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INTRODUCTION

There have been many interesting and important developments in
statistical mechanics during the last few years. These may be classified
broadly into the following categories: (e) rigorous results, that is, statements
that can be proved correct (these may be of a general nature and appli-
cable to a wide class of systems, or exact solutions of specific model systems);
(b) experimental results and theoretical speculations about the equilibrium
and nonequilibrium behaviour of systems in the vicinity of the critical point;
(c) theoretical investigations of the kinetic equations and transport coeffi-
cients beyond the range of validity of the usual Boltzmann equation; (d)
machine computations and experiments on the equilibrium and time-
dependent structure of liquids, including liquid metals.

All of these developments could be included in a review of developments
in statistical mechanics; however, this review is largely restricted to a discus-
sion of exact results in equilibrium statistical mechanics, i.e., a subset of
category (a). It deals almost wholly with classical systems; quantum sys-
tems are included only when it is possible to say, “this result applies also to
quantum systems.” Even within this restricted category there are many
omissions. In particular, the very elegant work of Ruelle (1) which formu-
lates statistical mechanics in the language of abstract algebras, similar to
those used in field theories, is not reviewed here. This approach is distin-
guished by the fact that it deals from the start with systems of infinite spatial
extent. [t thus avoids the problem of starting with a finite system and then
passing to the thermodynamic (infinite volume) limit. Such a limit is neces-
sary in the more conventional approaches in order to obtain precise defini-
tions of extensive and intensive variables, i.e., for making thermodynamics
independent of the precise shape and nature of the boundaries of the system.
This limit process, which introduces many difficulties, will be omnipresent in
this review. The abstract approach, while avoiding this problem, has its own
difficulties and a review of it will have to be done by an expert.

There have been several conferences and many excellent reviews (2)
published recently on the topics of category (b). Only a few references will be
cited (3, 4) for category (¢) which is still, and will probably remain for some

t The survey of the literature pertaining to this review was completed in
December 1967.

2 Supported by the U.8. Air Force Office of Scientific Research under Grant No.
AF 68-1416.
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time, in an unsettled state. In category (d), liquid metals are the subject of
a recent conference proceedings (5). There is not, however, to my knowledge,
any comprehensive review of the very extensive machine computations using
molecular dynamics, Monte Carlo, and numerical evaluation of integrals.
This is a pity as there appears to be much duplication and wasted effort in
this field, mostly because investigators start extensive machine computa-
tions without first checking carefully on what other workers in the field are
doing. Since it frequently takes several years for this kind of work to be
reported a literature check is not always sufficient, it is necessary rather, to
check directly with other known workers. Therefore, a few references to
some work in this field will be included (6).

The outline of the material contained in this review is as follows: Section
1 is a review of the recent proofs of the existence of a thermodynamic limit
which is the same for the various ensembles used in statistical mechanics.
Section 11 is a discussion of the convergence of the fugacity and virial ex-
pansions and general analyticity properties of the pressure and correlation
functions. The remaining three sections are devoted to more specialized
areas in which rigorous results have been obtained recently. These are model
systems of sufficient generality that they might be expected (or at least
hoped) to be “typical” of some classes of real physical systems. Section 111
discusses systems with very long range-potentials for which a van der Waals
type of equation of state may be proven rigorously in certain limits. The
problem of metastable states is also discussed in this section. Section IV
deals with Lieb’s recent elegant solution of the entropy of ice problem and
related models of ferro- and anti-ferroelectrics. Section V describes some of
the recent advances made in the study of Ising spin systems with purely
ferromagnetic interactions. These advances are due mainly to Grifith and
to a group of Russian workers [Dobrushin et al. (21d)].

Other exact results not included in this review may be found in several
recently published books and conference proceedings (7). A very recent
exact solution of a model for polymer crystallization by Zwanzig & Lauritzen
(8) should also be mentioned here.

1. Tue THERMODYNAMIC L1MIT OF STATISTICAL MECHANICS

Canonical ensemble.—We consider, for simplicity, a classical system of
particles interacting pairwise. The Hamiltonian of the system consisting of
N particles is

N p‘.l
=3 —+ X oli—r)=KEn+Vx (1.1)

=1 2m 1<i<j<N

If the particles are confined to a box of volume €, then the canonical parti-
tion function is

1 /rm\W
Z(B,N,9) = T\’T(ﬂ_ﬁ) f e f dry + « - dry exp (—BVw) (1.2)
= exp[-B4(8, N, 0)]
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where 8 is the reciprocal temperature and 4 is the Helmholtz free &nergy.
The problem is then to show the existence of the free energy per particle or
per unit volume in the “thermodynamic limit,"” when N and @ tend to infinity
while the density N/Q tends to a limit p=v"1, i.e., to prove that ;

H“-“L NT'4(B, N, Q) =N1im f(8,v: N) = f(B, 1) (1.3a)
~ or equivalently
1
lim — 4@, N,9) = lim a(8, p:0) = a(8, o) = of(8, o) (1.3b)

exists and has the right thermodynamic properties (e.g., stability). The
existence of this limit has been proven by Ruelle (9) and Fisher (10) for a
wide class of potentials, including all those commonly used to Fepresent the
interaction between neutral atoms (e.g., Lennard-Jones).

There are two basic requirements on the potential for the limit in (1.2)
to exist: (¢) There must be a lower bound on the potential energy per particle.
This is expressed formally by the requirement that

Valr, -+ ,m) > —N&, &0, (1.4)

for all configurations and all N, with @ a constant. When (1.4) is violated for
any region in configuration space, however small, the weight of the expo-
nential in (1.1) will be concentrated there, and the free energy will increase
in magnitude faster than the size of the system and no thermodynamic
limit will exist. (This is true also for quantum systems even with Fermi
statistics.) (b) The potential must fall off sufficiently rapidly with distance
so that each particle interacts effectively only with particles in its vicinity.
This requires that the potential fall off with distance faster than ™ where A
is a positive number larger than the dimensionality of the space in which
the particles move (three in our world). Formally

|#()] <G, forr>D ' (1.52)

C and D positive constants. These requirements imply alse that

B=[ar|ern—1] <= (1.5b)

for real positive 8 which guarantees the existence of the virial coefficients.
Potentials satisfying (1.4) and (1.5) are called stable,

We shall now illustrate the basic idea of Ruelle’s proof of the existence
of (1.3) for the simple case where v(r) <0 for r > R. Let @ be a cube obtained
by putting together eight cubes @ at a distance R (Fig. 1). It then follows
from the definition (1.2) that Z(8, 8N, @) >[2(8, N, Q)]%, the partition
function when each cube @ contains precisely N particles with none in the
corridors and no interaction exists between particles in different cubes. Since
the interaction between particles in the different cubes @ (contained in Q)
is attractive and the domain of integration is increased, when the restriction
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on the configuration of 8N particles is removed the inequality results. Hence
fi(B, N,0) = N-'A(B, N, Q) = (8N)'A (B, 8N, 2) = fa(B, 8N, ) (1.6)

If we repeat this process we obtain a decreasing sequence of numbers f;.
1t follows on the other hand from (1.2) that this sequence has a lower bound.
Hence f; tends to a limit which is just f(8, v) or p a(B, p), where p is the limit-
ing density of the sequence.

The method of proof is readily generalized to systems with more general
potentials satisfying (1.4) and (1.5) where one has to worry about surface
terms in (1.6). It also holds for more general shapes of boxes and for quantum
systems obeying any kind of statistics in which the wave function is required

a -

Fi16. 1. Ruelle’s construction for proving the existence of the thermodynamic limit.

to vanish at the surface of the box. It should be pointed out, however, that
there is no proof at present of the existence of the thermodynamic limit for
quantum systems in which the normal derivative of the wave-function, rather
than the wave function itself, is required to vanish at the surface of the box,
or when the system is in a periodic box (surface of a torus). A classical sys-
tem, in a periodic box, with 2 non-negative finite range potential, ¢(r) >0
for r R and ¢(r) =0 for r > R, can, however, be treated simply. In this case
it is clear that the free energy in a periodic cube with sides of length L,
Ay(B, N, L?), has the bounds

N-IA(B,N,L?) < N7'4,(8, N, L) < N“'A(B, N, (I; - R)Y).

In the thermodynamic limit the upper and lower bounds both approach
pa(B, p) and, hence, so does N—'4,,.

The conditions on the potential, (1.4)—(1.5), and the proof of the exis-
tence of the thermodynamic free energy per unit volume can be generalized
to systems with three (or higher) body potentials as well as to mixtures (11).
The generalization of (1.3) to spin systems on a lattice, whose interaction
potential, quantum or classical, satisfies (1.4) and (1.5) was done by Griffiths
(12).

For a given u(r) it can be checked immediately whether (1.5) is satisfied,
while checking (1.4) is more difficult. It has been shown by Penrose (13)
that all potentials having hard cores, o(r) = =, || <d which satisfy (1.5a)
also satisfy (1.4). It was also shown explicitly that potentials of the Lennard-
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Jones type which are commonly used to represent the interaction between
neutral molecules satisfy (1.4). These potentials may be written in the form
v(r) =vi(r) +va(r), with vi(r) >0, and vs(r) is finite, continuous, and has a
non-negative Fourier transform. This is sufficient to insure that (1.4) holds
[Ruelle (9), Fisher (10), Dobrushin (14), Fisher & Ruelle (15)]. Ruelle
points out, however, that it is easy to construct apparently good potentials
for which there are no thermodynamics, e.g., a positive square well of height
1.5¢ followed by a negative square well of depth —.6e. However, these
have no physical significance, since v(0)# .

The only—and this is perhaps the most important—system for which the
existence of the thermodynamic limit has not yet been proven is a system
of charged particles interacting through Coulomb forces only. We certainly
expect thermodynamics to apply when the system is electrically neutral, since
actual matter consists just of such charged point particles. Nuclear forces
are presumably not essential for thermodynamics to exist, and they would
give the wrong order of magnitude for binding energies of matter. The exis-
tence of a lower bound (equation 1.4) for charged particles with hard cores
was proven long ago by Onsager (16). This was recently generalized some-
what by Fisher & Ruelle (15). A beautiful proof of condition (1.4) for a
quantum system of charged point particles, at least one species of which
obeys Fermi-Dirac statistics, was recently given by Dyson & Lenard (17).
The Fermi-Dirac statistics, i.e., the exclusion principle, is essential here,
otherwise (1.4) is violated and there is no thermodynamic limit (18). Using
the results of Dyson & Lenard, Griffiths (19) has shown the existence of the
thermodynamic limit for a neutral system of two species differing only in
the sign of the charge, i.e., same mass and statistics. Using different argu-
ments, Penrose (20) has proven the existence of the thermodynamic limit
for systems of magnetic or electric dipoles with repulsive short range forces
(there are some special, technical requirements on the conditions which the
fields must satisfy at the walls).

Properties of the free energy densily.—It follows (9, 10) from the method
of proof of the existence of (8, v), Equation (1.6), that

A, 2N, 0 + %) < AB, N, D) + A(B, N, Q) + o(N) (1.0
-or

1(8, ¥(v1 + v2): 2N) < 3/(B, ms; N) + 1/(8, v3; N) + o(N)/N (1.8)

This shows that f(8, v: N) is, except for terms which vanish when N— e,
a convex function of v. Hence, since the limit of a sequence of convex func-
tions is itself convex, and a convex function is continuous, f(8, v) will be
convex and continuous in v for v> 1,3, where v, >0 is the minimum vol-
ume per particle which is different from zero when the particles have hard
cores. The convexity of f also insures that the pressure
—5.“15. 9;-”)

B, N) = %

(1.9)
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which is positive and bounded for v> tin (V) will approach as N— =

S L))
§B, 95 ) > — =

= p(B,v) (1.10)
whenever df/dv exists. It follows further from the convexity of f that df/dv
will exist everywhere, except possibly at a countable number of points where
there is a left and right derivative, and that p(8, v) will be a nonincreasing
function of v. For classical systems, it has been shown (21) more recently that
p(B, v) is a continuous function of v for v>> tmi. Similar results hold (equation
21b) for the chemical potential, 34 (8, 2, N)/oN

#(ﬂ,v;m-—'[—v‘%(m)]=n{ﬂ,ﬂ (w1

7

The internal energy per particle is equal for a finite system to
i
wlyn )= o (678, 2; 1] (1.12)

It is readily seen that du(B, v; N)/88 <0 so that 8f(8, v; N) is concave in 8
frqm which it follows that 8f(8, v) is also concave in 8 and that

; . L -
A;x_:.g.u(e,v.m » [8f(8, 0)] = (8, v) (1.13)

wherever the derivative exists, and that (8, v) will be a nonincreasing func-
tion of 8. As is well known, du(@, v)/d8 can be negatively infinite for some
values of 8, e.g., at the critical point of the two dimensional Ising spin sys-
tem.

The above results justify the use of the thermodynamic (infinite volume)
free energy density for obtaining the pressure and internal energy density;
they do not prove, however, the validity of interchanging the limit N— =
and taking higher order derivatives of the free energy, i.e.,

im 246, % N) ? u(B,0)
Lo a8 a8

The validity of such an interchange can however, be proven for small values
of the density p=v"! where the quantities involved will be shown to be
analytic functions of p and B (cf. sec. II) and is presumably true everywhere.
As an illustration of how such interchanges may be invalid, consider the
function ¢(x, N) = N'sin (x N)—0 as N—» but lim y.., ¢'(x, N) does not
exist.

Grand canonical ensemble—Using the grand canonical ensemble for a
system with chemical potential g in a volume @, we have to construct the
grand partition function

Z(8,20) = ge"ﬁ“zw, N,Q) =3 ¥ f & f ePVNdpy < - < dry (1.19)
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£ = (%)'d-, and Z(8,0,0) =1 (1.15) -

(The second equality in (1.14) holds, of course, only for classical systems).
The grand canonical pressure and density are

(8, 5:9) = B0 In Z(8, 2,9) (1.16)
1.1
p(8,5:0) =¢ aiﬁr(ﬂ, 5:9) (A%
" :

It was pointed out by Yang & Lee (22) that for systems with hard cores

(i.e., with o(r) = =, r<a)Z(z, @) (we shall sometimes omit the variable 8

vhen it is irrelevant) is a polynomial in 2 of order N,.<(Q), the maximum
‘umber of hard spheres of diameter a which can be packed in a volume Q,
iith positive coefficients. Hence Z(z, Q) has no zeros for real positive z
he only values of physical interest) and (s, Q) is analytic on this line.
urthermore, w(z, @) and p(s, Q) are monotone functions of z for z> 0. Similar
“sults hold for potentials not containing hard cores but satisfying equations
1.4) and (1.5). The existence of the thermodynamic limit

x(8,2) = GII_E #(8,2:0) 20 ie,ureal ° (1.18)

is then proven (9, 10, 22) under conditions of equations (1.4) and (1.5). For
quantum systems equation (1.4) has to be strengthened a little, thus ex-
cluding the ideal Bose gas for which u must be negative (9b). Using again the
arguments based on the convexity of x(8, 5:9), we also have

Jim p(8, 3:0) = £ 2(6,1) = o(8, 9 (1.19)
o PG e )
J‘ani 51(‘8, 2:Q0) aﬁr(ﬁ, ) ] (1.20)

whenever the latter exist (which is almost everywhere.) Furthermore, when
p(B, 2) exists the grand canonical and canonical pressures are equal

(8, 5) = p(B, »~(B, 7)) 1.21)

and the canonical chemical potential defined in equation (1.11) is equal to
the grand canonical one (21b, 23)

Bu(B, 718, 5)) = In[z/(mB/h)?] (1.22)

The general relationship between these ensembles is summarized in the
thermodynamic limit by the formulae

mB\? .
6,9 =max - og,0), 3= () (1.232)
=a(8, ) = min [#8, 5) — pu), (1.23b)

€., to find 7(8, z) we have to find the value of p, for the given 8 and g, which
naximize the right hand side of (1.23a) and then evaluate the right hand side
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with this value of p. For values of 8 and p corresponding to the coexistence
of two phases there will be, of course, a range of values of p which yield the
same w. Similar relationships hold also between various other ensembles
which will now be discussed briefly.

Other ensembles.—For the pressure ensemble

a8, 5,3 = [ "0 925, 8,0 (1.24)

where Q is the volume of a suitably shaped container. The Gibbs free energy
per particle and the average volume per particle are

28, p:N) = — (BN) " A, $, V) (1.25)
et ¥ B .
o6, p:N) = 806, p:1N) (1.26)

Under the same conditions as before, we have (23), that the thermodynamic
limit exists and yields the same results as the canonical and grand-cancnical
ensembles, i.e.,

© Jim 56, p:N) = g8, ) = max (18, v) + po] = ul8, v(8, »)] (1.27)

The microcanonical ensemble plays a special role in statistical mechanics
as it is usually the first ensemble introduced and justified on the basis of
some ergodic hypothesis or on the basis of equal a priori probability. (The
first rigorous proof of ergodicity for a system of hard spheres has been given
recently by Sinai (24). This is one of the most important new results in this
field.) The other ensembles are then ‘“derived” from this ensemble. Great
care has to be taken in its formulation, especially for quantum systems,
and it is usually the most difficult to use in practice. For a classical system the
energy of each system in the ensemble may be fixed precisely and the “parti-
tion function" for a fixed energy E is X (e, n, Q)

WX, N,0) = [- [ - drwdpy - dpwaE-£) (1.28)

The entropy per particle and the “temperature’ are
s(e, v:N) = N~ In X(E, N, 9) o (1.29)
T(e,v:N) = -:;‘s(e, viN) (1.30)

where v=0/N, and e=E/N. In the thermodynamic limit (23) this ensemble
yields the same result as the “smeared microcanonical ensemble” which can
also be used for quantum systems. In this ensemble, the energy of the differ-
ent systems is permitted to vary within a range AE, where AE= E in the
thermodynamic limit, and X is replaced by its integral with respect to E,

(NHF(E, N, Q) = f A(E-H)dry+ « - dry dpy - - - dpw (1.31)

with A(x)=1 if 0<x<AE, and zero otherwise. This ensemble is readily
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gencralized to quantum systems, ¥ now being the number of states with
energy less than E. Griffiths (25) proved the equivalence of this ensemble
to the canonical ensemble in the thermodynamic limit, —gf(8, v)
= M%x[—ﬁe-l—s(e‘ 1) ]. He also found conditions on the behavior of the density

of energy levels for the third law of thermodynamics to hold. This is not
simply a question of the degeneracy of the ground state but rather of the
density of low energy levels in the thermodynamic limit.

Various other ensembles are sometimes used in statistical mechanics;
e.g., those for fixed linear momentum or fixed angular momentum (26).
While these ensembles have not been investigated extensively, there is every
reason to believe that the previous results can be extended to them.

Finite systems—In obtaining a rigorous treatment of the intensive
thermodynamic variables in the infinite volume limit, all differences be-
tween ensembles as well as surface properties and other finite size effects have
naturally disappeared. However, these are of obvious importance for real
systems, especially when phase transitions are involved. It would be desir-
able, and it should be possible, at least to prove the existence of a surface
free energy density defined in the canonical ensemble, for example, as

EE‘E [4(3. N,0) — 90(3. F)]fsﬂ gy (1-32)

where Sy is the surface area of the container which would generally be
proportional to Q"7 where v is the dimensionality of the space. This
can indeed be done explicitly for the two-dimensional Ising spin system in
zero magnetic field (27).

Various expansions in N~! or @ for the differences in the values of
quantities, like the pressure obtained from various ensembles, have also been
carried out recently (28, 29); their convergence or asymptotic validity is not
known. This is of particular interest in connection with machine computa-
tions carried out for N~10° particles (6). In these machine computations the
fluctuations in quantities like the kinetic energy ((6K)?)/(K) which remain
different in different ensembles, even when N— o, can be observed and
checked with theory (30). In particular, {(6K)?)/(K) equals 87*(1-3k/2C)
for the micro-canonical ensemble where C is the specific heat per particle;
.in the canonical ensemble it is equal to g~ :

I1. ANaLyTICITY PROPERTIES OF THE THERMODYNAMIC FUNCTIONS

General.—We have already mentioned that the grand partition function
=(8, 2, Q) is analytic in the whole complex z-plane. It is also readily seen that
for §>0 the pressure x(8, : @) and the density p(8, z: Q) are analytic and
monotone increasing, and hence bounded along any finite segment of the
real positive z-axis. Thus there are no mathematically sharp phase transi-
tions in finite systems. Indeed, for systems with hard cores, which are easiest
to consider, Z(8, z, ) is a polynomial of order Nu. () and hence can be
written (22) in terms of its zeros g4
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Nﬂ
26,59 = H (1 = 2/2) @.1)
Br(8,5:0) =1 3 In (1 — 5/2) 2.2)

w(2; Q) will thus be analytic in any region D(Q) of the complex gz-plane in
which there are no zeros of the grand partition function. It is then possible
to show (22) that given any domain D in the s-plane which is free of zeros of
E for all sufficiently large values of @ and which contains part of the real
axis, then limg.., 7(z; Q) = (2) exists and is analytic in D. For systems with-
out hard cores a factorization similar to (2.1) is still possible, leaving the
essential results unaffected (9, 13, 31). Use is made here of Vitali’s theorem
(31) which may be stated for our purposes as follows: If a sequence of func-
tions e.g., 7(s; Q) is analytic and bounded in some region D, [:r(:; ﬂ)] <M,
and approaches a limit as Q— o (in part of D, e.g., on the segment of the
real positive g-axis inside D), then x(z; Q) tends uniformly to a limit #(z)
inside D, and 7 (g) is analytic in z. There is some arbitrariness in the imaginary
part of (2.2) but this is unimportant.

It is thus clear that all thermodynamic functions will be completely regu-
lar in z, and in some sense uninteresting, along any stretch of the real posi-

 tive z-axis which does not contain a limit point of zeros of Z(z, ) as Q— .

The nature of the limiting distribution of zeros of = is therefore of obvious
interest for this really determines x(z). This has been investigated for Ising
ferromagnets by Lee & Yang (32) (c.f. Sec. V) and for one-dimensional
systems by Hemmer & Hauge (33) and by Penrose & Elvey (34). The latter
were able to show for a one-dimensional system with nearest neighbor inter-
actions satisfying v(x) = = for ]xI <a, and v(x)=0 for ]x[ >2a, that the
limit points of the zeros of Z(z, ) lie on arcs in the complex z-plane and that
limg. (2, 2) for complex z is equal to that branch of the analytic continua-
tion of the thermodynamic pressure x(z) which has the largest real part. As s
well known, Van Hove (7b) showed that 7(8, 3) is analytic for real 8 and 2
for a one-dimensional system for which v(x) = =, |x[ <a, v(x)=0, x>R.
[Very recently, Ruelle (1c) showed that for one-dimensional lattice gases
with potentials ¢(x,), such that

g |20z | < =,

x(8, 5), is continuously differentiable] If the Penrose & Elvey theorem were
true in general, which seems doubtful at the moment, it would mean that if
one knew 7 (z) along any segment of the real positive z-axis (e.g., for small z
corresponding to the gas phase) it would be possible to obtain the pressure
for all values of 5 unless there was a natural boundary of the functions sur-
rounding this segment of the real z-axis.

The investigation of the analyticity of x(8, ) is thus of obvious impor-
tance, as there will be some singularity, i.e., “‘phase transition,” at all those
values of real positive 8 and z where 7(8, 2) is not analytic. If x(B, 2) is
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analytic in 8 and 3 at the point Bo, 2o, then and only then does there exist a
convergent Taylor expansion for w(8, 5) and all its derivatives in the vicinity
of Bo, 2

Analyticity of the pressure for small z: validity of the Mayer expansion.—
We have now exhausted the small number of rigorous results valid for all
real positive values for z and 8. For further rigorous results we shall have to
restrict ourselves to small values of |s| or 8 or both. Starting with the grand
partition function we may write (35)

Br(8, 5:0) = I}:"l bi(g:0) : @3)
p(B,2:9) = 3 Ihy(B:0)s! 2.4

where
bilB:2) = _Eﬁfnf dri - dnUrs, - =+ 7)) (2.5)

with U; the well-known Mayer cluster functions (35). It is clear from equa-
tions (2.1) and (2.2) that the series will converge for [z| < R(f2) where R(f2)
is the distance from the origin of the z-plane to the nearest zeroof Z(8, 2, 0).
1t follows from our discussion in the last section that for |s| < R(w)=limg..
R(Q), w(B, z) will also be analytic in z and that

Br(B,5) = L (B, and p(8,1) = LB, |z| < R(=), (2.6)

with bi(8) =limg.e b2(8:9). This implies particularly that there is no phase
transition, as z is changed and 8 kept fixed, of any kind for |s| < R(==)
[R(®) and R(=) may depend, of course, on B] and hence that one is definitely
in the gas phase for this range of z. It is, of course, not true that there has to
be a phase transition when the fugacity is equal to R(w). The radius of
convergence of the series in (2.6), which we call R, is at least R(=). The
physical pressure 7 (8, z) need not, however, coincide with that obtained from
equation (2.6) for real positive 3> R(=). The question now naturally arises
of whether one can find R(=) (or R) or at least prove that R(=) is bounded
below by some positive number. In principle R could be zero and there
would be no range of values of z for which the Mayer expansion would be
valid. This is indeed believed to be the case for Coulombic forces and for
nonequilibrium properties such as viscosity or heat conductivity (3, 36).
The existence of a finite radius of convergence for the kind of systems we are
considering was proven first by Groeneveld (37a) for non-negative interaction
potentials v(r) >0 and later by Ruelle (38) and Penrose (13) for general
stable potentials. The result is

R > R(») > Ry(p) = [Bexp (282 + 1) (2.7)

where B and ® are defined in equations (1.4) and (1.5b). Penrose (13) also
showed for systems whose interaction potential contains a hard core that
R(Q) has an upper bound
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R@) < | Na(@/aib@) [0,  1=1,2,--- (2.8)

(and a similar result for potentials without a hard core). A different sequence
of upper bounds on R for #(r) >0 was obtained by Groeneveld (37c). Similar
results hold for mixtures (39).

For systems with non-negative potentials Groeneveld (37) showed also
that the Mayer cluster functions Ui(r,, - - -, i) alternate in sign, (—1)!U;
>0 and that [b:(ﬂ)| S!b;|. It follows from this that for such potentials
R(>)=R and that x(z) will have a singularity on the negative real z-axis
for z=—R. For these potentials Groeneveld shows that R<B~! while
equation (2.7) gives R >(eB)™. For a one-dimensional system of hard rods
R=2(eB)™* while for the ideal lattice gas considered in equation (2.9)
R=B" (13).

As already mentioned, a breakdown in the convergence of the Mayer
fugacity expansion need have nothing to do with any physical singularity
which can occur only for real positive 2. This may be illustrated by what
happens for a lattice gas, i.e., the particles are confined to positions on a
lattice. When the only interaction between the particles is an infinite repul-
sion, two particles occupying the same lattice site, then (32)

Br(z:9) = Br(s) = In(l + 2) (2.9)

where { measures here the number of lattice sites. We see here that the
fugacity series will diverge for I 5| =1 but () is analytic for all real positive
z (c.f., also Sec. V).

Elimination of z in Equations (2.3) and (2.4) leads to the virial expansions
of the pressure ;

BB, p) = p [l -2 kk?ﬂm"] (2.10)

where the 8:'s are the irreducible Mayer cluster integrals. Using the results
already obtained for the convergence of the fugacity expansion, Lebowitz
& Penrose (40) proved that equation (2.10) converges for

le| < .28952/B(1 + ¢¥%) (2.11a)

Using methods directly applicable to equation (2.10), Groeneveld (37c)
showed that this series converges for stable potentials when

[o] < .36788/B(1 + ¢¥%) (2.11b)
and for positive potentials for
|o| <.23197/B (2.11c)

A theorem analogous to the Yang-Lee theorems for the complex z-plane is
proven by Lebowitz & Penrose for the complex p-plane, showing in particular
that there is no phase transition for densities smaller than that given by
equation (2.11a), but not necessarily smaller than that given by equation
(2.11b). (For positive potentials a better bound is given in Sec. 11.5.) Again
the divergence of the virial expansion need not signify any physical singu-
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larity despite the fact that for the few commonly known explicit equations of
state, e.g., the ideal lattice gas considered before where Bp= —In(1—p), the
divergence of the virial expansion occurs at close packing density. Lebowitz
& Penrose (40) give indeed an explicit example of a system for which the
virial expansion diverges due to a singularity in p(p) on the imaginary p-
axis. A singularity in w(z) for real positive z generally implies a singularity in
p(p) for the corresponding p and vice versa, unless dp/dp =0 at that value
of p. Incidentally, this occurs for the van der Waal's equation of state (c.f.
Sec. I1I) and for the ideal Bose gas (41).

Similar results on the convergence of these expansions for quantum sys-
tems have been obtained by Ginibre (42). These expansions always have a
finite radius of convergence for § < =, (i.e., temperature 37! >0).

Correlation functions.—The k-particle positional distribution function in
a grand canonical ensemble is defined as -

O i —BVitn
p.(n,-—-,r.;a,s.n)=§7!-fnfdrm---dr,+_¢ s (212)

The Ursell functions F; are defined in terms of p; by the relations (35)

Fy = py, Falry, ra) = palry, re) — pi(rdeilrs)
Filry, ra, r3) = ps(ry, ra, r3) — palry, ra)ou(rs) — palrs, ra)pu(ra)

— palry, ra)pa(ry) + 2pi(r)pa(ra)pulrs), etc. (2.13)
It follows from the definition of the F's that (33)
f fF;drz ~dr = d tm(r;mB, 5, ﬂ), where ] > 2 (2.149)

The Ursell functions have expansions in powers of the fugacity which are
very similar to those for the pressure

Fa=§Tf'é°fdfM'“du+wa @.15)

Ruelle (38) and Penrose (13) showed using the Kirkwood-Salsburg (43)
equations for the pi, that the correlation functions (generic name for both
distribution and Ursell functions) are analytic in z and approach well-defined

limiting functions Fi(ry, - * -, r&; 8, 2) as @— = which are also analyticin z
for | 2| <Ry(g). Similar results hold also for the reduced density matrices of
quantum systems [Ginibre (42)].

Ruelle (38) showed further that for l I <R, the Ursell functions have

the cluster property

fIﬁ(”l;"‘,?&;ﬂ,*}ldﬂ'-'dri<W (2.16)

It follows that (2.14) holds also for the infinite volume limit functions. Fairly
strong bounds on the asymptotic form of the Ursell functions, in particular
on Fa(ris) =p‘[g{fu)—1] where g(r) is the radial distribution function, were
obtained by Groeneveld (37), Ruelle (38) and Penrose (44). Groeneveld in
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particular obtained upper and lower bounds on Fi(r) which show that for
systems with finite range potentials, v(r) >0, Fu(r) has an oscillating ex-
ponential decay for large r, while for potentials which go asymptotically
as r™ and where m is larger than three, F also decays as r™.

These results apply, in general, only for values of g, Iz] < Ry. For systems
with positive potentials and for lattice gases with attractive potentials
between particles on different sites (isomorphic to an Ising ferromagnet;
cf. Sec. V), the results can be extended to the larger domain |s' <R (31).
There is, however, no general proof even of the existence of the thermo-
dynamic limit of Fi(ry, - - -, rx; B, 2; ) for other values of z, in contrast to
the existence of p(8, ) for all values of z where 7 (8, 2) is analytic. This lack
is, I feel, a great deficiency in the present state of the theory. Expressing
averages over the distribution functions as derivatives of the free energy
with respect to some parameters in which it is convex, Fisher (45) and, in a
different way (for lattice systems), Gallavotti & Miracle-Sole (46), and Ruelle
(1) show that the correlation functions will exist for all but a countably
infinite set of physical values of the fugacity or density or both. The diffi-
culty here is that one can never be sure that any particular value of z is not
one of the exceptional ones. In effect, one is not sure that adding a small
term to the interaction potential will not produce in the thermodynamic
limit a phase transition i.e., a singularity in 7(8, 5) at any given value of 8
and =.

~ Only for a one-dimensional system of hard rods with nearest neighbor
interactions can the analyticity and cluster property of the correlation func- -
tions be proven for all values of z which are not limit points of zeros of the
grand partition function (34). This includes all 220,

Amnalyticity in B.—The results about the analyticity of x(8, z) and Fy,
enumerated in the previous sections, all referred to the behaviour of
these quantities as functions of z for fixed real positive 8. Thus, by them-
selves they do not provide any information about the behaviour of these
quantities as functions of 8 for fixed z or, more generally, as functions of
both variables. Ruelle (38) has shown, however, that his method of proof
of analyticity in 2 for |s| <Rq(B) also proves analyticity in both variables
when the real part of 8 is positive and 8 and s satisfy the condition
|2]/Ro(B) <1. This means that within this range of values of 8 there can be no
singularities, either in the thermodynamic or correlation functions, i.e.,
no phase transitions, as f is changed. This includes, for example, all physical
values of § at sufficiently small s or density, or all values of z at sufficiently
small B when the particles have no hard core. Lebowitz & Penrose (31)
have extended the above result to more general domains. In particular
it is true that the thermodynamic functions are analytic in 8 for those 8's
for which ]s' <R(=) where R() is now considered as a function of 8. This
implies in particular that all the properties of an Ising spin system with ferro-
magnetic interactions are analytic in the temperature when there is a non-
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vanishing magnetic field acting on the systems (c.f. Sec. V). Lebowitz
& Penrose also'show that the properties of a system with hard cores may
be expanded in powers of 3, with a lower bound on the radius of convergence
of this expansion which depends on z.

General investigations of the behaviour of the free energy density in the
complex S-plane, in terms of the zeros of the partition function, in analogy
with the Yang & Lee (22) analysis in the z-plane, have been carried out
recently by Fisher (2c), Jones (47), Abe (48), Grossman & Rosenhauer (49).
These authors pay particular attention to the relation between various pos-
sible types of phase transitions and the behaviour of the limiting density of
the zeros of Z in the 8-plane which have an accumulation point for some
B>0 for a phase transition to occur. This type of analysis appears promising
but has not yet yielded any new results.

Inequalities—By restricting oneself to physically meaningful values of
B and z, i.e.,, § and z are real and positive, it is possible to obtain additional
information in the form of inequalities about the thermodynamic and cor-
relation functions of the system, but not in general about singularities of the
functions, or even about their existence as limit functions when the volume
tends to infinity. Some of these inequalities were first obtained by Groeneveld
(37), while others were obtained by Lieb (50), whose method was generalized
by Penrose (51), Lebowitz & Percus (43) and Ree (52). Examples of these
types of results are

7(21 + 22) < 7(2) + 7 (2™ (2.17)
140 [ L) o/ <140 [ 1000 @19)

where f_(r) and f,(r) are the positive and negative parts of Mayer's f-func-
tion respectively defined by f=f_+f., f_(r)f (r) =0, f. >0, f_<0. For non-
negative potentials f, =0, and it is possible to obtain many simple inequali-
ties for the pressure and distribution functions. In particular, the partial
sums of the fugacity expansions for the pressure and distribution (not
Ursell) functions provide alternate upper and lower bounds
=k I odd

Br(z) = ;};;, byaf, rac (2.19)
Using this kind of inequality it is possible to improve on the lower bound
given in Sec. I[.2 on the density at which a phase transition can occur for
systems whose potentials have a hard core or which are non-negative (40).
That value of [p| in equation (2.11a) is, for non-negative potentials, .14476/B
while the better result is .26894/B. For hard spheres the close-packing
density is 2w +/2/3B, so both these lower bounds are very far below the
density, about 80 per cent of close packing, at which the Alder-Wainwright
transition for hard spheres occurs (53).
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II1. SysTEMS WITH LonG-RANGE POTENTIALS

Equilibrium.—Following the work of Kac (54), Baker (55), van Kampen
(56), Kac, Uhlenbeck & Hemmer (57), and Kac & Helfand (58), described
in these Reviews previously by Helfand (59) and Oppenheim (60), Lebowitz
& Penrose (61) obtained a rigorous upper and lower bound for the thermo-
dynamic free-energy density a(B, p, ) of a classical system of particles with
two-body interaction potential v(r) =g(r) +vy"¢(yr) where » is the number of
space dimensions and p the density, in terms of the free-energy density
a°(B, p) for the corresponding system (reference system) with ¢(x) =0. When
¢(x) belongs to a class of functions which includes those that are non-positive
and those whose y-dimensional Fourier transforms are non-negative, the
upper and lower bounds coincide in the van der Waals limit y—0 and lim,.o
a(B, p,v) = CE{a®(B, p) +3ap?} (see Fig. 2) where CE denotes the convex en-
velope, the maximal convex function of which does not exceed a®(p) +21ap?
and a = [¢(x)dx. The corresponding equation of state is given by Maxwell's
equal-area rule applied to the function p°(8, p) +3ap?, where p°(8, p) is the
pressure of the reference system (for which ¢(x) =0). If ¢°(8, p) +3ap?® is not
itself convex in p the behaviour of the limiting free energy indicates a first-
order phase transition with a critical temperature and density determined
by the equations,

8%® a%®
g terl e (3.0)

These results are easily generalized to lattice gases and thus apply also
to Ising spin systems. This fact was used by Lebowitz, Baer & Stell (62) to

[°@) + o0%)

el

ce{e%(p) + kop?)

Fic. 2. The free energy and equation of state in the van der Waals limit v—0.
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TABLE I

Seeciric HEAT DiscosTivuiTy, AC* AT TaE CriTican Point
(Using Pade equations of state (64) for »=2,3)

Lattice gas Continuum

'-1.213 =] r=2 p=3
Pe/Pmax 5 1/3 .233 176
AC*/k 1.5 1.5 1.465 1.480
(Bp/0)e ,386 .376 .366 .359

test an idea of Fisher's (63) that comparisons of the specific heats of lattice
gases with continuum fluids near the critical point should be made on the
basis of their values Cyont(T) divided by the volume per particle at close
packing, C*(T) =pCoont(T)/Pmax, Where Coqr is the configurational specific
heat per particle and p=p.riticat along the critical isochore. Using for the
reference system an “ideal” lattice gas for which g(r) = =, r=0 and is zero
otherwise, or a continuum system of hard rods, discs, or spheres the results
in Table I were obtained for the specific heat discontinuity AC* at the critical
point. The constancy of AC*/k is remarkable and unexplained.

Using only very mild additional assumptions, Lieb (65) generalized the
results of Lebowitz & Penrose to quantum systems. This permitted explicit
‘calculations by Burke, Lebowitz & Lieb (66) of the properties and critical
parameters of a one-dimensional quantum system of hard rods with a long
range attraction, i.e., g(r) = =, for r <a, and zero for r>a. The behavior
of the critical temperature, pressure, and density as a function of the quan-
tum parameter A (the ratio of the de Broglie wavelength to the interparticle
separation evaluated at the classical critical point) shows surprising simi-
larity to that found for real fluids expected to obey the law of corresponding
states, i.e., the critical temperature and critical density decrease rapidly
with X (in almost identical manner) while the critical ratio is almost inde-
pendent of A.

Metastable states.—In considering the equilibrium properties of these
systems, no meaning is attached to that part of the curve a®(p) +}ep® which
lies above the curve CE[a°(p) +3ap?] or to the corresponding part of the
pressure curve p°(p) +3ap?. Traditionally, however, those portions of the
curve (actually of similar curves obtained from the original van der
Waals-Maxwell theory) where

% [6°(0) + 30?] > 0 (3.2)

are assumed to represent the free energy density and pressure of metastable
states of uniform density corresponding to the supercooled vapour and the
superheated liquid respectively. The parts of the curve where
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— [a°(p} +3ep?] <0 3.3)

are assumed to represent unstable states. A very convincing argument for
this interpretation was presented by van Kampen (56), which, however,
required the use of some physically very reasonable approximations. Lebo-
witz & Penrose (61) have attempted to give a rigorous meaning to these
states by considering the properties of the system when it is confined to a
restricted region of the configuration space. This is done by a simple exten-
sion of the method used to obtain bounds on the equilibrium free energy.
The cubical box of volume Q to which the system consisting of N particles is
confined is divided up into M cells of volume w. We can now restrict the
configuration space of our system by imposing restrictions on the densities
pi=N;/w of the various cells:ZN.-zN, i=1, ..., M. The simplest such
restriction is p_ <p;<p; where p_ and p, are some specified densities sur-
rounding the density p=N/Q, p_ <p <p,. It is then shown that if p_ and p,
are chosen to lie close to the mean density of the system p which lies in the
metastable region, i.e., where

5 [0°) + 3] >0 forp-<p < s, @3.4)

then in the triple limit taken in the order @— = (thermodynamic limit),
y— = (infinite range potentials; van der Waals limit), w— o (cell size
becoming infinite so that boundary effects between cells are negligible),
the correct free energy and other thermodynamic functions are those cor-
responding to the metastable portion of the equation of state; this is not so
when the average density p lies in the unstable portion of the curve. However,
we have not succeeded in proving that in this restricted region of configura-
tion space the equation p;=p gives a minimum for the free energy.

The metastable state found here is simply the analytic continuation of
the pressure as a function of density or fugacity. Thus if s, is the value of
the fugacity at which the vapour condenses (at some specified temperature)
there is no indication of this in the behaviour of x(z) as s—s2, from the left.
Hence, if we started with the pressure obtained from the fugacity expansion
for small fugacities and continued it analytically along the real z-axis, it
would give no indication of the existence of a phase-transition at 2,; indeed
the power series with the coefficient b; obtained in the limit y—0 could
still converge at z,. The question naturally arises whether this is an artifact
of the van der Waals model, i.e., of the infinite range potentials needed to
obtain a van der Waals type equation of state, or whether this is also the’
case for realistic, essentially short range, potentials. Put in another way,
does the first physical singularity in «(z), for real positive 2, 3=2, (cor-
responding presumably to the vapour-liquid of vapour-solid transition)
occur at that value of z where the fugacity series or its analytic continua-
tion along the real s-axis has its first singularity for real and positive values
of 5, z=3";? It follows from the previous discussion that 2,<z,’, and it has
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been conjectured by many students of the subject that z;=z,". Fisher
(2¢, 41) in particular has argued on the basis of a general droplet model of
the liquid-vapour transition that for real systems at low temperatures, where
condensation is caused by attraction between the molecules, z;,=2,/=R, It
should be noted though that according to the machine computations of
Alder & Wainwright (53) a gas of hard spheres or discs undergoes a phase
transition for values of the fugacity z; which are larger than R, since the
-radius of convergence R< B! (according to Sec. I1.2). It is clear that if
21 <z{, then there exists an analytic continuation of the equation of state
beyond the condensation point 2, which could naturally be identified with
a metastable state of the system as is indeed the case for systems with a
van der Waals type of equation of state. On the basis of the droplet model,
however, Fisher (41) argues for the existence of an essential singularity at
s1=3/. Using some very ingenious analysis of a model system partition
function which contains most features of the droplet model, Langer (67)
also argued for the existence of an essential singularity at z,. Langer believes,
however, that the properties of the experimentally observed metastable
state can be obtained from the real part of the analytic continuation of
w(z) along a path off the real z-axis. Langer further conjectures that the
imaginary part of this analytic continuation, which is very small, may be
related to the lifetime of a metastable state. There might indeed be such a
connection with the van der Waals systems having metastable states with
infinite lifetime [c.f. Griffiths, Weng & Langer (68) and Penrose & Lebowitz
(61)].

This is all conjectural, however, and the situation for real physical sys-
tems is unknown at present. Thus, it is not known whether there is any
precise way of defining, and thus obtaining, a prescription for computing
from first principles the properties of the physically observed metastable
states, e.g., super-cooled liquids. I hope that this deficiency will be remedied
soon.

IV. Icg, FERRO- AND ANTIFERROELECTRICS

One of the most interesting developments in statistical mechanics in
1967 was Lieb’s (69) exact solution of the (two-dimensional) entropy of ice
problem and the related problems of the Rys (70) F model of an antiferro-
electric and the Slater (71) KDP model of a ferroelectric. The common fea-
ture of these models is their reference to hydrogen-bonded crystals, and the
first problem is to explain the residual entropy of ice at temperatures near
absolute zero, where its observed value is very nearly S=N% In 1.5 with
N equal to the number of molecules.

Pauling proposed the following explanation of this entropy: The struec-
ture of ice, as observed by X-rays, is one in which the oxygen atoms are
regularly arranged with four nearest neighbors each (approximately a
diamond structure). Between each pair of oxygens is a hydrogen atom but
the hydrogen lattice has no order (as seen by X-rays). It is postulated that
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" each hydrogen can occupy one of two equivalent sites which are approxi-
mately 1 A from each oxygen (the O-O distance is 3 A). The residual en-
tropy would then be equal to Nk InW where WY is the total number of
possible configurations of the hydrogen atoms. Since there are 2N hydrogens,
this would give W¥=2% and S=2Nk In 2, which is too large an entropy.
Pauling postulated a further constraint on the hydrogen configurations
known as the “ice condition": of the four hydrogens bonded to each oxygen
precisely two must be near to that oxygen.

To visualize this constraint more easily, consider the two-dimensional
version of the problem (the one solved by Lieb). The oxygen atoms occupy
the vertices of a square net. The hydrogen atoms are situated on the bonds
and an arrow serves to indicate the position of the hydrogen relative to the
bond midpoint. There are six allowed configurations for each vertex shown
in this figure (Fig. 3).

Obviously, counting the total number of configurations for the entire
lattice is a complicated problem, but Pauling gave a remarkably accurate
estimate of the number by a “mean field theory” argument as follows: At
each vertex we allow 6 out of a total of 16 possible configurations. Assuming
the vertices and bonds to be independent, which they certainly are not,
yields W" =2%(6/16)¥ and S= Nk In(1.5). Nagle (72) studied the problem
numerically and found W=1.5401.001. The exact result found by Lieb is

W = (4/3)%* = 1.5396007 - - - . (4.1)

The remarkable simplicity of the correct result and the complexity of
the mathematics used to obtain it makes it very tempting to try and obtain
it in a simple way; so far no one has succeeded. It was, however, pointed out
by Lenard (73) that there is a complete isomorphism between the ice prob-
lem and the three-colored-tile problem. In the latter a plane is to be covered
with square tiles of three different colors in such a way that adjacent tiles
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have different colors. {The first reader who sends in a simple proof of equa- -
tion (4.1) wins a prize. As an additional teaser, the fraction of vertices having
configurations five and six, i.e. no polarization, is [3(1.5—1/x)—5/3] (74).}

The generalizations of the ice problem leading to ferro- and antiferro-
electrics are as follows: We picture the ferroelectric KDP (KH:POy) as
having the same basic structure as ice—the vertices are PO, groups, and the
hydrogens satisfy the same “ice” condition. Now, however, it is necessary
to associate an energy, hence a Boltzmann factor, to each vertex in such a
manner as to encourage a net polarization along some axis. Vertices 1, 2, 3,
and 4 have a net polarization , but the polarization direction of 1 and 2 is
perpendicular to that of 3 and 4. The common axis of 3 and 4 is regarded as
unfavorable relative to the axis of 1 and 2 and so is discouraged by a positive
energy. Vertices 5 and 6 are similarly discouraged because they have no
polarization at all. This model is due to Slater (71). A simplified version of
the model was solved by Wu (75). 5 :

To construct an antiferroelectric it is obviously not sufficient merely to
change the sign of € (as, for example, with the Ising ferro- and antiferro-
magnet). An obvious choice is the F model of Rys (70) in which vertices
1, 2, 3, 4, which have polarization, are discouraged by an energy e.

Unlike the Ising model, these two models can be solved when an external
electric field (in the up/down direction) is included. The additional vertex
energies, in units of E (E=electric field), are also shown in the accompany-
ing figure,

Lieb used the method of the transfer matrix to obtain the solution of
these problems. After a beautiful analysis, which is at the heart of the solu-
tion, the problem is reduced in essence to the solution of certain equations
which arise also in connection with the solution of the one-dimensional,
anisotropic Heisenberg chain. This is a linear array of quantum spins, with
S; interacting with nearest neighbors only. The Hamiltonian is

BH=-2 ; [S,"S,‘u‘ + #4854 + AS;25;,7] 4.2)

There has been much progress made on this problem recently (76) but I shall
not discuss it here. _

While the solution for ice and for KDP and the F model in the absence
of an electric field is quite explicit, the solution for E>0 is more implicit.
(“Tce” corresponds to the limit T— o, or e=0 and E=0 in the other prob-
lems.) It is found that there is a critical temperature which depends on the
electric field E (77), whose value for E=0 is kT.=¢/In2 for both KDP and
F [c.1. also Sutherland (78)]. In KDP, there is a latent heat at T, (first order
phase transition). The specific heat goes as (T—T.) V2 for I'>T. and van-
ishesfor T <T, for E=0. T.(E) is 2 monotone function of | E|. In the F model
the phase transition is of infinite order; the free energy has an essential
singularity, but all its derivatives are bounded and continuous at T,. The
polarization P of the two systems in the presence of an electric field is as
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follows: For T> T, (E), P is a smooth function of E; P—0 as E—0, and
P—1 as E—> =, Below T,(E) the polarization of the KDP mode! is perfect
no matter how small the field is, i.e., P(E) =1 for E>0, while the polariza-
tion of the F model is zero for E less than some critical value E,. For E> E,
the polarization increases from its zero value to become perfect when
E—+ ». For the solution of this problem with arbitrary assignments of
energies for the different configurations see (79).

V. IsinG FERROMAGNETS

The simplest non-trivial system (or model) available in statistical me-
chanics is an Ising spin system with purely ferromagnetic interactions. The
Hamiltonian of such a system containing Q spins on sites labelled 1, - - - , 0
interacting pairwise in the presence of a2 magnetic field H is, in proper units,

==Y X Jsno;—HY, 05; oi=+1, Ju=0Jy5>0. (5.1)

This system is isomorphic (32) to a lattice gas with a “magnetic fugacity”
§ =¢¥H where the particles are confined to the @ sites interacting with a pair
potential ;5= if i=j, or v;;=—4J;; if i, and subject to an external
potential —a;,

ay = — 42].‘,‘ - Zﬂif.
et I

When a; is independent of 4, which will generally be true everywhere outside
a boundary region, this system is equivalent to one without any external
potential with fugacity z={é*/* where g is now the same variable as that
used in Sections I and II.

Many results, some of which have already been mentioned, can be
proven rigorously for these systems. The most famous of these results is, of
course, Onsager’s (80) exact expression for the free energy of such a spin
system, as a function of temperature when H =0, and the spins are arranged
on a two-dimensional square lattice with Jy;=J; for nearest neighbors along
the x-axis.and Jy;=J, for nearest neighbors along the y-axis, J;;=0 other-
wise. Onsager's result for the free energy per spin in the thermodynamic

limit $(8) = (8,H =0) is
B6(8) = —In2 + —E—f'ﬁaf'da'ln[mhw cosh 287,
: 2rrJ 0 ’ ¥

— sinh 287, cos # — sinh 28/, cos #'] (5.2)

This yields the famous logarithmic specific heat singularity at §=8, de-
fined by
sinh 28.J; sinh 28.7: = 1 (5.3)

Using various transformations, Onsager's solution also applies to several
other kinds of lattices with nearest neighbor interactions (81).
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Onsager's solution is augmented by the already mentioned results that,
for arbitrary J:;2>0, all the thermodynamic and correlation functions are
analytic in ¢ =¢*¥ and 8 and for 20 and I;‘[ #£1, i.e., in a finite magnetic
field. For |f| 1 analyticity of the thermodynamic functions at fixed
20 follows from the remarkable result of Lee & Yang (32) that all the
zeros of the spin partition function (lattice grand partition function) Z(8,
¢, Q) lie on the circle |§'| =1. The extended analyticity, which includes also
arcs of the circle |{| =1 which are free of limit points of zeros when Q—w,
was proven recently by Lebowitz & Penrose (31). The latter also prove that
if the interaction potential J;; vanishes for separations between the sites, ¢
and j exceeding some fixed cutoff A, then the Ursell functions have an ex-
ponential decay for large separations when | ¥ | #1.

A most important question for these systems is therefore their behaviour
as H—0. Yang (82) has calculated a spontaneous magnetization for the

square lattice which is zero for §<8.. There is, however, no proof at present -

that Yang's value is identical with the thermodynamic result (81b)

u(g) = lim lim 1Y (o, H: 9))

=g_n'6 d.i_:.l}.m(ﬂ,ﬂ:ﬂ)

E a

2 Ehlfoﬁﬂﬂ, "), H20 (54
(os) is the average magnetization of the ith spin. Griffiths (83) has shown
however that Yang's result is a lower bound for u(B), so that we may be
sure that there is a finite spontaneous magnetization for 8>p8,. This fits
in with the general result of Lebowitz & Penrose (31) that the point {=1
is a limit point of zeros of the spin partition function Z(g, {, Q) for any
value of B at which ¢(8, H=0) has a singularity, and Griffiths’ (84) result
that the magnetization of an Ising ferromagnet is a non-decreasing function
of B, from which follows in particular that ferromagnetism will not disappear
as the temperature is lowered.

Griffiths' result is a special case of a remarkable set of inequalities which
he has been able to prove (84) for Ising ferromagnets. The most important
of these, which is relevant here, is that the average magnetization of any
spin, (o;) considered as a function of the .J;; at fixed { or H cannot decrease
as any B.J;; is made larger and H2>0. An obvious similar result holds for
H <0. This is true and independent of any lattice structure and holds in
particular when 8 is increased or when any new spins with ferromagnetic
interactions are added to the system. The proof of the above statement fol-
lows from Griffiths’ inequalities which have been generalized and extended
by Kelly & Sherman (85): Let 4 be a subset of the spin indices 4, - * -, 1q,
and define o4 =_Hr.r". Let the generalized Hamiltonian of the system be

1
H=—3 Juct, Ja20 (5.5

Acl)

e i e s
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This includes the possibility of more than pairwise ferromagnetic spin inter-
actions and of the external field being different (non-negative) at each site.
The generalized Griffiths inequalities (G.G.1.) are

(e®) >0 for2lRCQ (5.6)
8125 (e%) = (o%6%) — (o?)(e5) 20 s

for all R and SCQ.
Choosing R and S to contain one or two spins each yields

(gras) — (av}ios) 20 (5.8)
(orajonct) — (oaj)(owar) > 0 (5.9)

The left side of (5.8) is, in lattice gas language, just the two-particle Ursell
function.

An important consequence of the G.G.I. is: given an Ising model I with
purely ferromagnetic interactions, the spontaneous magnetization and the
long-range order will never be less for a model II obtained from I by adding
ferromagnetic bonds. Furthermore, the Curie temperature of 11, defined as
the temperature at which spontaneous magnetization vanishes, is not less
than that of I. As an application of this we have immediately the result that
adding longer range interactions to the two-dimensional square Ising lattice
of Onsager will not decrease the Curie point. Also, the existence of spontane-
ous magnetization in a two-dimensional square lattice at 8> 8. implies the
same for the corresponding three-dimensional simple cubic lattice. Actually,
the existence of spontaneous magnetization at sufficiently low temperatures
in the simple cubic lattice was first proven independently by using a simple
argument given by Peierls (86), and made rigorous by Griffiths (87) and
Dobrushin (88). A generalization of this argument by Ginibre, Grossman,
& Ruelle (89) proves the existence of spontaneous magnetization at suffici-
ently low temperatures also for Ising spin systems which contain some anti-
ferromagnetic interactions as long as the ferromagnetic interactions “domi-
nate", i.e., the nearest neighbor interaction is ferromagnetic and the “first
moment" of the interaction along any lineZ;Jo; >0. A lower bound on the
Curie temperature of anisotropic lattices, which is asymptotically exact
for the system considered in (5.3) when J1—0, was given by Weng, Griffiths
& Fisher (90).

Another consequence of the G.G.I. is the existence of the thermodynamic
limit of all Ising ferromagnet spin correlation functions when @— = through
some succession of expanding volumes. This follows from the fact that (o4)
is non-decreasing as © is made larger while | (s4)| <1.

Still another consequence of the G.G.1., proven by Griffiths (84), is that
an Ising ferromagnet cannot exhibit a spontaneous magnetization at temper-
atures above the mean-field approximation to the Curie point, e.g., for a
system on a regular lattice in which each spin interacts only with its 2z nearest
neighbors,
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{e(8, M) < tanh (8H)/[1 — 2 tanh g7] (5.10)

Thus, there is no spontaneous magnetization for tanh BJ <1/s while the
mean field value for the Curie point is 8.Jz=1. Here J is the strength of the
interaction. For such a system we also have (84)

o(a(s, H))-
oH | B~

Using a different technique, Fisher (91) has obtained even stronger upper
bounds for the Curie temperature. In lattice gas language these are upper
bounds (and the previous result of Peierls, Griffiths, et al. are lower bounds)
on the temperature at which the gas condenses. These upper bounds are
considerably lower than the temperature above which all the thermo-
dynamic and correlation functions are analytic in real H and B according to
Gallavotti, Miracle-Sole & Robinson (92) and Dobrushin et al. (21d). For
the example used for equation (5.10), this gives analyticity for 8 <.4/zJ.

For 8>, the average magnetization per spin m(B, H) has a discontinuity
of 2u(8) at H=0. This means that if we construct an ensemble with fixed
m, |m| <pu or in lattice gas language with fixed density p=(1 +m)/2 with p
between the vapour and liquid densities pe=(1—p)/2, py=(14u)/2 then
the corresponding H or chemical potential will be fixed, H=0. We expect that
a typical configuration of the system, for some fixed m, ]ml <u, will cor-
respond to that of two spatially segregated phases, i.e., vapour-liquid or
spin up-spin down magnetic domains. This has now indeed been proven
rigorously by Minlos & Sinai (93) Similar results were reported by Emch
(94).

Minlos & Sinai take as an example the two-dimensional square lattice
with nearest neighbor interactions. Let N be the number (fixed) of spins
pointing up (number of particles in gas language); N=(14+m)Q/2. Each
point in the set N is now enclosed by a unit square. The union of the squares
constructed for all the points in N is divided into connected regions: the
connected components of the boundary of these regions are denoted by

i An external contour is one not enclosed by any other contour of the
configuration N. The following results are among many other beautiful re-
sults proven by Minlos & Sinai (93) for ““typical configurations,” (configura-
tions which have probability 1 in the thermodynamic limit): There is pre-
cisely one large external contour I'mex whose enclosed area S(Toex) is N
+0(Q¥¢). This contour has a form near to a square, in the sense that its
length is 4[S(Tumex) 2+ 0(2/2). One of the consequences of these results is a
rigorous justification of Mayer's (95) conjecture that the distribution func-
tions in the two-phase region are linear combinations of the distribution
functions in the pure phases, the contribution of each being proportional to
the fraction of total volume it occupies. Similar results hold also for the van
der Waals' eystem discussed in Sec. 111 (57, 61). The distribution functions in
zero magnetic field for B <B, have also received much attention recently,
leading to important new results (27, 81, 96, 97).

<pll —stashpr}r (5.11)
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