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Modified Virial Theorem for Total Momentum Fluctuations
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A modified form of the virial theorem, which relates the fluctuations in the total linear momentum to a
“virial” of the external forces acting on a physical system, is proven both classically and quantum-

mechanically.

HE virial theorem of Clausius, which relates the
mean kinetic energy of a system of particles to
the pressure and a ‘“‘virial” of the interparticle forces,
has found many applications in physics. It is the pur-
pose of this note to show that there exists also a relation
between the fluctuations of the total momentum of a
system and a “virial” involving only the external forces
acting on the system. We assume for concreteness that
the forces between the particles making up the system
are two-body central forces. However, as is clear from
the context, this restriction is not necessary.
Let H, the Hamiltonian of an N-particle system, be
of the form
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where U (1) is the potential energy of a molecule at the
point r due to external forces, such as gravity or
boundary forces for instance. The classical equations of
motion then have the form
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Summing these equations for all particles leads to an
equation of motion for the center of mass from which
the interparticle forces V (r;;) have disappeared:
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If we now multiply this equation by X, we get
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Hence, when X and X are bounded,
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where P,=3 1V (pz); is the  component of the total
momentum, and the () denotes the time average
along a phase space trajectory. Similar theorems also
hold for other elements of the tensor PP.

When our system is represented by a stationary
Gibbs ensemble, we may replace this time average by
an ensemble average denoted by ( ). Equation (5) now
takes the form (see Appendix)
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where p(ry) and p(ry,rz) are the number density and the
pair density, respectively. When the only external
forces are those due to the walls, then
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where p is the pressure and @ is the volume of the
container.

The derivation of Eq. (5) holds also for a quantum
mechanical system when r; p; are interpreted as
Heisenberg operators. In a representation in which
is diagonal the off-diagonal elements of P,? oscillate in
time and hence, their average vanishes. The diagonal
elements are time independent and are just the ex-
pectation values of P,? in an energy eigenstate. It is
interesting though to derive Eq. (6) directly for a
stationary state and show the modification required
when U(r) is infinite at the walls. Let ¢ be the wave
function of such a state, satisfying
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It follows from the definition of the operators H and
P, that
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Hence
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On the other hand, by directly evaluating the com-
mutator of P, and (H—E), we obtain

()[p,,, (H—E)]= z— (11)
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We are thus again led to Eq. (6) except that now the
one and two particle distribution functions are com-
puted from the wave function. In Eq. (10) we have
used our assumption that U (r) is sufficiently well be-
haved so that no boundary terms appear when (H—E)
is replaced by its conjugate. When the walls are treated
as rigid, the potential U(r) is replaced by the require-
ment that ¢ vanish at the boundaries. Then, by argu-
ments similar to those by Fierz,! we get for a quantum-
mechanical system confined to a cube with sides L
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When a classical system is confined to a box with rigid
walls, Eq. (6) assumes the form
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We thus have the same correspondence between the
classical and quantum expression for the virial of the
external forces when the walls are rigid that exists for
the virial of the internal forces when the particles are
rigid spheres.!

It is interesting to compare Eq. (6) with the virial
theorem of Clausius
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In a classical system (represented by a canonical en-
semble) there is no correlation between the momentum
of different particles; hence

(P2)=N{p2)=NmkT.
1 M. Fierz, Phys. Rev. 106, 412 (1957); 107, 1736 (1957).
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This implies, by combining Eqs. (6) and (14), that
(r2)
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for a classical system. We have here a relation between
a quantity, the right side, which depends on the bulk
properties, and another quantity, the left side, which
depends on the surface properties of our system.

In general, subtracting Eq. (6) from Eq. (14) yields
the following :
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It is shown elsewhere? that for liquid helium II, at
very low temperatures, an extreme quantum liquid,
(P2)=NmkT, its classical value. This result probably
holds quite generally. Hence, the right side of Eq. (17)
represents the deviation of the kinetic energy of a
quantum system from its classical value.

APPENDIX

For a classical system represented by a canonical
ensemble, Eq. (6) or (13), can be derived directly from
the N-particle distribution in T' space ux(r?,p¥)
= (1/Z)e"1#H1, When U (r) is continuous, we have
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where Sw; is a surface in I' space on which #; is constant.

These equations are the same as (6) and (13), respec-

tively. Since the virial theorem is also derivable from

the canonical distribution, Eq. (16) also follows from
that distribution.

2 J. L. Lebowitz and L. Onsager, Program of the Fifth Inter-
national Conference on Low-Temperature Physics and Chemistry,
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