J. theor. Biol. (1971) 32, 335- 339 7 /

Theorem in Chemical Kinetics
J. L. Lesowirz,T S. I. RUBINOW

Biomathematics Division,
Cornell University Graduate School of Medical Sciences
and
Sloan-Kettering Institute, New York, N.Y., U.S.A.

AND

SHLOMO BURSTEIN

Division of Steroid Chemistry,
Institute for Muscle Disease, New York, N.Y., U.S.A.

(Received 7 July 1970)

We consider a ““double isotope™ experiment in which a precursor A,
and an expected intermediate Ao labeled with two different isotopes,
say *4C and *H, are simultaneously subjected to an enzymic preparation,
Assuming a first order kinetic reaction scheme A; — A;— Ag— A, ..,
we prove certain inequalities for the expected ratios of **C to ®H in the
products A, which are valid for all time.

1. Introduction

The availability of **C and *H labeled steroids and of techniques for their
simultaneous determination has encouraged the study of steroid metabolism
using the “double isotope’ technique. In this approach a precursor A,
labeled say with *C and an expected intermediate A, labeled say with *H
are simultaneously subjected to an enzymic tissue preparation. The isotope
ratio of **C to 3H is then determined in the succeeding products A, Ay, etc.
(In the more standard nomenclature A, A,, A,,...,are called A, B, C,...).

Let x,(t) and y(f), i = 2, 3,..., be the amounts of A4, at time ¢ labeled
with '*C and *H, the label of A, and A, at t = 0 in our example, respectively.
It has frequently been accepted that in an ideal homogeneous irreversible
consecutive reaction scheme A; = A, — A; — A,. .. in which one assumes
complete mixing of the introduced intermediate with that formed from the
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preceding reactant, the isotope ratio in A;, R|(1) = x,(t)/y;(t) fori = 3,4,...,
should closely approximate the isotope ratio in A,, R,(1), if there are no other
pathways involved (Matsumoto & Samuels, 1969). Any marked deviation
of the isotope ratio in the products A;, Ag,... from that found in the inter-
mediate A, would then be considered to indicate the formation of a given
product A;, A,,... from A, by a route not involving A,. Such conclusions
appear to have been based entirely on the intuitive notion that the *C
appearing in A, instantaneously mixes with the *H already introduced in A,
to give A, a certain isotope ratio, and this in turn leads to A; and succeeding
products A,,. .. possessing this same isotope ratio.

In a recent study of enzymic irreversible consecutive reaction sequences
involving the conversion of cholesterol to pregnenolone (Burstein, Kimball
& Gut, 1971) it became necessary to compute the theoretical isotope ratios
R (1) of the members of such a homogeneous first order irreversible reaction
sequence. It was then found by numerical computation for various values of
the rate constants of the first order sequence that the ratios R, (1), R(1), etc.
were not equal. Rather the inequality R,(f) > Rs(1) > R,(t) always obtained.
It was conjectured that these inequalities hold for all ¢t > 0 for arbitrary
values of the rate constants. However, a general proof of this conjecture was
not provided.

It is the purpose of the present communication to provide a general
analytical proof of this inequality for first order reactions.

2. First Order Irreversible Homogeneous Reactions

Consider a set of n first order irreversible homogeneous reactions. Let the
reactants be enumerated sequentially as shown in the following diagram:

The directed arrows leaving a given reactant A; signify that the associated
reactant may either disappear to the exterior of the system or be transformed
into the succeeding reactant. The quantity k ;. ,); represents the fractional
rate at which reactant j is transformed into the succeeding reactant (j+1).
We shall let k;; represent the net rate of disappearance of reactant j. By
definition, all the k;; are positive numbers, and k;; = k(; 4 1);-

The differential equations governing this reaction system are as follows,
and will be recognized as a simple example of compartment equations of the
catenary type. Let x;(¢) represent the labeled amount of reactant j at time 7.




THEOREM IN CHEMICAL KINETICS 337

Then
dx
d—tl ==k %y,
dx .
-d—:=kju_.”xj_1—k”xj, J=2,3,...,". (1)

There are two particular choices of initial conditions which represent the
conditions in a ‘“double isotope” experiment. In one, a unit amount of
material is contained in compartment 1, and all other compartments are
empty. Thus {x,, x;,...x,} = {1,0,...,0} at r = 0. In the second choice
of initial condition, a unit amount of labeled material is contained in com-
partment 2 and all other compartments are empty. We shall designate the
solution to equation (1) for this initial condition as {y;} to distinguish it
from the solution to equation (1) for the first initial condition, which is
designated as {x;}. For the second solution, {3, ¥3,..., %} = {0,1,0,...,0}
at = 0.

In the “double labeling” experiment discussed in the Introduction, unit
amounts of differently labeled precursor A, and intermediate A, are intro-
duced simultaneously at t = 0. However, due to the assumed linearity of the
reactions (i.e. they are first order), the differently labeled materials evolve
independently of each other. Thus the labeled amounts in A, A,, Aj,...
at any time ¢ > 0 is the same as the x,(t) and y,(t) given here. We shall show
that the ratios R,(r) satisfy the inequalities

d
GRO>0, >0, i=23,..n, )

and
R,(1) > R4(t) > ... > R,(1). (3)

We first note that, under the conditions on k;; given, it is known (Bellman,
1960) that x; is non-negative for all values of j and all ¢ > 0 provided x; is
non-negative at ¢ = 0, but otherwise arbitrary. This result is intuitively
obvious in view of the physical significance of x;. Because x; and y; are always
positive, so is R;. The solution to equation (1) for the first initial condition
can be written explicitly as

x,(f) = e~Fut, (4a)
r

{0 =kjg-gye 2 % @), =23, (4b)
0

Equation (4b) demonstrates that the amount of x; at time ¢ depends only on
the past history of x;_, and the two rate constants k;;_, and k;;. Similarly,
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for the second initial condition,

y1() =0, (5a)
ya(t) = et (5b)
and
t
yj(t) — kj(j—l] e—k”f j e"'”"yj_l(!’) dt’, j B 3, 4,. — (Sc)
o

From equations (4b) and (5¢), it follows that R;(f) may be expressed aS
follows:

t
Rj(t) = .L ';Dj(r’; r)Rj—l(t’) dt'; J = 3: 4)' < eally (6)
where

'G_”l' rf
et 1) = '_e_M' 0str=t. (@)

J ety (0) d

From (7) it is seen that
t
fo(t;ndr'=1. (8)
0

We note also that ¢ (t'; 1) is positive for all ¢, ¢ > 0 because y,(r) is positive
forall £ > 0.

We now show that R; is a strictly increasing function for all # > 0. From
equation (6), we calculate

dR (1) 09 ., AP
1D _ g (15 0, 0+ [ 22 (15 R, (1) d ©)
dt o Ot
and from equation (7) it follows that
G (t'; 1) .
05D g5 D015 (10)
Substituting equation (10) into equation (9), there results
dR !(t) ‘ ' ' ’
—5 = 060 [ ot DR ((O=R;- (1)} dr. (11)
0

Therefore, dR;/d¢ > 0 and Ry(f) is a strictly increasing function of # provided
R;_ (1) is a strictly increasing function of 7. Thus, if R,(7) has this property,
then so does R; for all j = 3. R,(f) does indeed have this property, as may
be seen by explicit calculation from equations (4) and (5):

k21 (kaz =Ryt
Ry() = (kaza—kyy Le th ka2 # bus,

knf; kay = ku-

(12)
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From equations (6) and (8) it follows directly that

RJ-H(r)—R)(r):_([:quH(t';r){RJ(t’)—-R;(I)}dI’, j=2,3,....0=1. (13

Inasmuch as @;,4(¢'; #) is always positive and the bracket is always negative
(except at the endpoint ' = ¢) because of the strictly increasing nature of
R(1), the right-hand side of equation (13) is a negative number so long as
t > 0. Hence the desired result is proven:

RJ({))‘R}+1(‘), j=2,3,..-,n_1, ‘}0. (14)
The actual values of R;(f) depend of course on the rate constants. It is
easy to find a set of rate constants for which R(f) is very much greater than

R;4(f). Indeed, we can have cases where R(f)/R;,(f) = oo exponentially
ast — oo.

3. Discussion

Here we have concerned ourselves with the ideal, first approximation
approach in which homogeneous reaction conditions were presumed. The
situation, of course, becomes much more complicated if such conditions do
not prevail. If a product produced in situ behaves differently from that intro-
duced into the medium, then interpretation of data on merely intuitive
grounds may prove to be grossly misleading.

For reactions obeying first order kinetics, if the isotope ratios of the inter-
mediates and products are found to disobey the inequalities proven herein,
then we may infer the existence of other pathways, and/or “non-ideal”
reaction conditions. The determination of the “ideality” of the reaction will
require independent means other than the determination of the individual
reaction rates. An attempt in this direction has been described by Matsumoto
& Samuels (1969).
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