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The operators R, contains M, linearly
N = KoM
Ko = —2n Im Sp{Aga (D)D) + Niyle®)}
(5.6)

If one inserts now a(p) into (5.6), one gets an
expression of K¢ 4y in terms of variables d;, - -+, d, .

Evidently the method of explicit construction of
unitary representations developed for the case of the
group ISL(n, C) may be applied to all groups which
are subgroups of ISL(n, C). The class of such groups
are rather large so that the method described above

Yu. NOVOZHILOV AND I. TERENTJEV

is of a considerable generality. As an example we have
treated the group IU(m, m) in Sec. 3B; a special case
m =2, i.e., the group IU(2,2), was investigated in
detail earlier.” No additional difficulties arise also
if one considers the group IU(m, m') with m + m’ = n.®

The problem of the construction of a(p) for the
groups IU(m, m) and ISL(m, C) is equivalent to that
of solution of the linear covariant equation of the type
Qy = y. Therefore, it would be superfluous to discuss
these equations separately.

9 Yu. V. Novozhilov and I. A. Terentjev, in ‘“International
Summer School in Elementary Particles Theory,” Jalta (1966).

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 9, NUMBER 10 OCTOBER 1968

Note on Statistical Mechanics of Random Systems*

T. BURKE AND J. L. Lepowirz
Belfer Graduate School of Science, Yeshiva University, New York

(Received 23 October 1967)

We discuss some equilibrium properties of random systems, i.e., systems whose Hamiltonian depends on
some random variables y with a distribution P(y) which is independent of the dynamic state of the system.
For a system of noninteracting particles which interact with randomly distributed scattering centers, the
important quantity is the average density of states of a single particle per unit volume, n(E). Feynman’s
path-integral formulation of quantum statistics is used to derive some properties of the average partition
function for one particle (Z,), which is the Laplace transform of n(E). In particular, it is shown that (Z,)
is an analytic function of the density of scatterers p for a wide class of particle-scattering center potentials
¥(r), including those with hard cores and those with negative parts. The analyticity in p of the equilibrium
properties of these systems is very remarkable and is in contrast to the conjectured nonanalytic behavior
of their transport (i.e., diffusion) coefficients. We find also upper and lower bounds on (Z,) for a particle
acted upon by a random potential V(r) obeying Gaussian statistics with (V(r)V{r')) ~ exp [—a*(r — r')’].
In the limit of “white noise,” (V) V(")) ~ 8(x — r’), (Z,) is shown to diverge in two and three dimen-
sions but remains finite in one dimension. This agrees with approximate results on the density of states.
In appendices we prove the existence, in the thermodynamic limit, of the free-energy density of a system
with random scatterers and also of the frequency distribution and, thus, the free-energy density for a
random harmonic crystal.

1. INTRODUCTION independent of the other sites, (ii) a harmonic crystal

It is the purpose of this paper to investigate some
equilibrium properties of certain random systems.
By a random system we mean a system whose
Hamiltonian depends on some parameters y which
are, in a sense to be specified, random variables with
a distribution P(y) which is independent of the
dynamical state of the system. The dynamical
(canonical) variables of the system are denoted by x
so that the Hamiltonian H(x, y) is a function both of
x and y with x varying in time according to some
dynamical law.

Typical examples of model random systems dis-
cussed in the literature are (i) a lattice in which spins
are located randomly on sites with a probability p

* Supported by the Air Force Office of Scientific Research under
Grant No. 508-66.

in which the masses or spring constants have random
values with some specified distribution, and (iii) a set
of particles, usually electrons, acted on by an external
potential due to the presence of centers of force
(scatterers, impurities) at positions {R;, ", Ry} =
{R} = y. In the last case, which will be our primary
concern here, the Hamiltonian of a set of M particles
with positions {r;, - -+, Ty} and momenta {p, - -,
P} in a box of volume € is given by

M
H=3p2m+ Uy, -, Ty)
3=1

M N
+ 13 3SV@E —R,), (1.1

i=1n=1

where U is the interparticle potential which is inde-
pendent of the location (or presence) of the impurities
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and AV(r) is the potential energy of a particle in the
presence of an impurity located at r = 0.

In all these cases the physical situation, idealized in
these models, corresponds to starting with the system
at a high temperature and quenching it. The imper-
fections will then remain fixed in space and can be
described by the parameters y, whereas the other
degrees of freedom x come to equilibrium with a
Hamiltonian which depends on y. (The actual physical
situation is more complex, but this is a reasonable
approximation to it.) For a given system, y has, of
course, some specified set of values {R,, - - -, Ry}, and
it is therefore necessary to state what we mean by
sayingthat the R, are distributed at random. To be more
specific, how do we compute the properties, such as
the internal energy or specific heat, of a macroscopic
system for which the values of the R; are unknown to
us? The simplest attitude one can take is to make
measurements on an ensemble of systems prepared in
the same way.? (This is a superensemble of thermal
ensembles for each specified {R,, -, Ry}.) Hence
the average of any function A(x, y) is given by

(A) = f dyP(y)(A), . (1.2)

where
(), = [Tr, (A(x, NPT Z(y),  (13)
Z(y) = Tr, e $H @, (1.4)

is the partition function for the system represented by
a canonical ensemble with inverse temperature S.
Here P(y) is the distribution of random variables y
which, for case (iii) above, is

P(y)dy = Q™VdR,, - -, dRy;

R,in Q. (1.5

It isalso possible to consider the case where the number
of scatterers in £ is not fixed, but has an average
value N. (This is actually used in Appendix B.) The
thermodynamic properties of this ensemble would then
be obtained from the free energy F defined as!

F=—fXnZ(y) = —p7" | P(») In Z(y) dy. (1.6)

This prescription for obtaining the properties of a
system will be satisfactory only when the dispersal in
the values of In Z(y) is small. This will be true for a
macroscopic system when InZ(y) is an additive
quantity. The existence and some properties of the
free-energy density in the thermodynamic limit
lim (F/Q) for the spin system have been discussed

Q>

! R. Brout, Phys. Rev. 115, 824 (1959); M. W. Klein and R. Brout,
Phys. Rev. 132, 2412 (1963).
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previously.? A proof of the existence of this quantity,
as well as the thermodynamic limit of the frequency
distribution function for random harmonic crystals,
is given in Appendix A.

In this paper we are primarily interested in case
(iii). The existence of lim (F/Q) for this system

Q-0

is discussed in Appendix B. In the special situation
when the particles are noninteracting (U = 0) and
may be treated by Boltzmann statistics, the problem
reduces to an investigation of one of the most fre-
quently used models in the study of irreversible
phenomena, that in which a single particle interacts
with a set of scattering centers randomly distributed
in space. General properties of perturbation expansions
for the resolvent operator and the density matrix
have been discussed in many papers.® In Sec. 2 we
study properties of this system using the path-integral
formulation of quantum statistics which was intro-
duced by Feynman.* For M noninteracting particles
obeying Boltzmann statistics, (1.4) becomes

Zy = [ZWM1YIM! (1.7

where Z,(y) is the (quantum-mechanical) partition
function for a single particle interacting in a volume
Q with N -scatterers located at positions {R,, - -
Ry} = y. From (1.6)
(FIQ) = —(BQ)In (Z{/M"))

= —(M/[B)[1 — In(M/Q) + (In [Z,(y; Q)/QD)],

(1.8)

where we have used Stirling’s formula for In M!.

We now argue somewhat heuristically that, since
Z, is an extensive quantity in this case, we will have
(In (Z,/Q)) ~ In (Z,/Q) in the limit Q — o0, N — 00,
N/Q = p = const. To see this more formally we
divide up the volume QintoJcubes, w; i = 1, - -+, J),
each of volume ‘w; we consider the limits J— oo
followed by w— co. For reasonable forms of the
interaction potential V' (r) we should be able to neglect,
for sufficiently large w, the interaction between a
particle in one cube w,; with impurities outside w, as
well as the precise boundary conditions. Thus

b

Q7'Zy(y; Q) ~ Q‘li Z,(y"; 0) = J“i (z:/w).
) T 1)

In (1.9) the z; can be considered independent random
variables so that, by the central limit theorem, in the

2 R. B. Griffiths and J. L. Lebowitz, J. Math. Phys. (to be
published). ‘

3 See, e.g., papers cited in Refs. 6 and 7.

*R. P. Feynman and A. Hibbs, Quantum Mechanics and Path
Integrals (McGraw-Hill Book Co., New York, 1965). See also A.
Siegert, Phys. Rev. 86, 621 (1952).
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limit of large J, Z,(y; €) will have a normal distri-

bution
(Zy — (ZY)
P(Z) =exp| —=—=1), (110
@) exp[ 2Bz } (1-10)
where
(AZ)?) = J(Az)*
and
0 (Zy/Q) = In /D + {1n [1 + =207\
(In (Z,/Q)) = In (Z,/Q) \n[ = ]

2
= In (Z,/Q) — %————%‘?ZZ;J 4o

= In(Z,/)

in the limit J— oo when P(Z;) becomes infinitely
sharply peaked about (Z;). Thus from (1.8) in the
limit M — o0,  — 00, M[Q = const,

(FIQ) = —2M[Q)[1 — In (M]Q) + In ((Z,)/Q)].
(1.11)

Alternatively, we can consider this system to be
represented by a grand canonical ensemble with
chemical potential u, activity & = ef*, and mean
number of particles (M). The grand partition function

B(y; Q) = 3 EZHIM! = 7,

M=1

(1.12)

so that the grand potential

F—uM)= —fXInE) = &2 (1.13)
and

/alnE(y;Q)\
My = & L= 2N g,
M) = §& % / §Zy)

For the free energy this gives
F=—fM ~In(MIZ)],  (1.14)

which coincides with (1.11) when (M) is associated
with the M of the canonical ensemble.

The thermodynamics of this system is thus given
entirely in terms of (Z,)/Q in the limit when the system
is large. In Sec. 2, we use the path-integral method of
Feynman to investigate the existence of an expansion
of (Z,)/Q in powers of the density of scattering
centers p = N/Q in the limit N, Q — oo, and of an
expansion in the coupling constant 4 when certain
conditions on the potential V(r) between electron and
scattering center are satisfied. This analyticity in 4
was shown first by Doniach,> who used a different
representation for the many-temperature Green’s
functions which arise in the expansion.

5 S. Doniach, “Greens Function Theory of Multiple Scattering.
1. Convergence of the Perturbation Series for the Partition Function™;
“II. Variational Estimate for the Conductivity under Strong Coup-
ling Conditions’ (unpublished).
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The importance of the quantity (Z;) here arises
from its linear relation to the average density of states

n(E) = (n(E; y)) = Q“l<§ ME — Ea-(y))>, (1.15)

where E; are the energy eigenvalues of (1.1). We then
have

@@)1@ = s ) dE = [ eIEa(e) d.

(1.16)

Equation (1.16) is valid for both classical and quantum
systems with their respective standard interpretations.
For quantum systems in which the particles obey
B.E. or F.D. statistics, the grand ensemble approach
gives

QM InEQy) = F f dE n(E) In (1 F e #E-w)
— MZ)/Q, (1.17)

when the particle density is low. In principle we can
compute the density of states from (Z,(f)) by the
inverse of (1.16):

®) = = " ap =z (B0,

Tl Je—iw

(1.18)

but this requires knowledge of (Z;(B)) for complex
p. The quantity n(E) has been investigated recently?
for various kinds of potential and we hope that our
results will be of relevance.

In Sec. 3 we consider the properties of a particle in
a potential random in space and obeying Gaussian
statistics. This corresponds to the high-density limit
of the random scatterers model discussed above.®?
In some nontrivial cases we obtain explicit bounds on
the average partition function, which, in the limiting
case of “white noise,” are consistent with recent
approximate calculations of the asymptotic value of
the average density of states.

2. EVALUATION OF (Z;)

In terms of Feynman’s path-integral formalism the
partition function for a particle of mass m interacting
through a potential AV (r), with N scattering centers at
positions Ry, -, Ry in a volume L, is given by

Z,(8; {R} =fdro fﬁ:oér exp [—Lﬂ%mF dt

B N
- f dtZlV(r(t)—Rn)], @2.1)
1) n=1

¢ B. I. Halperin and M. Lax, Phys. Rev. 148, 722 (1966); 153, 802,
(1967).
7 J. Zittartz and J. S. Langer, Phys. Rev. 148, 741 (1966).
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where B is the inverse temperature, the symbol
$70 dr denotes the appropriately normalized sum over
all paths r(¢) in Q such that r(0) = r(8) = r,, and we
have taken 5 = 1. We define the configurational
average of Z, by

N
Zu(B) = fn- [ T R Py ROZAB R
2.2)

The case of randomly distributed scatterers corre-
sponds to P = Q7Y so that®

(Z,) =Ldro fﬁo&r exp (— J; ﬂ%miz dt)
x 11:11 {Q—l f dR,, exp [—z ﬁ Lty — Rn):l}.

Each term in the product is identical, and, by adding
and subtracting unity, we can write the product as an
exponential in the limit N, Q—> o0, p=N/Q=
const, so that

(Z(B) = f dr, ﬁ"ar exp {— L L \mi® dt

+p f dR\:exp (—z fo L) ~ R)) — 1}}

If we introduce the following notation for the nor-
malized average of a functional of the path

E{F[r(n)]} o ,
ey 5{;'0 Jr exp (—J; Imp? dt) Flr(1)]

== {ar, - =
ﬁ exp (—f Imi? dt) or
Ty 0

)
then we can write the partition function in the form

(ZA(BN/Zo

= E{exp pdeI:exp (—lﬁﬂdtV(r(t) — R)) — 1]}

(2.3)

Here Z, is the partition function for a free particle so
that

Zy =fdr ﬁ:oér exp (—ﬁﬁ%miz dt) = Q(i%[)’)% i
(2.4)

An expression of the type (2.3) can be obtained also
for a nonuniform distribution of scatterers of the

type

)

N
PRy, -+, Ry) = OV T fR,),

n=1

8 S. F. Edwards and Y. B. Gulyaev, Proc. Phys. Soc. (London)
83, 495 (1964).
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where f'is normalized by
Q- f dRf(R) = 1.

However, this will only introduce an additional factor
f(R) into the R integration in (2.3) and will not
significantly alter the following discussion. A more
realistic distribution which takes into account corre-
lations in the positions of scattering centers will not
lead to a simple expression of the form (2.3).

A. Inequalities
Making use of the standard inequality
&) 2 (), (2.5)
where the bar represents averaging with respect to a

weight function normalized to unity and the function
f(x) is convex downward, i.e.,

d’f[dx* > 0,
gives

exp [—z ﬁ LtV — R)}

B
< g f dt exp [~ AV () — R)],

so that one obtains the following upper bound for
(Z1):

2B < f dr, ff:ar exp [— L " ymi® i

+ pJ-dR(e—).ﬂV(RJ - 1)}

Therefore,
(Z(BN]Z, < exp [p f dR(eH7® _ 1)]
= (Z{(B))/Z,, 2.6)

where (Z{'(8)) is the configurational average of the
classical partition function.

B. Analyticity in p
Using some results obtained by Ginibre? in his
work on the analyticity properties of regular systems,
it is readily shown that (Z,;(8; p))/Z, is an entire
function of p (for real positive ), for all reasonable
(noncoulomb) potentials ¥(r). To be more specific,
we assume that ¥(r) can be written as a sum of two
terms
V() = @) + Vo)

satisfying the conditions
Vi) >0 for r<a,

@.7)

Vi)) =0 for r>a,

(2.8)

® J. Ginibre, J. Math. Phys. 6, 1432 (1965); in particular, see
Appendix 2.
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and

fdr[e"'“’z(”| — 1] < 0. (2.9)

For the case where the particle-impurity has a hard
core, a may be taken to be the range of this core.
Writing (2.3) in the form

(Z,(B; p))/Zy = Efexp [pQ(r(1)], /)I}, (2.10)

we have

o(r(®}, B = Au([x()], B) + Qu(Ir()}, B), (2.11)

where
0,([x(9), ) = f dRLexp (—z f " an - R)) - 1]

(2.12)
and

0r®)], ) = f dR :exp (—Z LﬁdtVl(r(t) - R))]

X [exp (——lﬁﬂdtVz(r(t) — R)) — 1].

(2.13)

Using (2.5) and (2.8),
1Q2([x()], A)I
< J dR | exp [—/1 f vt — R)] - 1‘

< f dR[exp ( A L L itV ) — R) ‘) - 1}
< f dR[exp ( L Lat v — R)l) — 1}

< j ARG L ﬂdt\:exp (B 1AVx(i) — R))) — 1].

Thus finally
101, B)] < f R[S _ 1], (2.14)

which is bounded by (2.9). Also, using (2.8), we have
[0:([r(], A < va([r ()], B, (2.15)

the volume of the region containing all points within
a distance a of the path r(¢). The equality in (2.15)
holds when V; is a hard-core potential. Ginibre was
able to obtain very strong bounds on

Efexp [pv,(x(t), p)1}

from which the analyticity of (Z;)/Z, now follows.

Having established the analyticity in p of (Z;)/Z,,
it is now possible to show that the average “pressure”
of an ideal gas with quantum statistics is also analytic

T. BURKE AND J. L. LEBOWITZ

in p for ¥(R) > 0 and ef* < 1. This is readily seen by
expanding the integrand in (1.17) in powers of e?* for
u <0, since n(E) =0 for E <0, when V(r) > 0.
The coefficient of e is (£ 1)1 (IQ)y-1Z,(If)) and is
bounded by

i (_m \" —A1BV (R)
l i_ﬂl) exp | p f dR(e — 1)]
,

according to (2.6), where v is the dimensionality of the
space considered. The series will therefore converge
to an analytic function of p for ef# < 1. It is an
interesting but unanswered question whether the
Bose-Finstein condensation of an ideal gas, p =0,
will disappear at some finite p. This could happen, for
example, if n(E; p) was zero for E < E, and

n(E, +; p) #0.
C. Analyticity in 1

By expansion of each term in the p series, when
(2.11) is satisfied, in powers of the coupling constant
A and rearranging, one can obtain an expansion of
{Z,(P)) in powers of A. This series was considered by
Doniach,® who showed that (Z;(f)) is an analytic
function of 4 for certain potentials. If we expand the
potential in its Fourier components, we find

ox(®), p) = f dR[exp (—/1 L ﬁdtV(r(t) - R)) - 1}
=de S %Uﬁmvum - R)]m |

m=1 0

___z(_'i)_ z Vkl"'Vkma(fki)
m=1 M} ki, kn i=1

B B
Xf...fdtl...dtm
0 0

x exp [ik, - r(t;)] - - - exp [ik,, - v(2,,)].
(2.16)

Each term in the A expansion will involve many-
temperature Green’s functions of the form

<, tm) = E{eikl'r(tl) e eikm~r(tm)}

*
= le.'.km(tl’ * ",tm).

Ky knlfLs

Since

exp [i:gn:l k;- r(t,-)il = cos (; k,- r(t,-))
+ isin (Z K, - r(ti))

and for every path for which
I(t) =To+ X1, I(fy) =Tg+ Xp, """
there is a corresponding path with

r(t) =1, —X;, () =Ty — X5, """,
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then the imaginary parts cancel out because ry* > k; =
0. Furthermore,

|Gl < E{lexp [ik; - x(1))] - - - exp [ik,, - x(t,)]i} = 1.

2.17)

Each term in the 4 expansion will be majorized by

the absolute value of a product of terms of the type

on the right-hand side of Eq. (2.16) in which the

exponentials have been replaced by unity. Then the

A expansion will exist for all values of  if the following
conditions on the potential are satisfied:
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where « is a length representing the range of the pot-
ential. These conditions were derived by Doniach,?
who introduced a harmonic-oscillator potential which
was finally set to zero and used properties of oscillator
averages in order to prove the required properties of
G. It is easy to show that, when the conditions (2.18)
are satisfied, the p expansion also exists.

3. GAUSSIAN RANDOM POTENTIAL

For a particle in a potential ¢(r),

2,8, [9D/Zy = E{exp [— ﬁ ﬂdtzp(r(t)):“. G.1)

By “Gaussian averaging” 7 we mean

f S¢Z(B, [9]) exp [— 2 f dr dr' (Bt )K(r — r')}

J 8 exp [— % J dr dr' g(©)p()K(r — r’)jl

(ii) Wil < (‘g) 7, (2.18)
(Z,B) =
Thus,
@@z = Elexo [ [\t [ k) - )]
(3.2)
where

f K(x — DKWy ~ 2)dy = 6(x — 2). (3.3)

Comparison with (2.3) shows that (3.2) “corresponds”
to the random scatterers case in the limit p — oo,
A —0 such that pA? = const with the identification

Kr) = 2% f dRV(R)V(R + r),
when

f dRV(R) = 0, (3.4)
It has also been pointed out by Halperin and Lax®
that the Gaussian random potential is the high-density
limit of the random scatterers model as a consequence
of the central limit theorem,

The path integral (3.2) cannot be explicitly evaluated
for any physically interesting potential correlation
K. If K satisfies the inequalities

M, < K'(r) £ M,,
then (Z,(8))/Z, has corresponding bounds
P L (Z(BNIZo < (3.5)

and one easily sees that an expansion in 12 exists. One
can find a more useful lower bound using the in-

equality which follows from (2.5):
8 g

ZuBN/Zy > exp [E{ [an f A6,K(e(ty) — r(tg))ﬂ.
0 0

(3.6)
When K~ has a Gaussian form
2\ v/2 9
K(r) = y("i) e, 3.7
7T

where » is the dimensionality and § drK—(r) = , the
right-hand side of (3.6) can be evaluated to give in the
one-dimensional case

ZABNIZy > exp [yﬂ (2—;’" ﬂ)%sin’l {m}]

(3.8)
In two dimensions we have

(Zy(B))/Zo > exp [ —ympax

(et + 2mp)t
3
x In (2= 2mBNT g
" {a o f 2m/ﬂ)"’}:| G9)
In three dimensions we have

220 2 o [ Z2EIm_
(o + 2mip)

From (3.5) the upper bound in the case of Gaussian
correlation is given by

ZAB)Zy < exp [527/ (“—)’2]

J. (3.10)

T

When « — 0, which can be considered as the limiting
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case of a long-range potential correlation, the upper
and lower bounds become identical and thus {Z,(8))
is obtained exactly in this limit. In the limit « — oo,
K~ becomes a d function and we can make a connection
with the work of Halperin and Lax® and Zittartz and
Langer,” who calculated the low-energy behavior
(E — — o) of the average density of states n(E) in the
case of “white noise’’:

K(r) = y5(r). (3.11)

In this limit we obtain in the one-dimensional case
(3.8)

(Z\(B)IZo 2> exp yB(Bmm[2}],  (3.12)
but the two- and three-dimensional bounds (3.9) and
(3.10) diverge as « — oo (the exponent diverging
logarithmically and linearly, respectively). This is in
agreement with the density of states results®? which,
as E — — oo, predict a behavior

— 2—v/2
n(E) ~ exp [M:l (3.13)
y

which, from (1.16), will lead to a finite value for
(Z,(#)) in the one-dimensional case and to an infinite
value in three dimensions. The divergence in the two-
dimensional problem may be associated with the fact
that, as discussed by Halperin and Lax,® in the case of
two- and three-dimensional “white noise,” the second-
order corrections to the variational energy diverge due
to short wavelength potential fluctuations. This leads
to an infinite constant in (Z,(f)) unless those fluctua-
tions are cut off below a certain wavelength, which is
the case if K~ is not a true é function.

A further lower bound on (3.2) may be obtained by
application of the methods used in Feynman’s
treatment of the polaron problem.* This leads to a
complicated expression which, however, has the
same behavior in the “white noise” case as the bounds
(3.8)-(3.10). The expression (3.2) for (Z,(f)) also
satisfies the condition for applicability of the extension
of Feynman’s variational principle for the free energy
to include dissipative processes, which was introduced
by Doniach in his second paper.® This condition
is that (Z,(8)) is a convex-downward function of
any parameter, say A, multiplying K in (3.2)

0XZy(B))[072 > 0,
which, from (3.2), is true for any function K-,
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APPENDIX A

The free energy of a harmonic crystal can be written
in the form?®

F= f * doF(w)g(), (A1)

where F(w) is a smooth function of w and g(w) is the
distribution function of normal mode frequencies of
the crystal (eigenvalues of the dynamical matrix).
If, for simplicity, we consider a crystal with one atom
per unit cell, then we can write g(w) in the form

g(w) = 20G(w*), (A2)
where
G(w?) = N —d—z N(w?) (A3)
do
and
w2
N(w?) =f dx Y 8(x — &*(k)) (A%
0 k
is the number of modes in the crystal with
(frequencies)® < w2,
In this Appendix we show the existence of
no(w®) = No(0?)/Q (A5)

in the limit where the number of atoms N in the
crystal and its volume €2 become infinite in such a way
that N/Q is constant. (Al)~(A4) then lead to the
existence of the free energy density (F/C2) in this limit.
The proof also applies to a crystal with random
masses or a random distribution of atoms on lattice
sites.

For m identical crystals of cubic geometry each
with N atoms in volume €2, Np(w?) and the eigen-
frequencies are the same for each crystal. For the
system taken as a whole, the number of

(frequencies)® < w?,
Noa(@?) = mNo(e®) = f dx 3 8(x — WA (),
0 k

when w,, (k) are the eigenvalues of a dynamical matrix
which can be decomposed into matrices referring to
the individual crystals alone, each having O(N)
elements in the case of finite range interatomic forces.

If the m crystals are joined together in some way to
form a new crystal I with mN atoms and volume m{2,
then

N (o) = f 3 60 — o),
0 k

10 A, A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory of
Lattice Dynamics in the Harmonic Approximation (Academic Press
Inc., New York, 1963).
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in which I (k) are eigenvalues of a matrix which
differs from the above only by interaction terms
between component crystals. These interaction terms
correspond to O(N?%) elements since only surface
atoms will contribute such terms to the dynamical
matrix. By Ledermann’s Theorem! the number of
eigenvalues of this matrix I, < w? will differ from the
number for the previous matrix w?, < ® by, at most,
the number of rows and columns which are changed,
ie., by less than «,N¥ where «,, is some number
which depends on m and on how the crystals are
joined but is independent of N.
Hence

nlo = Noo(@)/mQ = N,o(@?)/mQ + «,NHmQ
= na(@?) + R,q(o?),

where

!

R, o(w?) ~ N¥Q.

Following the method of Griffiths,! consider a simple
cubic lattice of lattice constant 1. Let the cube € for
s=2,3,4, -, be of volume Q, = 23() and contain
23N particles so that it is composed of eight cubes
Q. ;. The corresponding values of n(w?) satisfy an
inequality of the type

n(s)(wz) g n(s—l)(w2) + lR(s)(w2)l’
where

. lagl (22N
[R¥(w?)] < '—8‘;3;9—

= ¢~
in which &, is the maximum possible value of «g.
Therefore

n(s)(wZ) < n(s—ll(w2) + CQ—%z—s.
Thus the quantity
n(s)(wZ) + CQ—%z—s

is monotonically decreasing as s— oo. Since this is
bounded below by zero, it will approach a limit n(w?)
in the limit s — co. By a method similar to that of
Griffiths, one can show that an arbitrary sequence of
cubes of increasing volume will yield the same limit
n{w?) as the particular sequence €, .

For a random crystal the above argument follows
through where each crystal has some particular
configuration 0 and one takes the average

(n(w®) = ;P(G)n(wzwl),

in which P(0) is the normalized probability of con-

11 R. B. Griffiths, J. Math. Phys. 6, 1447 (1965).

1533

figuration 6. It is easily seen that
(n(s)(wZ» < (n(s—l)(w2)> + CQ—.}fz—-s
and the argument follows as above.?

APPENDIX B

In this Appendix we shall prove the existence of the
thermodynamic limit of the free energy per unit
volume defined in (1.6) for a system with a Hamil-
tonian given in (1.1).

The problem here is more complicated than in the
case without scatterers, where the existence of the
free-energy density in the thermodynamic limit was
proved for very general interactions by Fisher'? and
Ruelle.’® While we need not assume any restrictions on
the interaction between the particles beyond those
necessary for the existence of the thermodynamic
limit in the absence of any scattering centers, we shall
assume that the potential V{(r) between particle and
scattering centers satisfies the “strong tempering”
condition of Fisher'*:

Vir) <0 when r> D, (B1)
as well as the more usual condition that
f [ — 1] dr < . (B2)

Furthermore, we shall assume that the particles of
our system, of which there are M, are confined to a
cubical box with sides of length L, L3 = Q. The
scattering centers, on the other hand, are located
inside a larger cube of sides L + 2D, (L 4 2D)* = Q/,
centered on the original cube . The probability
density for having precisely / scatterers at positions

R,, - - -, R, in some volume element w € (" is assumed
to be given by
e—pwpl

PO) = PRy, R)=—F, (B3

so that p is the average density of scatterers.
To prove the existence of
lim — E<F_> = lim @_1(}’,____]\4,52)) (B4)
Q-0 Q' - w Q’

for M/Q fixed under the assumptions (B1) and (B2)

and the special kind of boundary conditions we have

used requires only a small modification of the methods

of Fisher and Ruelle. We shall therefore give only a

brief outline of the proof. There are two parts to the

proof: (1) finding an upper bound on ({In Z(Q"))/Q’
12 M. E. Fisher, Arch. Ratl. Mech. Anal. 17, 377 (1964).

13 D. Ruelle, Boulder Lectures 1963 (University of Colorado,
Theoretical Physics Institute, 1963).
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which is independent of Q'; and (2) showing that,
when eight cubes of volume Q' are put together to
form a larger cube of volume Q" = 230" with 23M
particles in it, then

(In Z(y", 25M, 23Q))[23Q)’
2 (InZ(y, M, Q)[/Q" + 0(Q),
where " is the configuration of scatterers in Q.

An upper bound on Z(y, M, Q') is obtained from
the condition that

Uy, - ,13) > — MO, O const, (B6)

for all values of the r,. This condition is required for
the existence of the thermodynamic limit of the free
energy in the absence of scatterers. Hence

(BS)

1
—nZ(y, M, Q'
Q,<n (v »

lefille o)

<éM(I)+1_ln(§) +g,l_pfle—ﬂV(R)_1!dR

< ‘%9 (B7)
<&

<G (BY)
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where C is some constant independent of Q and use
was made of (2.5) in deriving the second inequality.
Having obtained the bound in (B8), we can now pro-
ceed with our construction of the larger cubes a la
Fisher and Ruelle.

The inequality (B5) is obtained by first noting that
InZ(y", 2°M, 2°%Q°) > In Z'(y", 2°M, 23Q"), where Z’
is the partition function when the 23M particles are
constrained to be inside, and evenly divided between,
the original eight cubes Q,, i =1,--+, 8, of volume
Q. A lower bound on Z’ is now obtained using (B1) if
we neglect. the interactions between particles in
Q, and scattering centers outside ;. The interaction
between particles in different boxes €2, is now bounded
by a term of o({2) which is independent of the con-
figuration of scattering centers. Finally, we obtain

8
In Z(y", 2°M, 2°Q") > 3 In Z(y;, M, Q}) + o(Q),
i=1
(B9)

where y, is the configuration of scatterers in Q,. Due
to the independence of the distribution of scatterers
in the different boxes, averaging of (B9) now yields
(BS).

- VOLUME 9, NUMBER 10 OCTOBER 1968

Quantum Corrections to the Second Virial Coefficient at High
Temperatures

Roeert NYDEN HILL
Department of Physics, University of Delaware, Newark, Delaware

(Received 13 September 1967)

The Laplace transform of exp (—pH) is the Green’s operator of the negative-energy Schrodinger
equation (H + W)~*. Conditions are stated under which a large 4 asymptotic series for the Green’s
operator can be inverse-Laplace-transformed term-by-term to obtain a small 8 expansion for exp (—BH).
This approach and the Watson transformation are used to calculate thefirst few terms of high-temperature
asymptotic expansions for the exchange second virial coefficient for hard spheres and for the Lennard—
Jones potential. The known results for the direct second virial coefficient for hard spheres are extended.
The Wigner-Kirkwood expansion is calculated to order #® and used to calculate the direct second
virial coefficient for the Lennard-Jones potential through order 4°.

I. INTRODUCTION AND SUMMARY

The problem of calculating quantum corrections
to the second virial coefficient at high temperatures
has been only partially solved by previous authors.:

1 References to work prior to 1952 may be found in J. O.
Hirschfelder, C. F. Curtiss, and R. B. Bird, The Molecular Theory of
Gases and Liquids (John Wiley & Sons, Inc., New York, 1954), pp.
407-424. The problem has been considered more recently by H. E.
DeWitt [J. Math. Phys. 3, 1003 (1962)] and by F. Mohling [Phys.
Fluids 6, 1097 (1963)], who give references to more recent numerical
work.

The exchange contribution has been particularly
difficult, and it is only in the last year that Lieb,2 by
calculating rigorous upper and lower bounds, has
obtained the leading term of an asymptotic expansion
for the exchange contribution in the particular case of

2 E. Lieb, J. Math. Phys. 8, 43 (1967). An upper bound to the
exchange second virial coefficient had been found previously by
S. Larsen, J. Kilpatrick, E. Lieb, and H. Jordan, Phys. Rev. 140,
A129 (1965).
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