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1. Introduction §
The introduction of tritiated thymidine as a radioactive label in proliferating
cells and subsequent radioautographic study of them has greatly stimulated
the study of mammalian cell kinetics in recent years (Cleaver, 1967).}
In particular, a great deal of information has been collected about differen-
tiating cell systems such as blood cells (Cleaver, 1967, section 7.12).

The analysis of these experiments has in general been based only on the
gross features of the labeling data such as the labeling index and the fraction
of labeled mitotic cells. For this purpose the theoretical age-time (Scherbaum
& Rasch, 1957; von Foerster, 1959) and more recently maturity-time
(Rubinow, 1968) descriptions of cell populations is sufficient. However,
there exists in addition detailed information concerning the distribution of
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t This book is an excellent and thorough account of the labeling process and its
theoretical implications. Discussions of most of the aspects alluded to in this paper may
be found there together with numerous references to the current literature.
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grain counts in cells following exposure to radioactive thymidine (Cleaver,
1967, section 1.10; Clarkson, Ohkita, Ota & Fried, 1967). These observations,
which will hopefully increase in precision and reliability, contain much
quantitative information about cell kinetics. A theoretical analysis of such
data for obtaining median generation times has been given recently by
Fried (1968).

It is our purpose in this note to formulate a mathematical representation
of cell populations in which the amount of radioactive label contained in
a cell is included as one of the independent variables. Thus, equations for
cell density functions are introduced which depend on the variables age,
maturity, time and radioactive label. These equations are related to similar
equations that have been introduced by various authors (von Foerster,
1959; Bell & Anderson, 1967; Bell, 1968; Rubinow, 1968). They are here
used for quantitative mathematical treatment of experiments on cell
populations which are subject to pulse labeling but can also be used for
continuous infusion experiments.

Our equations are presented in the context of a physical model of cell
proliferation proposed by Lajtha, Gilbert, Porteous & Alexanian (1964) to
help explain how stem cells in the bone marrow may recover from radio-
active damage. It utilizes the concept of a non-proliferative or resting state
which has been suggested (Lajtha, Oliver & Gurney, 1962; Mendelsohn,
1962) to help understand kinetic features of cell renewal systems. In this
view mitosis is normally followed by a G, or resting phase (Lajtha et al.,
1964) from which the normal cell cycle consisting of the phases Gy, S, G,
and M (Howard & Pelc, 1953) is triggered by an appropriate mechanism.
This concept helps explain the very characteristic feature of leukemic marrow
cells following a pulse injection of tritiated thymidine, namely that only an
abnormally small fraction of them are initially labeled (Gavosto, Maraini &
Pileri, 1960; Mauer & Fisher, 1963; Clarkson, Ota, Ohkita & O’Connor,
1964 Killman, 1965). A very simplistic study (Rubinow, unpublished) of
the proliferative cycle for such cells suggests that a large proportion of the
cells are in a resting state.

Our mathematical model hopefully provides, by the appropriate choice
of the parameters involved, an adequate representation of the essential
features of the in vivo and in vitro myeloblast proliferative system. It supposes
two compartments of cells, an active compartment in which all cells undergo
proliferation and a resting compartment in which no cells divide. Both
compartments may lose cells at characteristic fractional rates per unit time
B, and B, respectively. A cell entering the active compartment is charac-
terized by zero maturity. After such a cell has spent the time necessary for
it to reach a certain level of maturity, assumed to require a definite time
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interval T, it will divide into two cells. Of these newborn cells a fraction §
goes into the resting state and the remainder go back to the beginning of
the active compartment. In addition the resting state contributes at a frac-
tional rate « per unit time to the beginning of the active compartment
(see Fig. 1).

There are five characteristic parameters of the system introduced thus
far: a, 4, By, B, and T,. In addition the durations of the G,, S, G, and M
phases T, T, T, and Ty, with T, +75+7,+ Ty = T,, will enter into the
description of labeling experiments. Further complexity can be introduced
into the model, for example, by permitting variations in the times different
cells spend in G4, S, G, and M. However, we have not done this here because
initially it seems desirable to keep the model as simple as possible while
still retaining consistency with the essential features of the myeloblast
proliferative system.

The differential equations describing the proliferative system require
for the uniqueness of their solution a specification of the initial state of all
the cells, and knowledge of the manner in which newborn labeled cells make
their appearance. It appears proper to assume that only those cells which
are in the DNA synthesizing phase S will incorporate radioactive thymidine
which is present in the environment, although there is some suspicion that
cells in G, phase can also incorporate small amounts of thymidine (Pelc,
1963). The amount of radioactive material present in the nucleus of a cell
at the time when the cells are killed and prepared for radioautography is
measured in units x equal to the average number of observable grains on
the photographic plate expected from this cell. In Appendix 1 it is shown
that under normal conditions of exposure, x is directly proportional to the
number of tritium atoms contained in a cell. The proportionality factor
depends on the half-life of tritium, the duration of the exposure, and the
efficiency of the photographic process. We assume further that when a cell
divides each of the daughter cells receives half of its radioactive material.
This is only true on the average after the first division because the chromo-
somes, which eventually incorporate the tritium from thymidine, may divide
very unevenly; we shall consider a detailed theory of this in Appendix 2.
Because it is rather awkward to express equal division in terms of a discrete
variable, we treat x as a continuous variable. This appears justifiable when
x is small compared to the number of tritium atoms present in the nucleus.
This condition is easily satisfied for the experiments we wish to describe
(see Appendix 1).

From an operational point of view, cells in different parts of G, and G,
are at the present time indistinguishable from each other. Therefore, a
different but equivalent interpretation of our model may be given as follows.
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The cell population consists of a single proliferative compartment in which
all members have the same time intervals assigned to the S, G, and M phases.
However, the time interval assigned to the G, phase is variable from cell to
cell, although always greater than or equal to a minimum time interval T,.
A certain number of G, cells enter the S phase per unit time, and cells are
lost to the outside at any stage of maturation. The fractional loss rate may be
different for cells in G, phase from the fractional loss rate for cells in the
other phases.

The outline of this paper is as follows. In section 2 we derive and formally
solve the kinetic equations for the total cell densities irrespective of labeling.
We also discuss there the steady state of this system. In section 3 these
equations are generalized to include the amount of tritium in the cell as an
independent variable. Their solution is presented for an arbitrary initial
state of the system. Section 4 contains expressions for the expected grain
count distribution and some other directly observable quantities which are
obtainable from the solution. Section 5 is a discussion of some of the uses
and shortcomings of our model. The mathematical analysis of the expected
grain count distribution is given in Appendix 1. In Appendix 2 we obtain
in quantitative form the grain count distribution when the localization of
DNA in the chromosomes is taken into account. The asymptotic behavior
of the cell densities for long times is examined in Appendix 3.

2. Kinetics of the Total Population

We start by considering the kinetics of our cell population independent
of labeling. Let n(y, t) dp be the number of cells at time ¢ in the active
compartment with “maturity”” parameter u lying between u and du. The
maturity variable p will be taken to vary between zero and some maximum
value m when cell division takes place. Also let Q(a, t) da be the number of
cells in the resting compartment G, between a and a+da, where a is the
chronological age of a cell measured from time of birth. The governing
equations of our model are assumed to be the following for all positive times:

el W g,  Ospsm 0
at du
Q(a, Q(a,
Qg: : ¥ Qa(j 2 —(@+po)Q(a,1), O=as=owo, 2
together with the boundary conditions
Q(0, 1) = 25n(m, )a(m, 1), 3)

(0, On(0, 1) = 2(1 = 8)n(m, )ja(m, 1)+ j 0(a, 1) da. @)
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Here jt is the rate of maturation of cells in the active phase which can in
principle depend on g and . It has to be given to make these equations
complete. In addition, 4 may be expected to vary from cell to cell. This

Resting state

[~
Active state \
— T —>p<—Ts —><-T2 | Tuje Je;

Cell division

Fic. 1. Schematic representation of the mathematical model represented herein. The
system consists of an active state in which cells mature and divide, and a resting state in
which cells merely age without changing their maturity state. All the parameters of the
system are indicated: the time intervals associated with the phases of the cell cycle,
Ty, Ts, T2 and M; the environmental fractional loss rates per unit time, f, and fy; the
fractional rate per unit time « at which resting cells enter the beginning of the active state;
the fraction & of newborn cells which enter the resting state.

would correspond to different cells spending different amounts of time in
the active phase before undergoing division. We shall, however, assume
herein that all cells mature at the same rate and that this rate is independent
of 1. We can therefore choose to measure p in the same units as we measure
time and set 2 = 1 and m = T, the time each cell spends in the active
compartment. We are also assuming here that «, f, and f§, are constant,
although more generally they may be expected to depend on u or a and
perhaps also on ¢. It is to be noted that according to the model, cells in the
resting state do not mature with time, although they do become older.
In order to solve equations (1) to (4) it is necessary to give the values of
n(y, t) and Q(a, 1) at some initial time ¢ = O:n(y, 0) and Q(a, 0). The
solution is then conveniently expressed in terms of the generation density
functions (Rubinow, 1968) nfy, r) and Qfa, 1), which are assigned to the
jth generation, j=1,2,.... The cells present at =0 are naturally
counted as belonging to the first generation for which j = 1. This will turn
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out to be very useful later when we consider the evolution of labeled cell
populations. Thus, we set

a

n(p,t) = ;lnj(p, 1), (5)
0(a.) = 3. 0@, ©
ﬂ‘,{‘u,f}) T ‘SJI n(u,0), Q)
04a,0) = 6;,0(a,0), (8)

where §;, is the Kronecker delta. Equations (7) and (8) state that the initial
conditions determine the initial state of the first generation only, the initial
state of all other generations being null. In view of the discussion following
the boundary conditions (3) and (4), the latter simplify to

Q(O: l) = %"(TA' t)! (9)
n(0, ) = 2(1 — 8)n(Ty, 1) +aJ‘ 0O(a, f)da, (10)
0

for ¢ > 0. The generation functions at any time ¢ are now obtained by a
straightforward iteration procedure, e.g.

mn1) = [n.m—t.0)+a [oua,t-n) da'] e, 0ZpsT, (1)

0,(a,1) = Qy(a—1,0)e™C*FeX, 0<a=s o, (12)
1, ©) = 200 =8 (Ty, t—p) +0Qt—p]e™ ", 22, (13)
04a, 1) = 26n,_ (T, t—a)e=C+Pok, iz2, (14)

with the understanding that these functions are to be set equal to zero

whenever any of their arguments are negative. In equation (13) we have
defined

0(t) = [ 0da,Nda, i1, (15)
o

which is the total number of cells in G, belonging to the ith generation.

We shall now consider the simple case where the total cell population,
labeled plus unlabeled, is in a steady state. Denoting the steady state values
of n(y, 1) and Q(a, 1) by 7i(x), O(a), and setting the time derivatives in (1)
and (2) equal to zero, we easily find the solutions to these equations as

A(p) = Npye~P¥[(1—e™#74), 0=susT, (16)
O(a) = No(a+Bo)e™“*Pe¥, 0sas . ¢Y)]
N, and N, represent the total number of cells in the resting and active
compartments, respectively, when the cell population is in a steady state.
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Substituting equations (16) and (17) into (9) and (10), there result two
simultaneous linear homogeneous equations for N, and N,. Their ratio
is determined provided the determinant of the coefficient matrix is zero.
This results in the steady-state condition

= +p

e BiTa .—a.o—_. 18
Aa+Boll—9)] i

Note that since e #17+4 is <1, it follows that 6= (1 +«/f,). Provided

equation (18) is satisfied, which is to say that a steady state is possible,

the relative number of cells in each compartment in the steady state is
given as

26B,
[ Boll—20)] (12)

It is also useful to derive the average time T, spent by a cell in the resting
state, or the mean age of one of its members,

No/NA =

1 o
T, = J-V—Jag(a) da = (20)

CC+,BO.
Let T be the average time between the time when a cell undergoes division
and the time it was born. It is obtained as the proportion of cells under-
going division, 2(1—38)e~#'74, which went directly after their birth into the
active state multiplied by the time T, spent by cells in the active state, plus
the remaining proportion of cells [1—2(1—38)e ?"4] which went first
into the resting state and thence to the active state, multiplied by the average

time spent by cells that go through both the resting and active states,
To‘l‘TA. Thus &

ad Ty
T=T+——. 21
“* arh1-0) o
Designate the total number of cells in the steady state by N,
N = N0+NA. (22)

The fractions of cells in the resting and active states arc then obtained from
(19) and (22) as respectively

No_ 288,
N = atBo—25(Ba—PBy) @)
Na_ _otBull=20)

N a+Bo—26Bo—B1)

From their definitions, the fractions of cells in Gy, S, G, and M in the steady

(24)
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slate are given, respeclively, as follows

Ny _ - _ Ny (1~

N N QA = N (e Pitay @5)
N, NA e A,

N N (1—e PiTay {24}
N _ Na -prisral=c"")

BN ey @n
NM NA [e—#l(TH' Ts+T2)__ —ﬂ:TA]

NN (1—c 774 8

When equation (18) is not satisfied, a steady state is not possible and the
population will either continue to grow or decline depending on whether
the left side is greater or smaller than the right side in that equation. This
is shown in Appendix 3 where the long time asymptotic behavior of the
cell densities is investigated. It is shown there that the approach to a steady
(or bounded oscillatory) state from an arbitrary initial state is possible only
when, in addition to (18), the parameters of the problem satisfy the following
inequality,

—p1Ta 1+TA(G-+ ﬁo)

e < 1-3) (1-9) (29)

Also, the actual number of cells in the final steady state (when it exists) will
depend on the initial distribution.

3. Kinetics of the Labeled Population

Let n(x, g, t) dx and Q(x, a, t) dx represent the cell densities with amount
of radioactive thymidine between x and x+dx in the activeand resting phases,
respectively. As mentioned in section 1 we shall treat x as a continuous
variable. We assume that at division each daughter cell receives half of the
amount of label of the parent cell (see also Appendix 2). This means that if a
group of cells undergoing mitosis have an amount of label between x and
x+dx, then their daughter cells will have an amount of label between x/2
and (x+dx)/2. These density functions therefore satisfy equations similar
to (1) to (4), namely, with ¢ = 0,
on(x,p, 1)  on(x,p1) an(x, pu,t

(a‘p )+ (;;1 )+I(ﬂ.f)%‘)=—'ﬁxﬂ(x,#s0»

0SpusT;, 0=x=o, (30)

—(a +ﬁo)Q(x a,1),
0saso, (1)

9Q(x, u, t) 90(x,a,1) _
ot da
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0(x,0, f) = 45n(2x, Ty, 1), (32)
n(x,0,1) = 4(1 = 5)n(2x, Ty, 1)+ j O(x,a,t)da. (33)

0

In the interests of simplicity we have assumed in these equations that
i = 1 as set forth in the discussion following equation (4). In equation (30)
X is the rate of uptake of labeled thymidine by a cell of maturity u at time z.
This will depend on the amount of labeled thymidine present in its compart-
ment at time ¢, the maturity of the cell at time ¢, and the individual charac-
teristics of the cell (Cleaver, 1967). However, it is assumed to be independent
of x, the amount of labeled thymidine already taken up by the cell. It follows
from experimental observation (cf. Appendix 1) that there is great variability
among the cells in their utilization of external thymidine (Cleaver, 1967,
section 1.10; Clarkson et al., 1967). Hence within the context of our model,
%(u, t) should be thought of as a random variable which has some specified
probability distribution function associated with it which depends on p.

It is generally believed that there is only a short period of the order of
one-half to one hour after an injection during which radioactive thymidine
can be incorporated into the nucleus of a mammalian cell (Cleaver, 1967,
section 2.7). After this time interval, it becomes degraded and unavailable
for incorporation. This implies that x(u, t) is zero for ¢ later than an hour
after injection. Therefore, if we know the values of n(x, p, t) and Q(x, a, 1)
at any time 7, after this period we can use equations (30) and (31) with
x(u, 1) set equal to zero to find their values at later times ¢ > f,. If we choose
our time origin f, = 0 these known values then determine n(x, g, 0) and
O(x,a,0). We find the solution for all subsequent times in a manner
analogous to that utilized in section 2 as

[--]

n(x, u, 1) =JZI n(x, p, 1), (34)

0xa,0 = 3 0,(x,,1) G9)

nj(xi ]ulo) . 6}1“(": Hy 0)! (36)

Q4x,a,0) = 5_“ Q(x, a,0), (37)

ny(x, p1, 1) = [ﬂ;(X. p—t, 0)+1_[Q:(x, ﬂ',l—.u)dﬂ'} e”?, 0SusT, (33)

- 0i(xa)=Q,(x,a—1,0) c""*g“", 0Sag o, (39

n(x, p,t) = [4(1 —0)n;_(2x, T,, t-—p)+txj Qi(x,a'",t—p) da'] e P,
3 .22, (40)
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0(x,a,t) = 40n,_(2x, T, t—a) e~ = *Fo), iz2 (41)

Having obtained the general solution of our equations for an arbitrary
initial distribution we shall now consider more explicitly the case when cells
in S phase only can incorporate appreciable amounts of radioactive thymidine
into the nucleus. However, there is a very short time delay ¢, from the time
of injection to the time of incorporation of radioactive thymidine in the
nucleus. This occurs because of the time elapsed for transport, diffusion,
and the various intermediate biochemical steps which are required for the
incorporation to take place. Therefore, cells of maturity greater than
T,+Ts—1,; at t = 0 will be incapable of becoming labeled. In addition, cells
with values of u between Ty —t, and T, can at the time of injection also
become labeled, where 1, is the time following injection when labeled
thymidine is no longer available for incorporation. Consequently, the
apparent S phase interval is T5+f,—1;, which is approximately the same as
Ts and thus amounts to a slight redefinition of the S phase.

With this type of initial condition the total cell population divides naturally
into two parts: those cells which are initially labeled with thymidine, and
those cells which are initially unlabeled. Thus, set

n(x, 1, t) = n'(x, p, ) +n"(u, 1)6(x), (42)
(x, u, 1) = Q'(x, a, )+ Q"(a, NI(x), (43)

where the single primed functions represent the initially labeled cells, the
double primed functions represent the initially unlabeled cells, and &(x) is
the Dirac delta function. Since all our equations are linear, this separation
carries through for all times and generations. We shall first consider the
solution for the initially labeled cells. According to our model

Q'(x,a,0) =0, : (44)

We shall now further assume that n'(x, i, 0) can be written as a product
of a function of u and a function of x,

n'(x, 1, 0) = fw)e(x), (45)

where
f¢(x) dx =1, (46)
0

and f(u) is zero when p is not in the S phase. This means that the distribution
of labeled thymidine ¢(x) among those cells which get labeled is independent
of their maturity u at the time of injection. This is clearly an approximation
and is certainly not true for cells at the beginning and end of the S phase.
Using this initial condition, the functional dependence of n'(x, y, t) can be

iu:ﬂm&ﬁlvﬁimsaquﬁﬁi-ﬁr I"‘“Iﬁ-ml PO U
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expressed in a partially separable form,

nix,m ) =219 1), j21, 47

Qx,a,1) =271 "' )Q)a, 1), jZ1. (48)
By direct substitution it follows that (36) to (41) are satisfied when ni{p, 1)
and Q/(a, ) are given by (11) to (14) with n}(x,0) = /(1) and Q}(a,0) =0.
Here f(x) will be chosen, again for mathematical simplicity, equal to the
initial value of the total cell density function n(y, 0) for values of u which
define the S phase. The solution for the labeled cell population is now

completed by assuming that the total cell population is in the steady state.
Therefore

Ty = {Z(P)s T\, SusT+Ts 49)

otherwise. .

It should be noted from equations (40) to (48) that n'(y, t) and Q'(N 1)

represent the maturity density and age density functions respectively of
all labeled cells, irrespective of amount of label x.

With regard to the solution for the initially unlabeled cells, we assume as

initial conditions
n"(u, 0) = () —f(w), (50)
0"(a,0) = 0(a), (51
with 7i(u) and J(a) given by (16) and (17). It follows directly from (32) and
(33) that the boundary conditions for Q"(0, t) and n"(0, ) are the same as

(9) and (10). It is intuitively clear that the description of the initially unlabeled
cell population is given by the equations

WG 1) = ) =G, 1) = ) = [ e, i, D, (52)

L]
0"(a,) = B(a)—Q'(a, ) = 0(a) - [ Q'(x, a, 1) dx. (53)

It is worth remarking that it is possible to treat a general initial labeled
distribution n’(x, g, 0) by writing it as a sum of terms

n'(x, 1,0) = 3. f1(1)e'(x). (54)
Each term in this sum gives rise to later distributions which are representable
by equations of the form (47) and (48).

4, Relation to Observable Quantities

We are now ready to compute various observable quantities on the basis
of our model. For example, we shall now show how measurements of the
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distribution of grain counts of cells in either interphase or in mitosis may be
related to theory. Let N'(¢) be the number of cells containing tritium at

* time t. Then

N'() = I*F(x, 1)dx, (55)

where
Ta o«
F(x, 1) =j n'(x, 1) A + [ Q'(x, 0, ) da. (56)
0 ]

Thus, F(x, t) dx is the number of cells at time ¢ whose radioactive material
content is between x and x+dx. The number of unlabeled cells at any
time is
N"(f) = N—N'(1), (57)
where N is constant. Of course, if the system were not in study state, N
would likewise depend on ¢,
In a similar way we define for labeled cells in mitosis
Ta
Fux,)= [ nCxmddp (58)
Ta=T™M

Then the total numbers of labeled and unlabeled cells in mitosis are,
respectively,

Ni() = j Fy(x, ) dx, (59)
1]

Ny(f) = Ny— Nu(0), (60)

with Ny given by equation (28).

The quantities F(x, t) and Fy(x, ) may be related to the actual number
of grain counts that are expected to be observed. This is done in Appendix 1
where it is shown that the fraction of cells with an observed count of exactly
k grains is expected to be

N"(1)

1P
p(k,t)=T6,,lo+§J.k—!e F(x,f)dx, k=0,1,2,.... (61)
0

For the mitotic cells, the expected fraction of cells with a count of k grains
is

(k !)——:‘—(96 b X xp (x,f)dx, k=0,1,2 (62)
PMm\K, 1) = NM k, 0 NM k! Mm% ) =U 1,400

0

(A O




P

GRAIN COUNTS IN CELL POPULATIONS 111

It is clear that even aside’from extrinsic but probably unavoidable errors
introduced by observations, it is intrinsically impossible to determine a
precise F(x, t) from observations of p(k, t). Furthermore, even if F(x, 0)
were known, it would not determine n(x, g, 0) and Q(x, g, 0), the quantities
required by the theory in order to make predictions at later times f. A
reasonable approach for obtaining maximum information from our equations
is to start with some initial condition such as that given in section 3 assuming
some simple analytic form for @(x). This may be chosen to fit the actual
measured values of p(k, 0). Having done this, the equations are utilized to
predict values of p(k, t) and other quantities derivable from the solution for
various choices of the parameters entering our model. These can then be
compared with actual measurements to see which set of parameters, if any,
fit the observations. As a practical problem of observation in the radio-
autographic process, there is background “noise” caused by cells with a
small amount of contaminated label. It is therefore useful to introduce a
threshold value of grain counts, below which a cell is not considered to be
labeled. This number is usually taken to be five. Because of this, it is necessary
to define the fraction of cells whose grain count k at time ¢ is greater than a
threshold value j as (cf. Appendix 1)

iz = ip(k,r)=—J‘ l —e”F lj] F(x,1)dx. (63)

k=j

The same quantity defined for cclls in mitosis is

L(t:)) = Niuf [1—e’= zo;—f)] Fu(x, 1)dx. (64)
0

The above quantities, with an appropriate choice of j, are referred to as the
labeling index and the labeled mitotic index, respectively.
As an illustration of this procedure, suppose it is assumed that the nor-

malized function ¢(x) introduced in equation (45) is a y-distribution,
C'H» lxrc—c.\'

7" T e

The distribution of grain counts among labeled cells in fact has this general
shape (Cleaver, 1967, section 1.10; Clarkson et al., 1967). The values of the
two parameters y and ¢ must however be assigned. We may do so by making
the average grain count k(t) [see equation (A10)] and the labeled mitosis
curve Ly(t;j) agree with observation at some time #. It is clearly best to
choose a time ¢ which is greater than T,+Ty and smaller than T,+Ts.
According to our model,

Fy(x,1) = Nuo(x) (66)
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for t in this interval. Substitution into equation (64) therefore yields

I M T(y+1+k)
t;H)=1— ; 6
LM( J) 1 *z:o (l+c)y+l+tr(?+1) ( 7)
From equation (A10) it follows directly that, with N in that equation inter-
preted as Ny,

k(t) = (y+1)/e. (68)
From the observed values of k(1) and L,(t;j), the parameters y and ¢ are
obtainable by the method of least squares.
Another quantity that is readily observable is the fraction v of all those
cells which are considered to be labeled whose grain count is above a
specified number &,

L(t; &) =vL(t;)), &=2J, OsvsL (69)
As a practical matter of observation, Clarkson et al. (1967) kept v constant
in time and measured & as a function of the time. Therefore, we may view
(69) as defining & = &(; v). For v = 4, £ is the median grain count of the
“labeled” cells. In the “grain-count halving’” method (Killman, Cronkite,
Fliedner & Bond, 1962), the time T, that it takes { to reduce to one-half

of its starting value is interpreted as the mean generation time of the popu-
lation. Thus, T, is defined by

(T3 v) = 3805 v). (70)
it is clear from this expression, however, that T, in general depends on
v, T, = T,(v). It is also clear that T, depends implicitly on the initial labeled
thymidine distribution function ¢(x), and more generally on n" (x,u, 0). The
value T,(3) is called the median generation time [8]. We can define a similar
quantity &, for those cells which are in mitosis, with &, = & (¢;v) given by

Ly(t5 &) = vLy(t3))- (71)

5. Discussion

We have developed a simple quantitative theory for obtaining the dis-
tribution of grain counts in cells as a function of the time after pulse labeling.
It is hoped that a quantitative theory of this type will prove useful in
extracting maximum information from labeling experiments such as those
of Clarkson et al. (1967) on leukemic myeloblast cell populations. The
success of such an attempt will depend primarily on the precision and relia-
bility of the experiments. With the availability of such reliable information
one can “guess” at a correct model of the kinetics of the cell system being
studied and then refine and verify such a model through a comparison

between observations and the predictions of a quantitative mathematical
theory.
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The theory is presented ‘in this paper in the context of a specific model
which is certainly an oversimplified one. Thus, by assuming a fixed 75 and
T, for all cells and no initial labeling for cells outside S phase, it predicts
that the labeled mitotic index goes to zero for times 1 between Ts+ 75+ Ty
and Tg+Ty+Ty+(Ty+T,). This is never observed as some small but
finite value of the index is seen in this interval. There are various possible
simple modifications of our model which would explain this. One is to
permit some cells in G, to be initially labeled. Another possibility which
mitigates the problem considerably is to set T, equal to zero. A careful
examination of the grain count distribution of cells in this interval would
help explain this phenomenon.

Another oversimplification in our model, which also has bearing on the
point just discussed, is the assumption of fixed T and T,, and also of T,.
It is well established that even under ideal similar environments, cells of a
particular type exhibit variable generation times (Prescott, 1959). An addi-
tional modification of the model which could take this into account is to
introduce a distribution of subpopulations each with different generation
times (Rubinow, 1968). This could be expected to represent the real popu-
lation over a time span of several generations at least.

Finally, the assumption that all cells in the S phase get labeled with the
same distribution is not true in general. It is well known that the rate of
DNA replication varies within the S phase, generally increasing towards
the end of the phase (Cleaver, 1967, section 5.6). Such behavior could be
represented by an appropriate initial condition, as for example with an
initial distribution of the form given in (54).

Even within the confines of our simple model, it is possible to reinterpret
some of the quantities involved for use in different situations. For example,
by setting @ = 0, G, could be interpreted to correspond to a functional
compartment distinguishable from the active compartment. An example
of this would be the non-proliferative metamyelocyte class of red blood cells
which follows the proliferative myelocyte class. One could then study
separately the labeling of cells in G, and in the active compartment.

We are grateful to Dr Bayard Clarkson for introducing us to this subject and
to the problems associated with his investigations. Special thanks are due to him
and Dr J. Fried for their continued help while this work was in progress. We have
also benefited from discussions with Drs E. Balis and M. Lipkin.
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Appendix 1

CALCULATION OF THE GRAIN COUNT DISTRIBUTION

Consider a sample containing N cells which have been exposed to a pulse
radioactive marker at time zero and radioautographed at time f. These
cells are exposed on film for a period of time 1, and the fraction of cells
with grain count k, p(k, t) is then determined, k = 0,1, 2,.... Let W(4, )
be the number of cells in the sample of time ¢ with A radioactive atoms so
that

N= EGW(A, 1. (A1)
A=
Although each W varies with time, the sample size N of course does not.
Let &, the efficiency, be the fraction of disintegrations which get recorded
on the film and 7 be the mean life of the radioactive atom. The average
number of grains observed during the time t, from cells containing A
radioactive atoms is then

x=¢g[1—e "4 = pA. (A2)
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If the radioactive marker is tritiated thymidine, then the radioactive atom
is tritium for which t = 17:1 years. The values of magnitude of 7, and &
are ¢ ~ 0-1 and 7, ~ 1 week. For these values, 7o/t < 1 and the propor-
tionality constant p is likewise quite small,

P ? ~107%; (A3)

The probability of observing k grains for a cell contained in such a sample
is x* e*/k!. This expression is valid for all k¥ <€ x/p which is always satisfied
in our case with a probability close to unity since p is such a small number.
The percentage of cells having k grains will then be, assuming a sufficiently
large sample,

k

pk, 1) = N™ W(0,1)8, o+ N i %e" W(x/p, 1), (A4)
x%0 e

where we have separated out the cells which have no external radioactive
thymidine in them. The sum in the second term in (A4) goes over the values

x = p, 2p,.... Note that ‘Zop(k, f) = 1, as it should be. At the same time

equation (Al) may be rewritten as

1= N"'W(O, )5, o+ N~ T W(xlp, 1). (AS)

x=p
We shall now assume that this sum over x can be converted to an integral
over x with a weight function, i.e. W(x/p, t) = F(x, t) dx. Then (A4) becomes

plk,f) = N W(0, )5y o+ N1 f ;—:e".F(x, 1)dx. (A6)

F(x, t) px is the number of cells in the sample having between x/p and
(x+dx/p tritium atoms. The normalization constant for F(x, t) is the total
number) of labeled cells:

j F(x,f)dx = N=W(0,1). (A7)
0

What is actually assumed here is that the distribution of tritium atoms in
the different cells, i.e. the uptake of external thymidine, is sufficiently regular
for F(x, t) to be reasonably smooth. For example, it does not consist of a
sum of delta functions. It is because of this requirement that we separated
out the term W(0, r) representing the cells without any tritium. This group
of cells can be thought of as including also cells which contain a small
number (< 1/p) of tritium atoms since the probability of these producing
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even one grain is very small. It is seen from (A6) that for k large, x* e *[k!
will be sharply peaked at x = k, so that p(k, t) =~ F(k, 1), k > 1. The func-
tion F(x, t) is given in terms of our notation in the text by

Ta @
F(xr,0) = [ w'(x,u ) dp+ [ @'(x, 0,1 da (A8)
0 0
when we consider the labeling of all cells, and by
Ta
Fux0= [ n'Gepi)dp (A9)
Ta—-T™

when we consider the labeling of cells in mitosis only.
It follows with the use of (A6) and (A7) that the average number of
grain counts at time 7 is

k() =*§okp(k, =N~} jxr(x, f)dx = (1 - m9) (x>,  (A10)
= 0

where

j‘oxF (x,0)dx
e i (A11)
J‘F(x, f)dx

is the average of x over those cells which have taken up some external
thymidine, N— W/(0, t). Because, in order to avoid background problems,
only cells with a minimum threshold number of grains, say j, are usually
counted as labeled, it is useful to define averages over this labeled subset
instead of over the entire population as in equation (A10). Denoting the
threshold number j as a subscript, the average number of grain counts at
time ¢ with this definition is k,(¢) given by the expression

kp'(k, ‘) jf[ —e=* 2 ]xF(x, f)dx

m=0 M

(k 1) j:[l e * z ]p(x. 1)dx

m=0 M
0

p'(k, 1) = p(k,0)—=N""W(0, 1), o-

Obviously, ko(r) = ¢x). Similarly, the mean square number of grain counts

ki) =

, (A12)

||M3 ||M8

where

Quaas -ou(;r-=-,:a'.+o—.gn~=aﬁw P
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defined over the labeled ;;opulatior: is
¢ —xj-z xm 2
Y (X) J [I'“ Z »?] *Hahdx
G0 =S=—— =k + 25 . (A13)
"(k,t L
.Z:Jp( ) j[l—c" ;B = F(x,1)dx
m=0 +

0
From this it follows that the mean square fluctuation in k& when the threshold

value j is zero is

eGP, e

Y e e

R ko = <> (1+ e
where {x?) is defined in a manner analogous to equation (Al). The first
term in the bracket on the right side of (Al4) is just the fluctuation due
to the randomness of the decay process while the second term represents
the fluctuation in the distribution of tritium atoms in the labeled cells. Now
if the incorportion of external thymidine was an independent random
process, i.e. each thymidine molecule was incorporated independently and
with equal probability by all cells which are in S phase during the pulse
labeling, then the second term in (Al4) should be approximately
2p ~ 2x107*, In practice however the dispersion is very much larger with
the term in the bracket varying between five and ten for mammalian cells
(Cleaver, 1967, section 1.10; Clarkson et al., 1967). This appears to be true
even when one singles out cells which were at approximately the same
maturity level in the S phase during the injection of the tritiated thymidine.
Such cells can be singled out either by looking at first generation cells in
mitosis (Clarkson et al., 1967) or by looking at cells with the same amount
of DNA (Cleaver, 1967, section 5.6). This large dispersion does not appear
to apply to labeled bacteria (Painter, Drew & Giauque, 1960) or to labeled
phage in bacteria (Caro & Schnds, 1965).

Experiments with cells in vitro would seem to rule out variation due to
different amount of thymidine reaching the cells. One explanation for this
large variation, assuming it doesn’t arise simply from classifying intrinsically
different cell groups as the same population, involves the assumption of
some randomness in the replication schedule of the different chromosomes
(Alpen & Johnston, 1967). Alternatively, if the rate of synthesis of DNA
varies rapidly with the position of the cell in the S phase, then the duration
of the pulse and the duration of the mitotic phase could give rise to large
variations in the grain count of the labeled mitotic cells and of cells with
approximately the same DNA content. In any case this question deserves
further investigation.
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Appendix 2

EFFECT OF CHROMOSOMES

Because of the existence of chromosomes, a radioactive DNA label such
as tritium is not divided equally among the granddaughters and subsequent
generations of an initially labeled cell (Cronkite, Greenhouse, Brecher &
Bond, 1961). We shall present here the essential aspects of an extended
theory of labeled cell populations which considers the labeling of each
chromosome individually.

Let J be the total number of chromosomes in the cell. Every chromosome
consists of two halves (chromatids) each of which replicates itself. After
pulse labeling at ¢ = 0 the two new strands of each labeled chromosome
will be labeled. We can assume that the two strands have equal label. On
division, every chromosome of the daughter cells will consist of one labeled
and one unlabeled chromatid (semi-conservative replication). During all
subsequent mitoses, labeled chromosomes become chromosomal pairs
consisting of one labeled and one unlabeled chromosome (neglecting cross-
over). We shall assume that on division the labeled one is equally likely to
go to either one of the daughters.

In order to treat this situation we introduce the vector X = (¥y,. .., X)),
where x; specifies the amount of tritium in the ith chromosome. If the ith
chromosome is unlabeled, then x; = 0. Denoting by

"(xls-“bx.h H, !)dxl "‘de = n(x,p,r)dx
and

O(Xyy. ..y Xppa,1)dx; ...dx; = O(x, 4, 1) dx
the cell densities containing between x; and x;+dx; amount of tritium in
the ith chromosome i = 1, 2,..., J, it follows that

o~ J

n(x, u, 1) =6[ n(x, u, £)é (x—iz:lx,) dx, (A15)
2 J

05,0, = [ 06,0, 05 (x= 35 . 1)

where n(x, u, 1) and Q(x, a, t) have the same meanings as before. These
equations show how the previously defined cell density functions may be
obtained from the chromosomal density functions which are defined here.
These latter functions satisfy equations which are similar to (30) and (31),
with the vector x = (x,,. . ., X;) replacing x, and the velocity term involving
% in equation (30) replaced by its generalization

- LR
x-yn(x, g, 1) = Y X . (x, 1, ).
i=1 X

f
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For consideration of pulse’ labeling experiments, this term may be taken
to be zero as discussed in section 3. To solve these generalized equations, we
shall again divide the cells according to generations, viz.,

o

n(x, u, ‘) = IZ nl(x: 1y f), (A17)
=1
0(x,a,1) = ¥ 0%, a,1). (A18)
i=1
At t = 0 we have the initial conditions
ﬂ;(x, M, 0) - ‘S{l. ?I(X, ﬂ:o): (Alg)
Ql(x’ G,O) oo 6{1 Q(X, a, 0)! (A20)

where n(x, , 0) and Q(x, a, 0) are assumed to be known functions. These
equations are similar to equations (34) to (37) with x replaced by the vector X.
The same change in equations (38) to (39) will give the time evolution of the
first generation. The same change in equations (40) and (41) with i = 2 will
give the correct result for the second generation. For subsequent generations
the results are somewhat different, as follows:

n{x, p, 1) = n(x,0,1=p) e, i23, (A21)
0.x,a,1) = 0(x,0,t—a)e~ P [>3 (A22)
with
n(x,0,0) =2(1-8)@’ ¥ J' T18Cx;— 0, XPn—y (X, Ty ) dx’ +
(es=0,1) § J=1

+o[Qx,a',0da, i23, (A23)
1]

el
0(x,0,0) =253 ¥ J’ T18(x;—0xPm-y(x', Ti )X,  i23. (A24)
(e;=0,1) § j=1
In equations (A23) and (A24), the summation symbol means that every g;
is summed independently over the two values 0 and 1. Note that we have
not assumed that the different chromosomes were equally labeled initially.
In fact, we can easily choose n(x, g, 0) to represent situations in which some
chromosomes have no label at all. Considerable simplification may, however,
be achieved by assuming that all chromosomes which are labeled have the
same amount of label and then let K, the number labeled, vary among cells.
It is then not necessary to introduce the separate variables (x,, ..., X))
but treat each group of cells with a given K separately and average over K.
We outline below such a modified treatment.

Let x, be the amount of tritium measured in grain counts in one labeled
chromatid at ¢ = 0. Then the first generation cells with X labeled chromo-
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somes will have 2Kx, units of tritium. Subsequent generations with K
labeled chromosomes will have only Kx, units of tritium. Let n(K’, g, t; K)
and Q(K’, a, t; K) be ith generation cell densities with K'x, tritium units
which are all descendents of first generation cells with K labeled chromo-
somes. The first argument of n;, and Q, denotes the number of labeled
chromosomes at time t, while the last argument denotes the number of
labeled chromosomes present at 7 = 0 in the original labeled cell of which
these are ith generation descendents. It then follows that

m(K', 1K) = | my(K', p=1,0; K)o Qltx',a'.r—u;x)d“’] ;
0

X8y, 2xe” ", (A25)

QI(K’s i, £ K) . QI(K': a-— f, 0; K)'SK'. 2K C_(=+‘°)', (A-Z6)
ny(K', i1, 1;K) = | 26n,(2K’, Ty, t— p; K) +a I 0,(K',a’",t—u; K) da'] e~ P,
L 0
(A27)
0,(K’,a,1; K) = 2(1—8)n,2K’, Ty, t—a; K) e~ @*+ok, (A28)

For later generations it follows on the assumption of random division of
the labeled chromosome between the daughter cells that

n(K',p,t; K) = n(K’,0,t—p; K) e~ #1%, i3 (A29)
Q(K’,a,t;K) = Q(K',0,t—a; K)e~@tbok >3 (A30)
with

H‘(K‘, 0’ 1 K) = zlax‘zx‘ (ﬁ:) ﬂi_l(K”, TA' Es K)—ﬂal‘ Q‘(K’, a", 54 K) dﬂ'n
: (A31)
K "
QUK',0,1;K) =2(1—¢) ¥ (‘;f) n- (K", Ty, 15 K), (A32)
K"=K*

and (‘E,) denotes the binomial coefficient. If we let P(K) be the fraction

of cells with K labeled chromosomes at ¢ = 0, i.e. at the time of the pulse
labeling, then the density of cells in the ith generation with K'x, tritium
units at time 7 is

n(K's 1 1) =xi0P(K)n‘(K'. LR T, (A33)
and

0K a0 = T PEQK, 06K, iZL  (A%)
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. a
where ) P(K)=1 and J is the total number of chromosomes in the cell.
K=0

Integrating over u and summing over i then yields for the number of
cells ¥ with Kx, units of tritium time ¢ the expression

W(K, 1) =.i [fn,(x, O du+ [ 0K, a, t)da]. (A35)
= 0 0

The grain count distribution is now given, as in (A6), by

27 (Kxo)k
————i—-e

plk,) = N1 ~KxoW(K, 1), (A36)
P2 (

Appendix 3

LONG TIME BEHAVIOR OF THE CELL DENSITIES

The long time behavior of n(y, t) and Q(a, t) for specified n(y, 0), O(a, 0)
may be readily obtained through the use of the Laplace transform. Let

ii(, ) = [ e~ n(u, 1) dt, (A37)
0
O(a,s) = [ e 0(a, ) dt. (A38)
Equations (1) to (4) with g = 1, m = T,, now become
si(p, s) + (%r‘i(y,s) = n(u, 0)— B, iy, s), (A39)
$0(@9) + 2 0(a,5) = 0,0~ (a+B(a ) (A40)
0(0,s) = 26i(T,,s), (A41)

ii(0,5) = 201 = 8)ii(T,,5)+a [ O(a, s)da. (A42)

These equations have the solution

bis {2 [t bomiet ] Hc-m.”.,x.-.-,x
00

S+a+ﬂo

u
x Q(a’,0)da’da+ J‘e(”"""' n(u',0)dp’ pe~C+Pm  (A43)
o
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feae

R e I

e



122 J. L. LEBOWITZ AND S. 1. RUBINOW

Oa,s) = [25ﬁ(TA,s)+J’e""*‘°"' Q(a',0) da’] Sl st (A44)
0
with
(T, s) = {cz J' J' e~ (s+atpode=a) 0y’ 0)da’da+
00

TA
+ J‘ Ak n(11, 0) dp} (s +a+ﬁ°)/D(s), (A45)

D(s) = (s +a+Po)e“* P74 2 s+a+fo—(s+ o) (A46)
The long time behavior of the cell densities is determined by the zeros of
D(s). For n(T,, t) to approach a steady or oscillatory state and thus maintain
a bounded non-vanishing cell population, it is necessary and sufficient that
D(s) not vanish for Res > 0 and be o(s) as s — 0. The latter requirement
leads to equation (18). The first requirement implies that D(s) > 0 for all
s = 0. Now
D'(s) = e®1*ITa[1 + T (s+ o+ Bo)]—2(1—9), (A47)
D"(s) = T, el ¥ T4 24+ T (s+a+Po)] >0 fors2=0, (A48)
where the prime denotes differentiation with respect to argument. Hence
the existence of a bounded non-vanishing cell population as ¢ = co requires
that D'(0) > 0, or
eP1TA[1 + Ty(a+Po)]—2(1—6) > 0. (A49)
When (18) is not satisfied and D(0) < 0, the cell population will grow
exponentially, while D(0) = 0 and D’(0) = 0 imply a growth which is linear
in time.

While we have not proven rigorously the sufficiency of the above condi-
tions for the asymptotic approach to a bounded population they do appear
to be sufficient. It is clear that when the final state is stationary in time the
cell densities will be given by

lim n(u, 1) = lim si(y, s) = i), (A50)
-~ s—+0
lim O(a, t) = lim sO(a, s) = 0(a), (AS1)
1~ =0

with 7i() and O(a) given 1n section 2. The final total cell population N will
be related to the initial values n(y, 0) and Q(a, 0) by means of the relation
expressing the equality in the steady state of the birth rate A(7,) and the
loss rate (B, No+ B34 N,), or

N N
N = a(Ty) / (ﬁo‘,ﬁ ¥ ﬁ:"r}f). (A52)

-ﬁxnmﬂm: m-«r.-qo(-,._._
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where No/N and N,/N are given by equations (23) to (24) and
A(T,) = lim si(T,, s). (AS53)
5=0

Thus
N = (ﬂ+ﬁa)[¢+ﬁo—25(ﬁ0_ﬁl)]{“

Ot g

_[ e~ @+Po)e=a) O(g’ 0)da’ da+
(1]

Ta
% .[ e* n(u, 0) dﬂ}/zﬂl[‘s“ + T (a+Bo)(@+Bo—Bod]. (A54)
0

Using (A54) it is easy to compute the ultimate fraction of cells which are -
the descendants of cells in some particular phase, say the S phase, at t = 0 !
when the cell population is in a steady state. !
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