the "neighborhood
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of A" are so different from each other that eventually the set Ai spreads out uniformly over all
SE' This is the important property of mixing flows which does not follow at all from ergodicity
alone, and is in striking contrast to what occurs in assemblies of oscillators such as harmonic
crystals where all the phase points have essentially the same time dependence. We shall discuss
these later.

Having debunked one piece of folklore, we shall now show that another piece of folklore
does survive and becomes a rigorous result for mixing systems. To this end consider a function
f(x), which is equal to (F(x), H(x)), the Poisson bracket of F(x)with the Hamiltonian H(x), with
f and F square integrable as in inequalities (2.19). (We are always dealing here with a Finite
system.) Let ©(x) also be a square integrable function. Then

T il d
f (fH)e) dt = ‘]' (g Fix) @o(x)> dt = (F(T)e) - (Fo) . (2.21).
o o

In a similar way if g(x) = (G(x), H(x)), with g and G square integrable, then
3 T .
[<tma> ar= [ cow+r) By 4= Kome) - (021, (2.22)
o °

where we have used the time invariance of Hy
W +4') x ') = (B)x) . (2.23)
Finally if f = (F,H) ond g = (G, H), then we can also write

t = i d n d . = d
_[ (F(t)g) dt J- ar FO+r) 55 G dt= - = (FTIGY + ((F, HIG). (2.24)
o o

If we now set f =g, F = G, then since {(F,H)F) =3 (dF*/dt) =0, we find, for the time integral
of the outocorrelation function,

T
] aon a= - & kP = - Gmp (2.25)
[+]

Now if our system is mixing, we can use condition (2.18) to take the limit T = = in the above
equations and obtain the following theorem.

Theorem. Let f, g, @, F, G be square integrable with f =(F,H), g =(G,H). Fora
mixing system ‘

T
lim j (F(t) @) ot = (F) (@) - (F¢) , (2.26)
T—== o

.
lim [ (01)g) dt = (0G) - (¥) (G), (2.27)
T== o

:
lim [ <G)ed dt= (F,H)G) , (2.28)

T-o=o
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3
lim [ (F0)F @ =0, (2.29)

T== o

Example: For a finite mixing system confined by a wall,

-
lim [ (vythv)) dt = lim (g (Thv ) =0 . (2.30)

T4« o T=m=

Proof: vy =(q.|,H}ond j V‘Is duu <e, Iqls du° <w,
Note that when 9 is an angle variable, e.g., in the case of periodic boundary conditions, then
Y, = (q‘, H) and equation (2.30) need not hold. We would still have, however, (v](f}v1} -0
if _the system is mixing.

When the system is not mixing, the limit T = = in the above integrals need not exist. We

see, however, from equation (2.25) that for any finite system in a box

:
lim [ )6 dr =0, if it exists. (2.31)

T== o

This is so since

(F(T)F) = (F[T)F(T})* L (2.32)
so that when F is square integrable, (F(T)F) can either oscillate or approach zero.

The significance of these results for nonequilibrium statistical mechanics comes from the fact
that the Kubo formulae [57 for transport coefficients all involve integrals over time, fromt =0to
t = =, of correlation funetions of "fluxes" which can be written as Poisson brackets. These
integrals will therefore, if they exist ot all, be equal to zero in any finite system. (The important
point of our theorem is that they do exist for mixing systems, which possibly include all real
systems.) These formuloe can therefore possibly yield transport coefficients only in the thermo-
dynamic limit. In the thermodynamic limit, functions like 9 need no longer be square integrable.

Hence,even when (f(t)f) - (FY* in such systems for square integrable functions F like vy (v‘(t}v.l) -0
L

we can still define I (v]{r)v]) dt = (q.I(T)v.I) , there is no reason to expect that (q}{f)v.')
o

will also vanish (or even exist) ast = =. (This will become clear in the examples given in the
next section.)

One of the most important problems in statistical mechanics (if you care about rigorous
results), at the present time, is therefore to investigate and hopefully to establish the existence in
the thermodynamic limit of the time integrals used in the Kubo formulae. Unfortunately it seems
impossible even to tackle this problem before one proves the existence of a time evolution in the
thermodynamic limit. This has been established so far, for a general class of systems, only in one
dimension, Lanford [B]. | shall come back to this later.

| shall conclude this section by defining still another class of systems; those with homogeneous
Lebesgue spectrum. This will enable us to clarify somewhat the relation between the mixing
properties of the flow and the properties of the Liouville operator L.
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Definition C. Homogeneous Lebesgue Spectrum (Koopman). A system has a homogeneous
Lebesgue spectrum if, when one diagonalizes L, every real number A lies in the spectrum and has
the some multiplicity ond the spectral weight is just dX. (This definition is copied from Wightman
[1].) The space on which L acts here is the Hilbert space of complex-valued square integrable
functions f(x), x € SE,

Conditions A, B, and C are members of a hierarchy of increasingly stronger conditions on
the flow (or the Hamiltonian H which generates it). It has been shown (see [3] for references)
that

Homogeneous Lebesgue spectrum —>  Mixing —> Ergodicity , (2.33)
but not the converse. Mixing does, however, imply that L has no discrete eigenvalues other than
zero. Such a property of L implies in turn that the system is at least weakly mixing, which implies
ergodicity. A weakly mixing system is one in which [3]

.
) g
T|i_'m= 7 _£ luy (A, "8) - u (A)u (B)] dt =0. (2.34)

An eigenfunction corresponding to the eigenvalue zero is of course any constant of SE. It
follows already from ergodicity that the eigenvalue zero is simple; i.e., constants are the only
eigenfunctions of L with eigenvalue zero. The converse is also true; i.e., if zero is a simple
eigenvalue of L, then the flow is ergodic. This is indeed another way of stating the Birkhoff
theorem, alluded to earlier, about the equivalence between ergodicity and the nondecomposa-
bility of SE'

1. MODEL SYSTEMS
1. Two Particles in @ One-Dimensional Box

It is not easy to find nontrivial yet simple examples of an ergedic Hamiltonian system. To
give you something to do with your idle time here, consider a one-dimensional system consisting
of two hard particles of masses m, and m, in a box of length £ having rigid walls. The energy
surface SE is three~-dimensional 0 sq, Sq, < £; Py l/2rr|I + p22/2m2 =E. | came here
believing that this system is ergodic if 8 = cos® [I =2 S""I—"'2J2 ] is not a rationale multiple

(my +m,)2
of 7. After talking with some people, | am now very doubtful. | also wonder what happens for

more than two particles with different masses.

2. One-Dimensional Harmonic Oscillator

A trivial example of an ergodic system is a one-dimensional harmonic oscillator

1 1
H=§ m"p=+§mufq3. (3.1)
The energy surface is a one-dimensional ellipse and certainly nondecomposable. The eigenfunc-
tionsof Lare (p + i m Wq){', where L isan integer, with eigenvalues A =tw. Interms of

the action variables, (J, 8), the Hamiltonian is simply H = wJ ond the flow is described by
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9f= B+ wt(mod 27); Jr=J s (3.2)

3. General Harmonic System

For o general harmonic system with N degrees of freedom (e.g., o harmonic crystal in one,
two or three dimensions), we can always write the Hamiltonian in action-angle variables (Ji' Hi Y

i=],-<-rN:

N N
H= Z w d, iL=2 @, %, (3.3)
i=1 i=1 |
where
Ji(”=Ji’ Bi(f}= Bi + w b {mod 2). (3.4)

All the J? are constants of the motion, and therefore the system will not be ergodic on the
(2N - 1)-dimensional energy surface S¢ for N > 1. This system may, however, still be ergoedic
on some M-dimensional subspaces of S., M <N. Such a subspoce is a torus T1( [B}M] whose

coordinates are the angle variables (!5'i el Bi ) = (81 for which the corresponding fre-
1 M
quencies w, are not resonant [3]
N L
E n. w # 0, forn, integersnotall zero. f3.5)
i i i
gy b2 ¥

What we mean here by ergodicity is that the flow induced on II{ [H]M) by the projection onto
[0'1m on the flow on SE (really on {B]N since the ji stay constant) is ergodic. (The measure
d_uo on TII{ {GIM} is the usual Cartesian M-dimensional velume properly normalized.) In other
words, any function f(x) which depends only on the variables {f 'EM is ergodic with respect to the

microcanonical measure duo on SE,

T
o] i
Jin 3 [ rctene = [ e, 1) du =6 (3.6)
- 5 ¢
E
The fact that some functions f(x) are ergodic even though the system is not ergodic may be
true also in other than harmonic systems. A similor situation may happen also with regard to

mixing and suggests the following definition.

4. Definition
The set of ergodic and mixing functions € and 7, respectively, is defined as follows:
Feeif [IFPd, <o and
T

F(x)= lim ‘]r‘ j F(xr)d!: J‘quo =<F) ; (3.7)
Te= o
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Femur [ e d <=ond lim (FH)E) = ()P . (3.8)

| -

The set € is clearly a linear subspace of L By Khinchin's ergodic theorem, M < € .

2

5. Harmonie Crystals

We may summarize now a few of the known results about harmonic crystals in one, two, and
three dimensions.

Beginning with Schrodinger, various authors [9] have studied, among other things, the
velocity autocorrelation function of a specified particle in a harmonic crystal of N particles
(using the canonical ensemble as the invariant measure). Since the velocity of the jth particle
vi depends, when expressed as a function of the action-angle variables ( {Ji ¥ fﬂi 1 i=1,
.., Nd(d = dimensionality of space), not only on the Pi but also on the Ji' it is not an
ergoadic function: vi £ Efor fixed N. It is, however, possible to show that in the thermodynamic
limit vi is @ mixing function. Mazur and Montroll [9] found that in this limit the velocity auto-
correlation function decays as t-d/z_.

<vi(f)vi) = N|iﬂmm (vi{i)vi)N ~ (sin

r)/rd/2 ' (3.9)

It is seen from equation (3.9) that 1(\!]{1}\;1 )| is integrable in three dimensions but not in
two or one dimension. This appears related (cf. discussion after equation [2.241) to the Peierls
result [10] that the mean square displacement (q,%) of a particle at a fixed lattice site behaves

|
(when the size of the crystal increases so that the boundaries of the crystals, where the particles
are tied down fo fixed positions, recede in all directions) like
DN + one dimension,
= i~
<qi Y 4n DN '

constant, three dimensions.

two dimensions, (3.10)

Here DN is the distance of the boundary from the jth site and approaches infinity. [Since in

three dimensions each particle remains localized about its equilibrium position when N ==, |
T
expect that I (vl(f}vl) dt will go to zero ast — =. This is what happens when particle one has
o

a mass much larger than that of the other particles. ]

While Mazur and Montroll established their results explicitly only for cubic lattices with
nearest neighbor interactions, the essential feature of the system responsible for the decay of the
velocity autocorrelations in the thermodynamic limit appears to be the absence of localized modes
as N = =. This "corresponds” to the Liouville operator L not having any discrete eigenvalues in
this limit. (If L had this property for a finite system, then, as already mentioned at the end of
Section I, the system would be ot least weakly mixing which implies ergodicity.) We may there-
fore conjecture that whenever the spectrum of the infinite crystal is entirely continuous, all
"local" functions are mixing and cross=mixing. We define a local function F os one which depends
on the coordinates c|i and momenta p; of o fixed finite number of particlesi =1, . . ., L and is

square integrable,
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2 =
JIFGqe e o xI® du) < Ky x = (qup,) @m

where K < =, as o constant independent of the size of the crystal characterized by N. |f our
conjecture is right, then, in the absence of localized modes for the infinite crystal,

lim { i F, 06} = Je [Fon GO ] - (3.12)
where F& and Gi are localized functions depending on 4 and | coordinates and momenta,
respectively.

The importance of isolated modes in determining the ergodic properties of local functions
was exhibited very clearly by Cukier and Mazur [11], who investigated the ergodicity of the
kinetic energy of o single "“impurity, " i.e., of a porticle of mass M placed at position jina
harmonic chain of particles of mass m. They found that the function FliE (t) will be ergodic as
N ==if M > m and is not ergodic if M < m. This difference is brought about by the existence

of a localized mode when M < m and its absence when M > m.

6. XY Model Spin System and General Quantum Systems

The inhibiting effect of an isolated eigenvalue (of the time evolution operator) on the relaxa-
tion of a local disturbance can also be seen explicitly in the work of Abraham et. al. [12] on the
time evolution of a quantum spin system. They consider a one-dimensional system of spins with
nearest-neighbor XY interactions without or with an external magnetic field h in the z-direction

acting on the jth spin. The Hamiltonian of the system in these fwo cases is then

N
= x X - y ¥l
H, % 2 [(l W)Ui % T 0 r)ci Gyl 1 (3.13)
b=
H'=H + ha” . (3.14)
= |
Their results may then be extrapolated and interpreted (137 as showing that all "local" functions
F and G which depend only on a finite set of spins F[t‘:i pee e G ), G(Cri L Smipr i Cfi ) will
be mixing when N — =: 1 L 1 k
(F(t)G ) - (FY{G) -0, :
ast = = (3.15)

(GF(t)G)Y - (F) (G®*) - 0,
iFH= Ho but not (generally) if H=H' The approach to zero for a single spin correlation in the

first case isast?. The different behavior under the action of HD and H' is due [137 to the
presence of an isolated eigenvalue in the spectrum of g

This fits in with the general C* algebra formulation of the time evolution of infinite quantum
systems [13]. It appears indeed that because of the discrete noture of the spectrum for all finite
quantum systems confined to a bounded domain A there will be no mixing (decay of correlations)
in such a system. The remarkable thing about Sinai's result is that it shows that finite classical

systems can and do have purely confinuous spectra. (MNote that when Planck’s constant b = 0 the
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number of energy levels between some fixed E and E + AE becomes infinite. )

7. One-dimensional System of Hard Rods

An interesting model system which exhibits some "real fluid" -like properties is a one-
dimensional system of hard rods with "diameter”, a, and equal masses m = 1. The dynamics of
this system consists entirely of an interchange of the velocities of pairs of neighboring particles
upon collision and free motion between collisions. It is clear that when the diameter is zero,

a =0, then all functions f(x) which are symmetric in the coordinates and velocities (qi,vi) of all
the particles, e.g.,

N

f(x) = Z wl (qi,vi)

=1
will have the same time evolution as the corresponding function in an ideal gas where the particles
simply pass through each other. (For an ideal gas the q, and v behave, except possibly for
boundary conditions on the 9;/ in exactly the same way as do the action-angle variables .I'i and Oi
in a harmonic system [14].)

Hence the only "“interesting" functions in a system of rods of zero diameter are those which
depend on the coordinates and momenta of a specified set of particles, which we may consider to
be "labeled, " e.g., QD.I (qi, vi), wz(qi‘, Y viz), etc. Different aspects of the time evolution

of such labeled one-particle functions, say wT(q1 % ). were investigated in detail by Jespen [15],
Lebowitz and Percus [16], and Spitzer [17], while the time evolution of some symmetric one-
particle functions (such as van Hove's coherent neutron scattering function) in a system of hard
rods with finite diameters was investigoted by Lebowitz, Percus, and Sykes [18]. | shall only
mention here a few of those results (and some conjectures of mine) which are related to the
problems we have been discussing here.

Let the particles be labeled with index i, i =-n, . . ., n, 2n+1 =N, and confined to a
box (or circle) of length £. Then in the thermodynamic limit N ==, £ <= N/ -p, the
properly behaved functions [square integrable functions ¢’] [q},vi), w](q{‘,v{‘), <¢l2) = K,

(lhlg) < K, independent of N, ?] are mixing,

Qb)) = Nlj':, (@ 0 = () B), t e . (3.16)
In particular,

vy =0, t==, (3.17)

[ v a=coy (lvily=0 , (3.18)

o

with D the self-diffusion constant. The mixing property in expression (3.17) is true only when
N ==, for it is possible to show explicitly in some cases that in a finite system the velocity

autocorrelation function (v](r)vi>N does not approach zero [19]. When the rods have a finite
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liameter a, P in expression (3.18)is replaced by /(I - pa). The same is true for other cor-
elations of the form (3.16).

The form of the asymptotic approach to zero of (v.I{r)v.I) depends on the invariant measure
iuo used. Since, as already mentioned, the entire dynamics of this system consists of an inter-

:hange of velocities during a collision, any ensemble density of the form

n
I A W N n h(v)- £/2 % q S £/2 (3.19)
i=-n
h (V) =0, hyv) =h (=v;), | hrev=1, (3.20)

is invariant in time. It is furthermore required that the diffusion constant be finite, J vl ho{v} dv <=,
for the thermodynamic limit of the 'process” to exist n73.

Several forms of ho(v) have been studied explicitly with the results that when ho(v) is the
Maxwellian distribution [15]

h (v) = (8/20) exp [-v¥/2). (3.21)
or [16]

h(v) =% c®(c? +v7) 3/2 (3.22)
then

(v(!‘)vl) e -1'—3 t= @ (3.23)
where ho(v) is discrete,

hn(VJ=%[°(V‘c}+ 8(v+e)l, c<0, (3.24)
then [16]

(v]{t)v.l) =c2exp [- 2pct] . (3.25)

Note that for the velocity distribution (3.22) Y, is not square integrable. The time integral of
(v.l{f)\rl} in equation (3.18) sill exists, however, since (Vi{f}v'l) ~|lnt]|ast=0.

Another result of interest is that the spatial density of a labeled particle which was specified
initially (at t = 0)to be at a fixed position ' (i.e., the van Hove self-function of neutron

scattering theory),

PGs(r,?/r'} = Ni_i.rn' (6lq(t) - r] 8(q; - fP = PCL - et (3:26)
has the asymptotic form appropriate to a Brownian diffusion process
Gs[r, t)~ (4 n'Df)-'l' exp [~ r2/4Dt] (3.27)

as |r| ==, t == r/f% finite. More precisely, if q(t) =q.(t) - q. is the displacement of the jth
particle, then in the thermedynamic limit, A_i q(At) = zi!) as A[ - = with z(t) a standard
Brownian diffusion process with D given in equation (3.18) n7zl.

Let me conjecture that in this system as in the harmonic crystal all square integrable local
functions are mixing in the thermodynamic limit. (This seems to follow indeed from the work
O. de Pazzes reported at this conference; Abstract, 11 .25. Similar results were also proven

recently by Sinai [private communication].)
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IV. THE LANFORD THEOREM

As you have heard from Griffith in his lecture, the rigorous study of the thermodynamic limit
of equilibrium statistical mechanics has olready achieved notable results. The comparable
investigation of the infinite volume limit of nonequilibrium systems is much more difficult and has
begun only recently.

Let [g,p} represent the positions and momenta of a set (not necessarily finite ) of particles

of unit mass each. Then Newton's equations of motion have the explicit form

g®=e ) g®= ) Elg®-gm], “.1)
i #i

where F is the interparticle force. If we have a finite number of particles, then there is clearly
a unigue solution to this set of differential equations for all sets of initial conditions {gi(U), Ei{O}'l
(when F is suitably bounded). The existence of a meaningful solution to Newton's equations,
i.e., the existence of o time evolution of the system, becomes, however, far from trivial when
we consider a system consisting (from the beginning or in some limit) of an infinite number of
particles. In such a system it is quite possible to begin with a perfectly reasonable set of initial
values {g_i(O), _E;{O}] and find after some finite time t that there are an infinite number of
particles in a finite region of space and that the right side of equation (4.1) is infinite. We
illustrate this with a simple example given by Lanford. Censider a system in which there are no
forces, i.e., an ideal gas, and assume that at time zero B =~8 for each i; then af timet =1
all the particles will be situated ot the erigin.

When the particles have hard cores, then it is possible (Ginibre) in two or three dimensions
to construct "reasonable" initial configurations in which, through a cascade of collisions, some
particle will have an infinite velocity after a finite time.

Thus, we need to find a class of initial conditions for which such catastrophes do not happen.
In fact, since we ore interested also in the equilibrium state of our systems, we would like to show
that those classes of initial conditions which have nonzero probability of occurring in equilibrium
do not give rise to such catostrophes. An even stronger desired result is to show that the time
evolution of a part of the system contained in a fixed region of space A will, ot any time t, be
determined entirely by the state of the system at time t = 0 in the neighborhood of A (how large
this neighborhood is will of course depend on t). This was indeed proven by Lanford [8] for one-
dimensional systems. Assuming that F has a finite range, F(q)=0for q > D, and that F is
bounded, |F(q)| < K, D and K some pasitive constants, Lanford proved the existence for all
times of a "regular” solution of Newton's equations of motion for a "regular” initial configuration.
A regular configuration is, roughly speaking, one in which the number of particles in a unit
interval and the magnitude of the momentum of any particle in that interval have a bound of the
form & log R, where R denctes the distance of the interval from the origin. It was further proven
by Lanford that, when the interparticle potential is positive or the activity is small, the set of

nonregular configurations has probability zero in the equilibrium grand canonical ensemble.
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Lanford's results have been extended recently to one-dimensional systems with hard cores [20].
(This is @ "marriage" of Lanford's systems and the hard rod system discussed earlier. )

A question left apen by these results is whether a state which at time t = 0 is described by a
set of correlation functions can still be described by a set of correlation functions when t # 0.
This was investigated by Gallavotti, Lanford, and Lebowitz [21], who proved that, for certain
classes of initial states, the time-evolving state is described by correlation functions and that
these correlation functions satisfy the BBGKY hierarchy in the sense of distributions.

The initial states we consider can be described as follows: Suppose that the system is in
equilibrium at temperature 8 and activity z under the influence of a pair potential and an
external potential h which is localized in a finite region Ih. At time t = 0 we switch off the
external field, and the system begins to evolve. We prove that if the correlation functions exist
for the equilibrium state ot + = 0 and if the Lanford theorem holds, then the system can always be
described by a set of correlation functions which vary in time according to the BBGKY hierarchy.
We are, however, unable to prove the convergence of the frugacity (or density) expansion for
these functions at any t > 0 [22]. We are olso unable to prove even that the time averaged
correlation functions evolve toward the correlation functions which correspond to the equilibrium
state at temperature 8 and activity z (in the absence of an external field) as would be expected.
We are, however, able to prove that the time-averaged correlation functions converge to a limit
satisfying the stationary BBGKY hierarchy.

Note that when there are no interactions between the particles, i.e., for an ideal gas, the
correlation functions we have been discussing here have (as indicated in section I11) all the
desirable mixing properties. This is due to the disappearance, through the unimpeded mation of
the particles, of any local disturbance. The "approach te equilibrium" thus exhibited by an
ideal gas is, however, different in an essential way from the irreversible behavior of real systems.
The approach to equilibrium in real systems can be described by hydrodynamics and/or kinetic
equations whereas the ideal gas does not obey Fourier's law of heat conduction or Fick's law of
diffusion. (The model systems discussed in the last section are similar to the ideal gas in this respect.

The origin of these differences presumably lies in the existence of a mechanism (collisions)
in real systems which acts locally to bring the system to a state of local equilibrium unc{ the
absence of such a mechanism in the ideal gas and in the model systems we have discussed. This
difference is also exhibited when we consider systems in which the departure from the equilibrium
state is "global." Consider, for example, o system whose state at t = 0 is specified by correlation
functions whose spatial part is that obtained from a grand canonical (or canonical) ensemble at
temperature T and frugacity z but whose velocity part is not Maxwellian (the mean kinetic energy
is, however, specified by T). | would expect that in a real system, but clearly not in an ideal
gas, these correlations would approach their true equilibrium values; e.g., the velocity distri-

bution would become Maxwellian.
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V. OPEN SYSTEMS

We shall now extend our analysis to systems whose time evolution is not given by o Hamiltonion
flow in phase space. These are systems which are in contact with outside reservoirs. We shall
be particularly interested in the "steady state" energy flux in @ system in contact with heat
reservoirs ot different temperatures 'I'ut . Following the general principles of statistical mechanics
[4], we identify the observable properties of such a system with averages over a "suitable"
phase-space ensemble. To obtain such o Gibbs ensemble we use a formalism developed in
earlier work [23], [24], and look for the stationary solution of a generalized Liouville equation
having the form

2Blat) s o, H)= ) [ IKGbex) B0 - Kbl Bl Dl de - (5.1)

@

Here Ka{x,x'} dx dt is the conditional probability that when the system is at the point x' in its
phase space it will, due to its interaction with the ath reservoir, make a transition to the volume
element dx, about x, in the time interval dt. It is assumed here that the reservoirs are "“stationary "
so that the Ka's are independent of time.

Equation (1.1) describes a stationary Markov process, and we may define the stochastic time
evolution operator Wf, for t >0, by

plx,t) =W'o(x,0)= [Wix,tlx)p(x',0)dx, t =0, (5.2)
where p(x,t) is the solution of equation (5.1) when the ensemble density at time zero is p(x,0).
The operators w! form a semigroup

by +t Bk

W.I 2=W]W2,t',i

5 2 0, (5.3)

but are not unitary operators since the flow is not measure preserving. It is possible to show,
under certain conditions on H and the Ka’s [237, 247, generally satisfied by our systems, that
ast ==, p(x,t) will approach (in some suitable sense) a stationary ensemble density ps{x] which
is independent of the initial ensemble density p(x,0),

lim W' (x,00= px), W (x)= p_(x) . (5.4)

t ==
When all the reservoirs have the same temperature this will be an equilibrium canenical
ensemble, whereas for reservoirs ot different temperatures this ensemble will represent a system in

a steady nonequilibrium state through which heat is flowing. Define
W= [fly) Wiy,tlx)dy, (6= [fiy)o (y)dy,

(5.5)
(fr)g) = (W,F)gd = [L[dy flyM(y,tlx)Ig(x)p (x) dx
When equation (5.4) holds and W(y,t|x) = ps{y} ast ==, we have
W.E= 6 , (fit)g) = F) {(Qost == . (5.6)

To obtain the energy flow into the system from each reservoir we multiply equation (5.1) by
H and integrate over x to obtain
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3CH) ; igda v

o ln Z I U K, 0x') HE) - H(x'lldx} p(x',t)dx" = z 9 (5.7)
where Ja is the average energy flux from the @th reservoir. In the steady state we have, of
course, L i 0. Thus if the geometry is set up in such a way that the system is in contact with
only two reservoirs=-one "on the left" ot a temperature TL and "one on the right" at a temperature
TR with TL
expect that in the stationary state the heat flux J = JL = = JR should, for macroscopic size systems,

> 'l'R --and if the system has a uniform "cross-section" S and "length" £, then we

be related via Fourier's law to the average temperature gradient {TL - TR}/I. More precisely,

J should have the property that the quantity (L) = (J'/S}/[TL - TR)/E] should approach a well
defined limit K when £ = . This K, if it exists, we would identify with the heat conductivity
of the system at temperature T when TL -TR T

This formalism has been applied [247] to a harmonic erystal with some particular forms of
interaction with the heat reservoirs. The stationary nonequilibrium ensemble density for such o
harmonic system was found to be a generalized Gaussian. The covariance matrix of this
Gaussian was obtained there explicitly for a one-dimensional chain of equal masses with nearesf
neighbor interactions whose end atoms are in contact with heat reservoirs at temperature TL and
To- Identifying the number of particles in the chain with its length £, it was found there that
in the stationary nonequilibrium state k(L) ~ £; i.e., the heat flux achieves a constant value,
for fixed 'I'L - TR" independent of the length of the chain £. A similar result obtains for any
perfectly periodic harmonic crystal corresponding to an “infinite" heat conductivity, if one can
speak of a heat conductivity in this case [25],[26].

Searching for a model system in which Fourier's law could be shown to hold, Casher and
Lebowitz [27] investigated what happens in the same situation to a crystal whose otoms are not
all of the same mass, with the different masses distributed ot "random” [28]. We were unable to
obtain a definite result for the asymptotic behavior of k(&) but could show rigorously only that the
heat flux J will not vanish as £ == if the spectral measure of the infinite chain has an absolutely
continuous part. Indeed, this is the reason why the heat flux in a periodic chain becomes
independent of £ as £ —=.

We also showed, by using a theorem of Matsuda and Ishii [29], that for a random chain
J =0 as £~ = with probability one with (J) >0 (.\'-_3/2}, where (J) isthe heot flow averaged
over the random mass distribution. This may suggest that the eigenfrequencies of a disordered
infinite chain are all isolated: but this is not so, as we show that the spectrum of an infinite
chain in which the masses can have only two different values contains @ nondenumerable infinity
of points and is thus, in particular, not exhausted by a set of discrete eigenvalues having a
denumerable number of accumulation points. This result is based on a proof that the cumulative
frequency distribution of such a chain is continuous.

These results raise the possibility that the spectrum of a disordered chain may be of the

singular continuous type; i.e., its continuous spectrum may have its support in a kind of Cantor
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set. They also raise the question of whether in other systems, too--e.g., hard spheres--the
existence of transport coefficients in the infinite system may not require the absence of an
absolutely continuous spectrum, i.e., the kind of spectrum Sinai proved exists for a finite
system. On the other hand, as we have already seen, the irreversible decay of local disturbances
requires the absence of localized bound states (corresponding to a point spectrum).

(Visscher has suggested that J may depend on the boundary conditions placed on the end
atoms of the chain. This appears to agree with the finding of Rubin and Greer in a paper which
will appear in J. Math. Phys.)

VI. METASTABLE STATES IN THE VAN DER WAALS-MAXWELL THEORY

Until now | have been talking about (a) time-dependent phenomena in isolated dynamical
systems and (b) stationary nonequilibrium phenomena which are maintained in open systems by
externally imposed gradients. | shall now speck briefly about a third kind of nonequilibrium
situation: the metastable state of an isolated system [30].

We may characterize metastable thermodynamic states by the following properties:

(a) Only one thermodynamic phase is present.

(b) A system that starts in this state is likely to take a long time to get out. (6.1)

(c) Once the system gets out, it is unlikely to return.

In order to discuss the static and dynamic properties of metastable states in a rigorous fashion
it is necessary to make precise the notion, inherent in all physical theories of metastability [31 1,
of imposing a restriction on the system which keeps its density roughly uniform. In general, such
a restriction may be represented by confining the configuration of the system to a suitable region
R in configuration space. In order for this region to correspond to a metastable state, the restric-
tions defining it should correspond to the imposition of a roughly uniform density, in accordance
with the criterion (6.1a), and it should also have properties corresponding to the conditions
(6.1b) ond (6. 1c) mentioned earlier: if the dynamical state is initially in R, it is unlikely to
escape quickly; and once it has escaped it is unlikely to return.

With this in mind we investigated the existence of such a region R for a system whose liquid
vapor phase transition can be proven to be of the van der Waals type and is clearly understood
[32]. The main feature of this system is that its interparticle potential v(r) can be cleanly
divided into "short-range repulsive" and "long-range attractive" parts:

v(r)=qr)+ ¥” ©(¥r) (0 sr < =), 6.2)
where Vv is the number of space dimensions and ¥* is the range of the "Kac potential " 7p¢(?f)-
We take here ©(r) < 0 and set

v’ I o(yr)d"r = I ofy) d"y

Under suitable conditions on q and @, the thermodynamic limit of the Helmholtz free energy

a. (6.3)

density (f.e.d.) at a given particle density p (the dependence on temperature is not displayed)
is given in the limit ¥ —= 0 by [32]
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f(p, 0')= lim  f(p, ¥) =CElf (0)+}ap?) . (6.4)
y =0

Here Fo{p] denotes the free energy of the reference system--that is, the system whose interaction
potential function is q instead of v--and the symbol CE indicates the convex envelope of the
expression following it, i.e., the volue of the maximal convex function whose value nowhere
exceeds Fo(p) + % ap®. Since & = 0, the function Fo{ p) + + ap® need not be convex even
though FQ(P}mus’r be (see Fig. 1).

P
Fig- 1
The smooth curve in the figure is the graph of Fo(p) + + ap®, whose convex envelope is obtained
by replacing the arc ABCD by the corresponding double tangent AD.

The parts of the curve which Maxwell associated with metastable states are the arcs AB, CD;
these r;\oy be specified by the conditions

f (p)+%ap® > f(p, 0) (6.5a)
and

FO"(P]* a >0, (6-55)
where Fo“ denotes the second derivative of Fo.

To define our phase-space region R we start with a finite system in a domain A, of volume
|A], and divide A into cubical cells Wy Wor v v ENG each of volume |w|, M| w| = [A].
We define the dynamical voriable n (i=1, ..., M)tobe the number of particles in @, and
we choose two numbers p- and p+ such that p < p+ and the condition :

fo"(x}+2& > const. >0 (6.6)
haldsferallx €. [p, p+§. Since @ is negative, this is more restrictive than condition (6.5b),
but the precise values of p and ,D+chnsen are unimportant. In particular, they may be arbitrarily
close. In accordance with the condition (6.1a) that the metastable state should correspond to a
single thermodynamic phase, we now define R to be the set of all configurations compatible with
M constraints:

p'|w|<n;<p+1m| NS Zicmrs S (6.7)

We now assume that at time t =0 our system is in a state represented by a restricted grand
canonical ensemble that is one constructed by selecting from @ grand canonical ensemble those

systems whose configuration is in R. The chemical potential of this grand ensemble is 'Fo(p )t ap
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with p satisfying condition (6.5a) and p <p< p+ . These conditions assure that the equi-
librium state of this system has an average density which is not in (p- - p+) ond hence the
equilibrium probability of finding the system in R will be small (zero in the thermodynamic limit).

The choice of the grand canonical ensemble (rather than the canonical or microcanonical
ensembles which are believed to be essentially equivalent to it) is @ matter of convenience. It
is used only for setting up the restricted ensemble ot time 0; it does not imply that the system
is open for times greater than 0. The dynamics of the system are assumed to be determined entirely
by its own Hamiltonian (no interaction with the outside). The flow generated by this Hamiltonian
will carry some systems initially in R outside R. If we let u(R, t) be the measure of R at time t
as in equation (2.6), i.e., the fraction of systems left in R af that time, then p(R,0)=1. We
have that p(R,t)=1 - u(R,t)is the conditional probability for a system initially in R (i.e., in
the metastable state) not to be in R at time t. It is then shown rigorously that for periodic boundary
conditions, this conditional probability is at most At, where A is a quantity that goesto 0 in the
limit

A >> y-v>>|w!>>r°{n |Al . (6.8)
Here S is a length choracterizing the potential q, and x > >y means x/y #+=. For rigid walls
the same result is proved under somewhat more restrictive conditions. It is argued that o system
started in the metastable state will behave (over times << A?) like a uniform thermodynamic
phase with f.e.d. Fﬂ(p )+ 5ap®, but that having once left this metastable state the system is
unlikely to return.

The form of our upper bound on A, isroughly |A| exp(- 8/kT) with A a positive "activation
energy" proportional to | w|. Similor formulae for escape rates occur in other theories [32]. The

main difference between these formulae and ours is that they are intended to be approximations to

the true escape rate, whereas ours is a rigorous upper bound, but not necessarily a good approximation.

This upper bound was made possible by the fact that, in the limit we are considering, the range
¥ of the Kac potential becomes very large compared with the other physical lengths, e and
V . This permits a clean separation of the effects of the Kac potential from those o‘F the
shorf—runge potential q. This separation is accomplished by introducing an artificial new length

| wl v satisfying the two conditions (both coming from inequality [6.87)
l6lV? >> 0" ta |al

/v e
|

|w << 9

and defining R through constraints (eq. [6.7]) on density variations over the length scale | w| 1/v.
In the canonical ensemble for a system of N = p | A| particles the first condition in (6.9)

ensures that there are enough particles in each cell to make a fluctuation from the average occupa-

tion number assumed in the metastable state which violates the "constraints,” an unlikely event in

the restricted equilibrium ensemble, and hence enables us to prove that the escape rate is small.

The second condition ensures that any phase transition due to the Kac potential is completely
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suppressed by the constraints, and hence makes the state defined by these constraints a very
unlikely one in the full equilibrium ensemble, if this ensemble predicts such o phase transition.
This also ensures that this state is spatially uniform.

Since both parts of (6.9) are crucial to our treatment of metastability, the result that A can
be made as small as we please does not apply to real physical systems, for which there is no
v =0 limit. For a realistic potential, it may well be impossible to find regions R which have
both arbitrarily small escape rates and arbitrarily small equilibrium probabilities--particularly
in view of the apparent impossibility of analytically continuing the equilibrium free energies
and correlation functions for such potentials into the domain of metastability [32], [33] .

| would like to thank J. Percus, B. Simon, J. Sykes, and particularly R. Resibois for many
valuable and clarifying discussions during the preparation of this talk.
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DISCUSSION

A. Siegert: Is there any indication in Sinai's proof that the limit is, for practical purposes,

reached in a reasonable time, and not, for instance, in a time comparable with a Poincare cycle ?

B. Simon: The time it takes to reach the limit will depend on the particular observable that
one is interested in. The autocorrelation function for a given observable differs from its final
value in general by the Fourier transform of an !..I function and therefore goes to zero. The
approach may, however, be arbitrarily slow. Sinai's theorem involves showing that certain
quantities approach zero exponentially fast, so it may be possible to prove that autocorrelation
Functions of interesting observables approach their asymptotic value exponentially; but obviously
such an attempt must await the publication of Singi's proof.

A. Scotti: Since it is reasonable to expect that Sinai's theorem for hard spheres will be
generalized to physically more realistic potentials, and the considerations you have made on the
limiting values of {v(t)v(e)) and ‘J‘:W{f]v(o)) dt depend only on the system being mixed, would
you care to comment a little bit more on your philosophy regarding results that are valid only for

a finite number of particles?

J. Lebowitz: | expect that for any fixed t, (v{f]v(o»N —> (v(t)v(o)) ., where the

subscript indicates the size of the system. B=m

B. Robertson: Dr. Lebowitz pointed out, equivalently, that the Fourier, Laplace transform
of the Green-Kubo velocity autocorrelation function vanishes if the w — 0 limit is carried out
before the k = 0 limit. This singular behavior does not occur in autocorrelation functions that
include a suitable projectjon operator as given, for example, in J. Math. Phys. 11, 2482 (1970).
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G. Emch: The kind of classical ergodic theory Professor Lebowitz just talked about has been
(partly) extended to quontum situations, by Charles Radin and myself. Asa particular applica-
tion of that general theory, one can show exactly that certain infinite systems provide a thermal
bath for all of their finite parts; specifically, local thermal deviations do decay to equilibrium.
This result thus provides a proof of a specialized form of the second principle of thermodynamics.
The XY model belongs to the class for which the above assertions (as well as some other such
statements concerning local perturbations) hold.-

[At that point a question was asked by M. Green on necessity versus sufficiency. The answer
to that question was: What we have are certain conditions on the time evolution, which are
sufficient to ensure the above behavior. What we say is that these conditions are in particular
satisfied by the Hamiltonian of the XY model. ]

H. Matsuda: Concerning the thermal conductivity of the isotopically disordered harmonic
chain, Allen and Ford discussed it applying the Kubo formula. Although their formal expression
for the thermal conductivity K isright, they obtained a finite K in the limit N~ = which is
found not correct. By making a correction to their results, Ishii and | obtained a ¥ which is
proportional to VN. Apart from the question of the validity of the Kubo formula in this model,
| believe that the above N-dependence of the Kubo thermal conductivity is the right answer.

W. Visscher: The thermal conductivity of a disordered harmonic chain does, in fact, depend
strongly on the boundary conditions one assumes. For example, if the (O)h and (N + 1)th atoms
are clomped, with the first and (N)h atoms weakly coupled to heat reservoirs ot different tem=
peratures, then, as Professor Matsuda says, the effective thermal conductivity goes as NH%. On
the other hand, if the ends of the chain are free, the effective thermal conductivity for large N
goes as N‘l‘. The reason for this is that in a disordered chain only the very low frequency normal
modes contribute to the heat current because all the other modes are localized, and the coupling
of the low frequency, long wavelength modes to the reservoirs is suppressed if the ends of the
chain are clomped. If weak anharmonicities ore introduced, exchange of energy between normal
modes becomes possible, and the behavior of the thermal conductivity becomes more rriosonqbl.e,

namely, independent of N for long chains.

H. Wergeland: The peculiar nature of the energy transport in harmoenic lattices to which Dr.
Lebowitz alludes has of course given rise to a great many studies. Perhaps it is most strikingly
brought out in the example chosen by Hemmer: When two contiguous parts of an infinite linear
chain start with unequal temperatures, the temperature gradient at the junction will indeed gradually
decrease to zero but the flow of heat across this point will increase to a constant value.

In this sense, therefore, one may say that the heat conductivity is infinite. Now, one con
make more complicated harmonic models by distributing impurities (randomly or otherwise) in the
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lattice. And one can in this way obtain an averaged leveling of energy gradients which is
different from simple elastic signals. Yet the transport of heat does not become freely diffusive.
One cannot derive a purely parabolic Fourier equation along such lines because the dispersion

function--however complicated one makes it~-will always remain a causal one.

J. Harrison: The behavior of the linear chain of harmonic oscillators can be understood in
terms of the electrical network analogy described in my contributed paper at this conference. By
the described theorem of Haus and Adler, valid for linear circuits and hence for harmonic
oscillators, the temperature "looking" toward one end of the chain will be invariant along the
chain and will be the temperature of the far end. Thus the temperature source at one end looks
into a sink choracterized by the temperature at the other end. The heat transfer will therefore
be proportional to the temperature difference, with the proportionality constant solely dependent
upon the impedance "match” between the impedance of the temperature source and that of the
sink as transformed along the chain. For long uniform chains this impedance factor will have a
characteristic value averaged over a small frequency interval, which is independent of the length
of the chain. For the chain with random masses, the average value of impedance of the sink as
transformed over the length of the chain will tend to grow proportionally to the square root of
length, modifying the heat transfer accordingly. A uniform thermal gradient varying inversely
as the length can be recovered for bath the uniform chain and the statistically homogeneous
random chain by the introduction of a small amount of dissipative attenuation in the chain ina

manner equivalent to the use of self-consistent heat reservoirs by Bolsterli, Rich, and Visscher.

G. Wannier: There is a development in experimental physics running parallel to the
difficulties in the theory discussed here. Measurement of a coefficient of heat conduction is
becoming increasingly difficult as crystals become more perfect and data more precise. The
range in which the coefficient is determined by crystal imperfections is increasing. If the concept
can be saved for perfect crystals, it will probably need more careful definition. Such o definition

must take into account that part of the heat always travels with the velocity of sound.



