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I. INTRODUCTION

One of the developments in statistical mechanics in the last few years
has been the study of rigorous results. The study of intensive properties
of very large systems has been at the focal point of this subject because.
of the realization that many of the interesting phenomena peculiar to
macroscopic systems, such as phase transitions and irreversibility, are
intimately connected with and can be treated precisely only‘in the limit when
the size of the system becomes infinitely large; called the bulk or the
thermodynamic limit. Hence, (in studying these important phenomena), it
is essential to discover whether the thermodynamic limit 'exists'. This
question we shall discuss in lectures I and II. In the following lectures
we shall discuss the problem of analyticity.of the thermodynamic functions,
and in the fourth lecture outline some results for non-equilibrium statise=
tical mechanics.

I will only attempt here to sketch some of the problems, ideas and
results in this area and refer you to "The Book" by Ruelle (1969) and
also to the review article by Lebowitz (1968), for details and references.
All parts of these lectures which parallel closely the discussion in my
review article, as well as all references contained there, will be omitted

from these notes.

II. EXISTENCE OF THE THERMODYNAMIC LIMIT

We start with a physical system and assume that its structure and
properties can se described by a Hamiltonian. We will also assume that
we can neglect nuclear forces and gravitational forces and still obtain
a realistic picture of macroscopic matter undér normal conditions. Nuclear
forces are so strﬁng and short range and hold tﬁe nuclei so tightly together
that we do not expect ordinary matter to look any different if the nuclei

were charged mass points.



The gravitational forces on the other hand are so weak that the ﬁutual
gravitational interaction between particles in an ordinary sized object is
negligible. As aﬁated by Onsager (196?): thermodynamics is concerned with
object-s which are large compared to the size of a molecule, but émall com-
pared to the moon. The 'thermodynamic limit' should also be understood in
this spirit. Ignoring also relativistic effects, which we do not know how
to take into account in any consistent way, we can write the Hamiltonian

of a system of N particles of mass m as

N
2
He =Z Py /2m + Ve (Zyseees Ky)
i=1

(3

(This generalizes in an obvious way to a system of s species, of N particles
each, with masses mj, 3=l,000480)

Using the statistical mechanics of Gibbs, we define the canonical par-
tition function of a system of N particles in a container £, of volume
lnl » 88

Z(B,N,) = exp [-B A (B,N,D] =exp [-8 |0 a (B,N/|0;Q) ]
d (Nl)-; (m/ﬁh)3N f owe dgl...¢gﬂ exp(-B VN); classical system
1 = txace exp (-8 HN] = E exp [-B EEz(N,Q) J; quantum system

(2)

where B = 1/kT temperature and a(B,N/ Ifﬂ;fl)=lfﬂ-l A(B,N,£) is the

Helmholtz free gnergy per unit volume. We now want to determine whether
~ this prescription for finding the thermodynamic free energy of a system
from its microscopic Hamiltonian really leads to a proper thermodynami;s

for macroscopic systems. Thus, we ask the following questions.
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1. Does the free energy density a(B,N/‘fﬂ;‘2) as defined by eq. (2) have
the property of not depending on the shape of the system in the
"thermodynamic liﬁit", that is when N and |fﬂtend to infinity and N/lfﬂ
tends to a definite density P?: i.e. given a sequence of containers fﬁ and
particle numbers Nj’ lfgl —“®, Njflfﬁl = P does rgﬂtma(ﬁ,Nflfﬂ;‘D = a(B,pP)
exist independent of the shape of the container £ (as long as it is a
'reasonable shape'). 2. Assuming that a (B8,P) exists is B a(B,P) a convex
function of the density P and a concave function of the reciprocal temper-
ature B? These two conditions will ensure the thermodynamic stability of
our system. The answer to both these questions is yes.

The existence of the thermodynamic limit was proven some time ago for
a large class of systems whose Hamiltonian satisfies two conditions. These
two conditions are chosen so as to prevent the possibility of the system
collapsing, as would happen in a gravitational system, or exploding like a
system of positively charged particles would., The first condition is the

'H-stability' condition which requires that there be a lower bound on the

energy per particle, i.e.

Vy (;1, Ipseeesky) 2 = NB; B <®, independent of N and I (3a)

when treating this system quantum mechanically, we would replace this'
condition by

E_(N) 2 - NB (3b)

where Eo(N) is the ground state energy: (3a) implies (3b) but not
conversely.

The second condition on the interaction potential is the tempering
condition, and prevents the potential from being too positive at large

separations and ensures against explosion. If we have two regions of



space separated by a distance r, containing Nl and NZ particles respectively
then the tempering condition requires that the interaction between the two
groups have an upper bound of the form

-d-€

=] - - < >
V(Nl NZ) V(Nl) V(Nz) <C NINZ T M L g (4)

_where C and ro are constants, d is the dimensionality of the system and €
is a positive constant. When VN is a sum of pair potentials, VN(El"EN) =
z v(;i-gj) and v (r) is a Lennard-Jones type potential then both of these
conditions are satisfied. We are thus all right for systems whose basic
units are taken to be neutral ‘'spherical' atoms or molecules. This is not
entirely satisfactory, however, in that we believe, as mentioned earlier, that
the true interaction potential relevént for macroscopic matter is the Coulomb
potential and we should be able to prove the existence of the thermodynamic
limit directly for a system of Coulomb charges if the system is overall
neutral (or 'approximately' neutral).

Now it is clear that a system of point charges whose pair interaction
is eiej/ \gi-zj‘ does not have a lower bound on its potential energy and
hence does not satigfy (3a), (unless of course all the charges e, are of
the same sign which is not interesting since such a system clearly doés
not have any thermodynamics) . When the particles have hard cores, however,
i.e. there is a minimum distance of approach, R, between the particles,
then Onsager'showed the existence of a lower bound of this type. (The
following form of Onsager's proof was suggested to me by O. Penrose.)
The Coulomb interaction energy between different particles can be written in

the form

-
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where E is the electric field and u, is the self-energy of the i th
particle which is finite if the charges are assumed to be distributed
over a sphere of radius R. For real (point) charge particles however
only the quantum version of H-stability, (3b) is possible and was re-
cently proven by Dyson and Lenard. They show that (3b) will hold for
any set of charges and masses provided that the negative particles and/or
the positive ones are fermions. (It is curious that although stability
of a small number of charged particles, say an atom, comes about mainly
through the uncertainty principle, which keeps the oppositely charged
particles apart, to obtain (3b) it is also necessary to keep the negative
(or positive) particles apart from each other through the Pauli principle.)

The second requirement; that the potentials be 'tempered', is also ob-
viously not satisfied by the Coulomb potential, which is a long-range
potential. Thus, the proofs which make use of tempering de not apply
However, Lebowitz and Lieb (1969) have been able to overcome these diffi=-
culties and.prove the existence of the thermodynamic limit also for
Coulomb systems which are overall neutral.

We have also shown, when the system is not strictly neutral that as long
as the excess charge per unit surface area tends to zero as \fﬂ =
one always obtains the same canonical free energy as for the neutral system.
If the excess charge per unit surface area tends to infinity, however, the
free energy does not exist in the thermodynamic limit. And finally, if
the excess charge per unit surface area tends to a constant then the free
‘ energy approaches a limit equal to the free emergy of the neutral system
plus the energy of a surface layer of the excess charge as given by

elementary electrostatics.



The same methods which are used in the proof of the existence of
the free energy density in the thermodynamic limit also show that
this free energy density is thermodynamically stable., It is furthermore
possible to show that the microcanonical and grand canonical ensembles
yield thermodynamic potentials equivalent to those obtained from the
canonical ensemble in the thermodynamic limit. Thus, it has been shown
for a large class of systems, that the thermodynamic quantities as cal-
culated from statistical mechanics are well defined in the bulk limit

and have the required stability properties,

II, PHASE TRANSITIONS

While the existence of the thermodynamic limit was initially proven
for 'rigid wall' boundary conditions at the surface of § the results have
recently been extended, for some systems, also to different boundary con-
ditions; e.g. systems on a torus (periodic boundary conditions), and
systems for which the normal derivative of the wave function vanishes on
the surface of {J, (Fisher and Lebowitz, 1970; Robinson, 1970), There is
little doubt that all free energy denmsities, (in the bulk limit), are inde-
pendent of the boundary conditions. What is perhaps more interesting is
that quantities like the magnetization per unit volume m(ﬁ,”}(@% which is
the derivative of the free energy density ©(B,¥;Q) of a lattice spin
system of volume lfﬂ in the presence of an external magnetic field ¥,
do depend sometimes on the boundary conditions even in the limit
l(ﬂ = ®, This was proven first by Peierls for a two dimensional Ising
spin system with nearest neighbor ferromagnetic interactions at ¥ = 0
and B large (low temperatures). The two different boundary conditions
considered were (ljlthe spins at the surface all point up and (2)

they all point down. Peierls' result implies the non-interchangeability



of the order of taking the limit @l = = of ©(B,¥:Q - ©(B,¥) and taking
the derivative of @(B,¥;Q) with respect to ¥, It follows from this

that the thermodynamic free ene}gy density ©(B,¥) will have,at low temper=-
atures,a discontinuity in its first derivative, (the magnetization

m(B,¥) = 3p(B,N)/3¥), at H = 0, i.e. the system will have a phase trans-
ition. This can be seen simply (as pointed out to me by E. Lieb) from

the fact that @(B,¥;{1) is, for different ), a sequence of convex functions
of ¥ which approach a limit ©(B8,¥). The limit function must therefore
also be convex and o(8,¥:Q0) /¥ — 3p(B,¥) /3N for all values of ¥ at
which the latter is continuous.

The Peierls argument and results have been extended to higher dimensions
and more general kinds of spin and }attice gas systems (c. £. Ginibre 1970).
this way the existence of 'phase transitions' in a variety of lattice
systems has been proven. In addition, as is well know, the exact solution
of some two dimensional lattice models by Onsager and Lieb have explicitly
shown the existence of phase transitions in these systems.

This is very satisfactory as far as it goes as it agrees with our
experience Ef the ubiquity of phase transitions in macroscopic systems.
What is less satisfactory, however, is the lack of proof, so far, of the
existence of any phase transitions, such as the vapor-liquid transition,
in continuum systems with reasonable pair potentials between the particles.
It is only for the limiting case of an infinitely long range potential that
the existence of a phase transition has been established rigorously in

continuum systems.



I am referring here to the so-called van der Waals limit of a

system whose pair potential has the form

; d
v(r) = q(r) +¥ @(yr) (6)
Here q(r) is a potential containing a hard core and satisfying the
tempering condition and yﬂQ(yr) is a Kac potential with range 7-1

such that

J ¥ 0 (yr) dr =@ , (7)
independent of Y. It was shown by Kac, Uhlenbeck and Hemmer in one
dimension, d=1, and later by Lebowitz and Penrose for any dimension
that in the van der Waals limit Y = 0 , taken after the thermodynamic
limit 1§ﬂ = ® such a system will exhibit, for a large class of Kac
potentials, a first order gas-liquid phase transition of the classical
van der Waals type. The treatment of Lebowitz and Penrose has been ex-
tended recently to more general Kac potentials by Gates and Penrose

(1969).



IV NON-EQUILIBRIUM SYSTEMS

As éan be seen from the earlier lectures, the rigorous study of
equilibrium statistical mechanics has achieved notable results already.
The comparable investigation of the infinite volume limit of
non-equilibrium systems is much more difficult and has begun only re=-
cently; Results have been obtained by Lanford (1968 a,b), but are re=-
stricted to one-dimensional systems of classical point particles inter=-
acting by smooth, finite range pair forces F.

Let (qi,pi) represent the positions and velocities of a set of
particles of unit mass each. Then Newton's equations of motion have the

form

d q,(t) d p,(t)
srmmeEat L BT =_;i F (g (t) = q,(5) (8 a,b)
i

where F is the interparticle force. If we have a finite mumber of par-
ticles then there is clearly a unique solution to this set of differential
equations for all sets of initial conditions {qi(o) : pi(o)}. The ex-
istence of a meaningful solution to Newton's equations, i.e. the existence
of a time evolution of the system, becomes however far from trivial when
we consider a system consisting (in some limit) of an infinite number of
particles. In such a system it is quite possible to begin with a perfectly
reasonable set of initial values {qi(o) s pi(o)} and find after some
finite time t that there are an infinite number of particles in a finite
region of space and that the right side of (8b) is infinite. We illustrate
this with a simple example given by Lanford (1968 a). If there are no

interparticle forces and if at time zero, P; = =q for each i, then all
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the particles will be situated at the origin at time t = 1. Thus, we need
to find a class gf initial conditions for which such catastrophies do not
happen. In fact, as we are interested in equilibrium statistical
mechanics, we would like to show that those classes of initial con=-
ditions which have non-zero probability of occurring in equilibrium, do
not give rise to such catastrophies. An even stronger desired result is
to show that the time evolution of a part of the system contained in a
fixed region of space D will, at any time t, be determined entirely by
the state of the system at time t=0 in the neighborhood of D (how large
this neighborhood is will of course depend on t). This was indeed proven
by Lanford for one dimensional systems. He proves the existence for all
times of a "regular" solution of Newton's equations of motion for a
"regular'" initial configuration. A‘regular configuration is, roughly
speaking, one in which the number of particles in a unit interval and

the magnitude of the momentum of any particle in that interval have a
bound of the form & log R where R denotes the distance of the interval
from the origin. It is further shown that, at equilibrium, if either the
activity is small or the interparticle potential is positive, the set

of non=regular configuration has probability zero.

A question left open by these results is whether a state which at
time t=0 is described by a set of correlation functions can still be
described by a set of correlation functions when t#0. This was in-
vestigated by Gallavotti, Lanford and Lebowitz (1970) who proved that,
for certain classes of initial states, the time-evolving state is de-
scribed by correlation functions and that these correlation functions

satisfy the BBGKY hierarchy in the sense of distributionms.



11

- The :I.niﬁial_ statés we consider can be described as follows:
Suppose that the system is in equilibrium at temperature ﬁ-l and acti-
vity z under the influence of a pair potential and an external po-
tential h which is localized in a finite region Ih. At time t=0 we
switch off the external field and the system begins to evolve. We
prove that if the activity is sufficiently small (i.e. if we are deep
inside the gaseous phase) the system can always be described by a set
of correlation functions which vary in time according to the BBGKY
hierarchy. We are, however, unable to prove even that the time averaged
correlation functions evolve toward the correlation functions which
correépond to the equilibrium state at temperature B; and activity =z
(in absence of external field) as would be expected. We are, however,
able to prove that the time averaged correlation functions coverage to
a limit satisfying the stationmary BBGKY hierarchy.

While initial states of the kind just described suffice; in priﬁciple,
for the study of transport properties such as diffusion at low activity
an alternative, sometimes more direct way to study transport pro-
cesses is through the van Hove time displaced distribution functions
(t.d.f.) These are time dependent correlation functions which correspond
to different types of initial conditions from those just considered. In-
stead of considering the time evolution of an initial ensemble density
having the form, (for a fixed number of particles),

F (xi,..., Xt = 0) = ﬁeq (xl,f..,'xN) qf(xi,...,xN)

where x;, = (qi, Pi)’ “eq is the equilibrium Gibbs canonical ensemble

density corresponding to the correct Hamiltonian for t > 0 and ¥
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is a symmetric function of the X, the t.d.f. are correlation functions
obtained from an ‘initial ensemble which is in equilibrium with one or
more particles having specified positions and momenta. A typical en=-

semble dénsity of this kind is

7 (xl,..., Xt = 0= [“eq (xl,..., xN)/feq(xl)]G(kl-xlo)

where feq (xl) is the equilibrium distribution function of particle one.
The distribution function of this particle at time t,f(xl,t), is the

time displaced one particle self distribution function. (If we integrate
this function over velocities we obtain the van Hove self function which
is important in neutron scattering gxperiments.) The self-diffusion con~
stant can be obtained directly from f(x,t) and other transport coefficents
can be obtained from similarly defined t.d.f.

We (Lebowitz and Percus, 1967: Lebowitz, Percus and Sykes, 1968,1969)
have made an extensive study of these t.d.f. for a one dimensional system
of hard rods of diﬁmeter R obtaining many of them in explicit form. The
self-diffusion constant for example, (defined, of course, in the thermo-
dynsmfc limit), 1s given by D = 2 ¥ Bm) "% (16 R) / P

Much remains to be done in this field.
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