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RESUME

On montre qu'un systéme de particules chargées avec interactions coulombiennes
(et éventuellement en outre des interactions tempérées) & une limite thermodynamique
bien définie pour I'énergie libre par unité de volume : celleci peut dépendre de la forme
pour un systéme qui n’est pas électriquement neutre. Cela prouve que la mécanique sta-
tistique, développée par Gibbs, conduit bien 4 la thermodynamique pour des systémes ma-
croscopiques, au moins quand les effets relativistes peuvent étre négligés.

ABSTRACT

It is shown that a system of charged particles interacting with coulomb forces (and
possibly also with other tempered interactions) has a well defined statistical-mechanically
computed, free energy/unit volume in the thermodynamic (bulk) limit : which may be
shape dependent when the system is not electrically neutral. This proves that statistical
mechanics, as developed by Gibbs, really leads to a proper thermodynamics for macroscopic
systems, at least in situations when relativistic effects are not important.

There has grown up in recent years a large body of exact results in statis-
tical mechanics. The most fundamental of these results concern the proof
that the equilibrium statistical mechanics developed by Gibbs and Einstein
with its later generalization to quantum systems can really yield equili-
brium thermodynamics. To be more precise, given our present understanding
of the microscopic laws, e.g. Hamiltonian, relevant to the behabior of ma-
croscopic matter in “‘ordinary circumstances” it is desired to show that the
free energy derived from the partition function Z = tr (e™"™) has the pro-
perties postulated by equilibrium thermodynamics, a theory based on ma-
croscopic experiments, i.e., starting from the appropriate partition function,
is it true that the resulting properties of matter will be extensive and
otherwise the same as those postulated in the science of thermodynamics?
In particular, does the thermodynamic, or bulk, limit exist for the free
energy derived from the partition function and if so does it have the appro-
priate convexity, i.e. stability, properties ?

(1) Work supported by U.S.A.F.0.S.R. under Grant No. 68-1416.
(2) Work supported by National Science Foundation Grant No. GP-9414.
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To be precise, if N}. are an unbounded, increasing sequence ot particle
numbers, and S'Z.! a sequence of reasonable domains (or “boxes™) of volume
V.,. such that Nf_!\’,, —> constant = p, does the free energy/unit volume

f=—6' (V) nZ@,N, Q) : Z=(Ze T
approach a limit (called (B, p)) as j — oo and is this limit independent
of the particular sequence and shape of the domains ? If so, is f convex
in the density p and concave in the temperature, B~'. Convexity is the
same as thermodynamic stability (non-negative compressibility and specific
heat). Here E (N, Q) is the a th energy level of the N particle system
obtained from the solution of the Schroedinger Equation with the require-
ment that the wave function vanish on the “boundary” of £. (There is
not a full proof for the existence of the thermodynamic limit for different

types of boundary conditions, e.g. periodic or normal derivative vanishing
on the boundary).

Various authors have evolved a technique for proving the above [1],
but always with one severe drawback. It had to be assumed that the interpar-
ticle potentials were short range (in a manner to be described precisely
later), thereby excluding the Coulomb potential which is the true potential
relevant for real matter. (Actually, Griffiths [2], using the Dyson-Lenard
theorem, below, found a way to extend the “canonical” proof [1] to electri-
cally neutral systems with Coulomb forces under the restrictive assumption of
complete charge symmetry, i.e. that positive and negative particles have
the same mass, spin, etc. but this is clearly insufficient for nuclei and elec-
trons. Similarly Penrose [2] was able to prove the above for the case of a
system enclosed by a very special, unphysical, container). That a nice
thermodynamic limit exists for neutral systems with Coulomb forces is
a fact of common experience, but the proof that it does so is a much more
subtle matter than for short range forces. It is screening, brought about by

the Coulomb force itself, that causes the Coulomb force to behave as if
it were short range.

In this note we will indicate the lines along which a proof for Cou-
lomb forces can be, and has been constructed. The proof itself, which is
quite long, will be given elsewhere [3]. We will also list here some additional
results for charged systems that go beyond the existence and convexity of

1(B,p).

To begin, with, a sine qua non for thermodynamics is the stability
criterion on the N body Hamiltonian, H = K.E. + V. It is that there
exists a constant B 2 0 such that for all N

V(ry,...,ry) > — BN (classical mechanics), )
E, > — BN (quantum mechanics) 3)

L

156



T T T

where E, is the ground state energy in infinite space. (Classical stability
implies quantum mechanical stability, but not conversely). Heuristically,
stability insures against collapse. From the mathematical point of view,
it provides a lower bound to JG in (1). We wish to emphasize that stability
of the Hamiltonian (H-stability), while necessary, is insufficient for assu-
ring the existence of thermodynamics. Indeed, the concept of H-stability
has very little to do with thermodynamic stability discussed above : (1)
H-stability refers to infinite space in which the concept of density does
not enter ; (2) No considerations of limit enters the definition ; (3) H-
stability does not in itself imply a thermodynamic limit. As an example,
it is trivial to prove H-stability for charged particles all of one sign, and it
is equally obvious that the thermodynamic limit does not exist in this case.

It is not too difficult to prove classical and thus also quantum
H-stability for a wide variety of short range potentials or for charged
particles having a hard core [2,4]. But real charged particles require quantum
mechanics and the recent proof of H-stability by Dyson and Lenard (5]
is as difficult as it is elegant. They show that stability will hold for any
set of charges and masses provided that the negative particles and/or the
positive ones are fermions. (It is curious that although stability of a
small number of charged particles, say an atom, comes about mainly
through the uncertainty principle, which keeps the oppositely charged
particles apart, to obtain (3) it is also necessary to keep the negative par-
ticles apart from each other through the Pauli principle). Dyson and
Lennard did not include spin-spin dipolar forces because relativistic consi-
derations are then necessary to keep the binding energies finite (private
communication). If the particles have hard cores then Onsager’s proof of
stability holds also for dipolar interactions and our proof of the thermody-
namic limit would automatically apply also to the general case. The magnetic
interactions between moving charges, treated to lowest order in v/c, can
also be taken into account in our proof.

The second requirement in the canonical proofs [1] is that the po-
tential be tempered which is to say that there exists a fixed r, and cons-
tants C 2 0 and € > O such that if two groups of N, and N, particles are
separated by a distance r > r, their interparticle energy is bounded by

V(N,eN,)— V(N,)— V(N,) < Cr-®*N,N, (4)

Tempering is roughly the antithesis of stability because the requirements
that the forces are not too repulsive at infinity insures against “explosion”.
Coulomb forces are obviously not tempered and for this reason the cano-
nical proofs have to be altered. Our proof, however, is valid for a mixture
of Coulomb and tempered potentials and this will always be understood
in the theorems below. It is not altogether useless to include tempered
potentials along with the true Coulomb potentials because one might
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wish to consider model systems in which ionized molecules are the elemen-
tary particles.

Prior to explaining how to overcome the lack of tempering we list
the main theorems we are able to prove. These are true classically as well
as quantum mechanically. But first three definitions are needed :

D1 : We consider s species of particles with charges e, particle numbers
N@ and densities pm. In the following N and p are a shorthand notation
for s fold multiplets of numbers. The conditions for H-stability (see
above) are assumed to hold.

£ .
D2 : A neutral system is one for which X N(')e, = 0, alternatively
1

2
E pme, =0 .
1

This requires the fundamental charges to be rational multiples of some unit
charge.

D3 : The ordinary s species grand canonical partition function is

- - s (1)
Xt b [ﬂe""'” ]Z(N,m )

N(')=0 N(')=o 1

with g, the chemical potential of the i th species.

The neutral grand canonical partition function is the same as (5)
except that only neutral systems enter the sum. The theorems are :

T1 : The canonical thermodynamic limiting free energy/unit volume, f (8, p)
exists for a neutral system and is independent of the shape of the domain
for reasonable domains. Furthermore, f(B, p™”, p®,...) is concave in
B~ and jointly convex in the s variables (p<7,...p"").

T2 : The thermodynamic limiting microcanonical [6] entropy/unit volume
exists for a neutral system and is a concave function of the energy/unit
volume. It is also independent of domain shape for reasonable shapes,
and is equal to the entropy computed from the canonical free energy.

T3 : The thermodynamic limiting free energy/unit volume exist for both
the ordinary and the neutral grand canonical ensembles and are independent
of domain shape for reasonable domains. Moreover, they are equal to
each other and equal to the canonical pressure.

Theorem 3 states that systems which are not charge neutral make a
vanishingly small contribution to the grand canonical free energy. While
this is quite reasonable physically, it does raise an interesting point about
non-uniform convergence because the ordinary and neutral partition func-
tions are definitely not equal if we switch off the charge before passing
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to the thermodynamic limit, whereas they are equal if the limits are taken
in the reverse order.

An interesting question is how much can charge neutrality be vio-
lated before the free energy/unit volume deviates appreciably from its
neutral value ? This is answered by

T4 : Consider the canonical free energy with a surplus (i.e. imbalance)
of charge Q and take the thermodynamic limit in either of three ways :

(a) QV"*—=>0:(b) QV™ —> o ;(c) QV Y3 ——> constant.

In case (a) the limit is the same as for the neutral system while in case
(b) the limit does not exist, i.e. f—— oo. In case (c) the free energy
approaches a limit equal to the neutral system free energy plus the energy
of a surface layer of charge Q as given by elementary electrostatics. This
energy is of course shape dependent and the existence of the thermodynamic
limit for non-neutral systems requires, at the minimum, that shapes of do-
mains Q approach some reasonable limiting shape. For a sequence of sphe-
rical dornams the excess free energy/per unit volume is equal to 6ma?
where 0 = Lumt [Q/47R?).
e

We turn now to a sketch of the method of proof and will restrict our-
selves here to the neutral canonical ensemble. As usual, one first proves the
existence of the limit for a standard sequence of domains. The limit for
an arbitrary domain is then easily arrived at by packing that domain with
the standard ones. The basic inequality that is needed is that if a domain
Q containing N particles is partitioned into D domains £, &,,...,8;
containing N;, N,,..., Ny particles respectively and if the inter-domain
interaction be neglected then

D
ZIN, Q)2 TTZ(N, 2), (6)
1

(Classically, this inequality comes from restricting the configuration space
integral. Quantum mechanically, it stems from the observation that the
artificial introduction of nodes into the wave functions raises all the energy
levels [1]). If £ is partitioned into sub-domains as above plus *“corridors™
of thickness > r, which are devoid of particles, one can use (4) to obtain
a useful bound on the tempered part of the omitted inter-domain interac-
tion energy. We will refer to these energies as surface terms.

The normal choice [1] for the standard domains are cubes, C!, cor-
taining N, particles with C;,, being composed of eight copies of C,,
together with corridors and N,,, = 8N,. Neglecting surface terms one would
have from (6) and (1)

Ty STy « . Q)
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Since j; is bounded below by H-stability, (7) implies the existence of a
limit. To justify neglect of the surface terms one makes the corridors in-
crease in thickness with increasing j although Vf, the corridor volume,
approaches o one makes V;/V; — 0 in order that the limiting density
not vanish. The positive € of (4) allows one to accomplish these desiderta.

Obviously, such a strategy will fail with Coulomb forces, but fortu-
nately there is another way to bound the inter-domain energy. The essential
point is that it is not necessary to bound this energy for all possible states
of the systems in the sub domains ; it is only necessary to bound the “average”
interaction between domains which is much easier. This is expressed mathe-
matically by using the Peierls-Bogoliubov inequality to show that

D
Z(N,Q) 2 TTZ(N,, 2) (8)
1

where U is the average inter-domain energy in an ensemble where each
domain is independent. U consists of a coulomb part, U, and a tempered
part U,, which can be readily bounded [1]. (Griffiths’ result [2], referred
to above, follows from (8) by noting that if each sub-domain were charge
neutral U, would vanish provided the particles were charge symmetric.
In the absence of external fields, the spin dipole-dipole interaction would
vanish for the same reason). We now make the observation, which is one of
the crucial steps in our proof, that independently of charge symmetry U,
will vanish if the sub-domains are spheres and are overall neutral. The
rotational invariance of the Hamiltonian will produce a spherically sym-
metric charge distribution in each sphere and, as Newton [7] observed,
two such spheres would then interact as though their total charges (which
are zero) were concentrated at their centers.

With this in mind we choose spheres for our standard domains.
Sphere S‘, will have radius R, = p! with p an integer. The price we pay
for using spheres instead of cubes is that a given one, S, cannot be packed
arbitrarily full with spheres S,_, only. We prove, however, that it can be
packed arbitrarily closely (as k —> <o) if we use all the previous spheres
Sk—13S5_2,---Sy. Indeed for the sequence of integers

"nﬂ;.---.nl == (p —_ l)(t_l) p2[

we can show that we can simultaneously pack n, spheres S,_, into S, for
| <j < k. The fractional volume of S, occupied by the S, _, spheres is
¢ = p~*n, and from (8) we then have

Li<ofiatefaat ot od )
and

Ye=1 ‘ (10)
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(Note : (6) is correct as it stands for pure Coulomb forces because U, in
(8) is identically zero. If short range potentials are included there will
also be surface terms, as in the cube construction, but these present only
a technical complication that can be handled in the same manner as be-
fore [1]). While Eq. (9) is more complicated than (7) it is readily proven
explicitly that f, approaches a limit as k ——= o°. [Indeed, it follows from

the theory of the renewal equation 8] that (9) will have a limit if i, < o).

The possibility of packing spheres this way is provided by the follo-
wing geometrical theorem which plays the key role in our analysis. We
state it without proof, but we do so in d-dimensions generally. The notation
is : 0, = volume of a unit d-dimensional sphere = 4w/3 in 3 dimensions ;
a, = (2% —1)2d"2.

TS: Let p2a, + 2“0;' be a positive integer. For all positive integers, j,
define radii r, = p~! and integers 0P 1)~'p!“=Y Thenit is possible
to place simultaneously U; (n; spheres of radius r;) into a unit d-dimensional
sphere so that none of them overlap.

The minimum allowed value of p is 27 in 3 dimensions.

Many of the ideas presented here had their genesis at the Irvine 1968.
Symposium on Exact Results in Statistical Mechanics and we should like
to thank our colleagues for their encouragement and stimulation : M.
Fisher, R. Griffiths, O. Lanford, M. Mayer, D. Ruelle and especially A
Lenard.
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