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Separation of the Interaction Potential into Two Parts in Statistical Mechanics.
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The methods developed in a previous paper for treating systems with a pair potential of the form
o(r) = ¢(r) 4 w(r) are here applied to lattice gases (isomorphic to Ising systems). We chose ¢(r) to be
the “hard-core” potential preventing the multiple occupancy of a lattice site and w(r) the inter-
action between two particles (or parallel spins) separated by r. The resulting graphical formalism is
gimilar to that obtained by other authors exclusively for spin systems. We are thus able to connect
their work with the general Mayer theory as it was originally applied to fluids and also to find new
interpretations for some of the quantities appearing in the spin-system expansion. The formalism is
then used in the case where w(r) is a “Kac potential” of the form w(r, v) ~ v* ¢(v r), where »is the
dimensionality of the space considered and v~ is the range or w, assumed very large. We then obtain
systematic expansions in y for the correlation functions and thermodynamic properties of the system.
These expansions are, however, invalid inside the two-phase region and near the critical point of the
“van der Waals” system; i.e., a system with ¥ — 0. To remedy this we introduce a new self-consistent
type of approximation which is suggested by our graphical analysis of the y expansion but is applicable
also to systems with general interactions w(r), not necessarily parametrized by v. The spatially asymp-
totic behavior of the two-body correlation function at the critical point is then discussed using these
graphical methods. From the expansion procedures it seems possible to find specific subsets of graphs
which will give any desired agymptotic behavior of the two-body correlation function including
known exact ones. However, we could find no a priori reason for the retention of these subsets of
graphs to the exclusion of all others.

L. INTRODUCTION

N Part I of this series’ of papers, a systematic
method was developed for investigating the cor-
relation functions and the thermodynamic properties
of a classical system of particles interacting via a
pair potential v(r), which may be usefully considered
as composed of two distinet parts: a “‘short-range”
part ¢(r) and a ‘‘long-range’ part w(r),

@) = q1) + w). (L.1)

It is the purpose of this paper to apply these methods,
with new extensions, to a system of particles whose
positions are confined to a regular lattice, i.e., a
lattice gas.

The motivation for dividing »(r) into two parts
is to take advantage of the fact that in many cases
the properties of the reference system, i.e., a system
for which the interparticle potential is ¢(r), are
better known than those of the actual system with
interaction v(r). As shown in I, we can express the
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1 J. L. Lebowitz, G. Stell, and S. Baer, J. Math. Phys. 6,
1282 (1965); referred to as I; e.g., Eq. (I-3.1) refers to Eq. (3.1)
in I.

properties of the actual system in terms of w(r) and
the properties of the reference system by noting that
the decomposition of #(r) into the form (1.1) induces
a corresponding decomposition of the correlation
functions (i.e., the modified I-particle Ursell func-
tions, F,) into short-ranged and long-ranged parts,
PFo=F+F, 1=23,--.
The full #, can be represented as a sum of graphs
composed of “long-range’ potential bonds that rep-
resent &) = —pw(r), [ = 1/kT], and “hyper-
vertices” that represent the F3. The latter functions
can in turn be expressed in terms of & and the
correlation functions of the reference system.
Applying to lattice gases the formalism developed
in I for continuum fluids, we identify (unless other-
wise stated) the short-range part of the interparticle
potential g(r) with the “hard-core” repulsion, which
excludes the multiple occupation of a lattice site,

@, = 07
q(@) ={ T
0, r #0.

(1.2)

w(r) then represents the total finite interaction be-
tween two particles at different lattice sites. This
identification of ¢g(r) and w(r) greatly simplifies the
structure of the ‘hypervertices,” enabling us to
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develop new methods for their evaluation. It also
makes this lattice gas, confined to a volume
(i.e., Q lattice sites) at fugacity z isomorphic to a
system of Ising spins’® interacting with a pair po-
tential w(R — R")e(R)o(R’) and subject to a uniform
external magnetic field H with

z = exp (BH + 3Ba). (1.3)

Here, R is a vector characterizing a particular lattice
site, o(R) is a spin variable, ¢(R) = +%, and

> w® —R).

R’

o =

(1.4)
Calling =(B, 2z, @) the grand partition function of
the lattice gas and Q(8, H, ) the canonical partition
function of the spin system, we have

0'nE=1hzs+ '@ — 3B (1.5

In the thermodynamic limit @ — «, (1.5) assumes
the form

Bp = 3lnz — ¥ — %alﬁy (1-6)

where p is the pressure of the lattice gas, and ¥ is
the Helmholtz free energy per spin of the spin
system.

The equality (1.5) is based on the relation between
the microscopic density operator of the lattice gas
p(R), which can only assume the value zero or unity
and the spin variable at the Rth site o(R),

pR) = Z SR —r1) =e® +5=(0,1, 1.7

where r; is the position of the ¢th particle, and
3(r) is the Kroenecker delta function. It follows
immediately from (1.7) that the one-particle dis-
tribution function of the lattice gas® is

mR) = (pR)) = (¢R)) + 3,
(N) = ;m(R) =p2=M+13%0, (@18)

where {(¢(R)) is the average magnetization at the
site R, (N) is the average number of particles in
the system, and M is the total magnetization.
Similarly,?

F,®R,R) = (o®)o®")) — (p®))}p®R"))
= (@®)e(R")) — (cR)NsR’)), (1.9)
and generally, PR, --- , Ry) is equal to the Ith
spin semi-invariant for ! > 2. This isomorphism
makes the entire formalism developed in I, special-
ized to lattice gases, immediately applicable to spin

2 C. N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952).
3 J. L. Lebowitz and J. K. Percus, J. Math. Phys. 4, 1495
(1963); cf. also Sec. II.
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systems and directly comparable with other for-
malisms developed specifically for the Ising problem.
It is one of the aims of the present work to show
the way in which our formalism is related to and
generalizes a number of specific Ising spin (lattice-
gas) results previously derived by other authors.*

Our work on lattice systems will be presented in
two parts to be referred to as II (this paper) and
IIT (a paper to follow), with II devoted to formally
rigorous results, and IIT to approximation methods.

In Sec. II of this paper, we obtain the general
graphical expressions for the correlation functions
and thermodynamic properties of a lattice system
in terms of graphs with ® bonds and F} hyper-
vertices. It is also shown there how to express the
F3 as functionals of ® and of the density derivatives
of %, the modified Ursell function of the reference
system. For the situation considered bere, with ¢(r)
given by (1.2), the reference system is an ideal
lattice gas, making the /% polynomials in the density
p. Comparison with other work is also made here;
the F3 coinciding with the cumulants 3, of Horwitz
and Callen and of Englert.

While our expansions do not depend upon the
introduction of any particular parametrization, they
are especially well suited for use in the case in which
w(r) is a “Kac potential” containing a parameter v

w(r, v) = ve(y1), (1.10)
where » is the dimensionality of the space considered.
The value of ¥ thus corresponds to the inverse range
of w(r, v). We are able to identify the terms in our
expansions that contribute to any given order in 1,
and explicitly give the expansion of the free energy
in terms of & and p through terms of order (y")?
(as well as the prescription for finding In 5 to any
order). The result to order (y")* agrees with that
of Coopersmith and Brout®; our general result can-
not be directly compared with theirs. At p = %
we can also compare our explicit result with that
of Siegert® (who uses spin-system language and con-
siders the case H = 0) and we find agreement.

In the limit ¥ — 0, it was shown by Lebowitz
and Penrose’ [for a wide class of potentials ¢(r)
and ¢(y)] that the Helmholtz free energy per unit
volume a(B, p, 0+) = lim,, a(B, p, 7v), from which
the other thermodynamic properties of the system

¢ See Refs. 12, 13, 17-19,
(19‘23 31}’)[ Coopersmith and R. Brout, Phys. Rev. 130, 2539
sA.J. F. Siegert, “On the Ising Model with Long-Range
Interaction,” Northwestern University preprint (1962).
(1923%5 L. Lebowitz and O. Penrose, J. Math, Phys. 7, 98
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may be obtained, is given rigorously by applying
the Gibbs double-tangent construction to the func-
tion

ao(B, P) = a'o(ﬂ) e+ %apz. (1'11)

Here, a°(8, p) is the free energy per unit volume
of the reference system corresponding to w(r, v) = 0,
and

a = lim >, w® — R’)

= lmat) = [o@ dy. (@12

For the lattice gas considered here, we have
a’B,0) =B8'lplnp+ (1 —=p (- pl (113)

‘When these results are translated into spin language,
we obtain the Weiss self-consistent theory of mag-
netism, which is thus proven rigorously for a spin-
interaction potential of the form (1.10) in the limit
v — 0. This generalizes the results of Baker,® and
Kac and Helfand,” who proved the Weiss theory
for a one-dimensional spin system with a special
type of Kac potential w(r, v) = }aye™"'"'; a < 0.
(Baker also considered similar potentials in three
dimensions, cf. Sec. III.)

When we carry through our expansion in vy, we
obtain

A, 1) = a8, ) + 3 0B, ), G~ 0.
(1.14)

For a < 0, ferromagnetic interaction, the a.(8, p, v)
diverge for n > » when 8 and p approach values
corresponding to (dpo/dp)(8, p) = 0, i.e., the bound-
ary of the meta-stable region in the van der Waals—
Maxwell (or Bragg-Williams) equation of state
(cf. Fig. 1),

po(8, p) = p'ld(@o/p)/dp) = —87' In (1 — p) + Jap’.
(1.15)

The failure of the ¥ expansion inside the Bragg-
Williams (BW) two-phase region, as well as in the
vicinity of the BW critical point, leads us to propose
in Sec. IV a nonperturbative self-consistent iterative
approximation method for the evaluation of the
F? occurring in the graphical expansion of F.. To
lowest order, this new method yields an F, identical
to that obtained from the (mean) spherical model

8 G. A. Baker, Jr., Phys. Rev. 126, 2071 (1962).
5 M. Kac and E. Helfand, J. Math. Phys. 4, 1078 (1963).
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of Lewis and Wannier'® (this is a modification of
the Berlin and Kac'' spherical model). Explicit
calculations with this approximation are carried out
in III.

Higher-order approximations can be obtained in
several ways, one of which involves an auxiliary
function W (Eq. 2.22) that has independently been
considered by Stillinger'? and by Abe.’* The latter
used it in discussing the spacially asymptotic be-
havior of #, at the critical point. Here we give a
somewhat more general discussion than Abe’s, point-
ing out the way in which various assumptions
concerning the relationships between W and 7, are
related to the spatially asymptotic behavior of
P(r,,) at the critical point.

II. GENERAL GRAPHICAL FORMALISM FOR THE
CORRELATION FUNCTIONS AND THERMO-
DYNAMIC POTENTIALS

In this part we summarize, for lattice systems,
the graphical deseription given in I for the modified
m-particle Ursell function #,.(ry, +-- , 1,). The P,
are defined® in terms of the k-particle distribution
functions A.(r,, +++ , ry) in the same way as the
ordinary Ursell functions F,,(r,, - -« , r,,) are defined
in terms of the ordinary distribution functions
(L, ++- , 11). The A(r,, --- , ;) differ from the
n(ry, ++- , r,) by being the probability densities
of finding k particles, not necessarily distinct, at
positions r,, --- , r, on the lattice. Thus

M) = n(@r) = (o)),
fa(ry, 1) = {p(t,) p(r2))
= ny(t;, 1) + nry) 8@, — 1), -+, 2.1

with &(r) denoting (for lattice systems) the Kronecker
delta function. Correspondingly,

F (1) = A,(r) = Fy(ry), 2.2
Fs(ru 1) = fg(ty, ) — Ay (T:)0,(12)
= F,(t,, 1) + F\(r) 8@, — 1), ete.

Using the relationships (1.7) and (1.8) shows that

1 H, W. Lewis and G. H. Wannier, Phys. Rev. 88, 682
(1952). An extension of this model to lattice gases for which
g(r), the infinitely repulsive potential, is not confined to
r = 0 (and are thus not isomorphic to spin systems) has been
made recently by Lebowitz and Percus (Ref. 21). This exact
model leads to an integral equation for the radial distribution
function which remains valid also in the continuum limit and
coincides when w(r) = 0 with the Percus-Yevick integral
equation.

1 T, Berlin and M. Kac, Phys. Rev. 86, 821 (1952).

12 F, H. Stillinger, Phys. Rev. 135, A1646 (1964).

13 R, Abe, Progr. Theoret. Phys. (Kyoto) 33, 600 (1965).
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P, is equal to the Ith semi-invariant of the spin
system for I > 2. Thus, [cf. (1.9)],

Fy(r), 12, 1) = Aa(Ty, T, T) — Ay(1)Au(rs, 1)
— (1) A (11, 1) — A,(X:)Aa(Ty, T2)
+ 28,@) @) A @E) = (o@)o(r:)o(rs))
— {o@)Xo)o @) — (@) Xo)o(Ts))
— (o) Xo(T)o(rs)) + 2o(r)Xo(t:) Xo ().

Starting with the usual representation of the
Pi(r,, --- , 1)) in terms of composite graphs with
density p, or fugacity z vertices, and two type
of bonds: “short-range” K-bonds, K(x;.)
{exp [—Bq(x:;)] — 1} and “long-range” ®-bonds,
®(x,) = —pw(xy,), cf. (I-2 8), we now divide each
P, into two parts; F? (¥, short-range) and FE
(F, long-range),

Fl(rl; * :rl) = F:<r1; cee

(2.3)

,1'1) + F’l;(rh vt ,1'1).

2.4)

Here, F is the subset of all composite graphs in
P, in which there is a path, consisting of K-bonds
alone, connecting the labeled points r,, --- , r,.
The central graphical result in I, (I-2.15), states

Pi(r,, +-+, 1;) = the sum of all irreducible
graphs, with & bonds and #8(x,, --- , x;)
hypervertices, having l white circles labeled
by 1,2, ---, I, respectively. 2.5)

A hypervertex of order k, which represents a
function w.(x,, : - , Xi), can be pictured as a large
circle, along the circumference of which are attached
k vertices (or points). The small vertices can be
either black or white and correspond, respectively,
to field points over which summations are performed,
and to labeled points (root points). Each field point
has one and only one ¢ bond coming out of it going
to another vertex. A graph is associated with its
corresponding sum (over the field points) in the
usual way (treating each hypervertex as a point for
the purpose of counting). In (2.5), irreducible means
that there are no articulation hypervertices. Also
F5(r,, --- , r,) is represented by a single hyper-
vertex, e.g.,

1 4
Q = p;(rnrzyra, 1'4)
2 3
2
]
: : : :23

= Z Z p;(ru xl)tb(xlz)pg(x,, Iy, I3).

and
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For lattice gases with a short-range potential ¢(r),
defined in (1.2), K(r) = —4(r), and hence the
F3(x,, -+ , x,) can differ from zero only when all
the k points coincide. We have £, = F® = », = pand

ﬁi(xu ey X)) =0 8(X — Xy)
X 8z, — %X3) -+ 8(%; — %), k> 2. (2.6)

This greatly simplifies the graphical description (2.5),
since the hypervertices now become ordinary point
vertices albeit with values », depending on their
order. (We therefore represent them as simple points
when there is no danger of confusion.) It should
be noted also that the », depend on the interaction
potential w(r), since only the labeled (root) points
in a hypervertex have to be connected by a path
consisting of K bonds. In the reference system

w(r) = 0 the F, and the », then assume simple

values »},

F:(l'l,' Yy I'k) = V](: 6(1'1 -_ 1'2) 6(1'1 —_ 1'3)' . '5(1‘1 bt rk).
2.9

The values of »{ can be obtained easily from the
definition of the 7, as expectation values of products
of the microscopic density variable p(x;) by noting
from the definition of p(x,), (1.7), that, independent
of w, Ax(ry, ++- , 1) forr, = -+

fu(ry, <+, 1) = ([P(rl)]k> = (P(rl» =p (28)

with the last equality holding for a uniform system.
Hence, considered as functions of p,

W= Fl(rl) =p=()+13

v = Py, 1) = v + i@, 1)
= p(l — p) =} — (@,

vg = Py, 11, 1)) = vs + Fi(r,, 1., 1))

P — (A = 20) = [{o)’ — $)o),

It follows from the definition of the £,’s, k > 2,
that they (and thus also the +}) are even/odd fune-
tions of p — %, (i.e., (¢)) for k even/odd. The same
symmetry properties hold also for the »,. This can
be proved as follows: The F,.(r, - r,), when
expressed graphically by (2.5), are functions of the
v’s and &. Hence, we can write from (2.9),

m=2,3’ LY

= rb;

2.9)

ete.

vo(0) = fumlva, vs, vs ), . (2.10)

Equations (2.10) then provide solutions for the #,
in terms of p. We now note that every graph in F,,
which has ! &-bonds and s, vertices », (k = 2,3, - - ),
satisfies the relation >, ks, = 21 -+ m. Therefore

(D™ = (=D™* = (=n=*=*. (2.11)
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Here s; -+ s; + - - - is the total number of odd-order
factors v, in the graph. If we rewrite our set of
Eqgs. (2.10) as

V?,.(p) = V?,,((O’» = fm(”?»: Vsy = °° l Vo, Vqy *° )

and multiply each by (—1)", we obtain with the
help of (2.11)

(2.12)

V?,;('—(O'» = fm(_V:h Vsy I Vo, Vs, ) (213)

Solving the two sets of Eqs. (2.12) and (2.13) for
the »;, we obtain the required result: the », are
even or odd functions of {(¢) = p — % when m is
even or odd, respectively, for m > 2.

It is convenient sometimes, in the graphical rep-
resentation of F;, not to use &-bonds but €-bonds
which are the sum of all chains of ®-bonds and
ve-hypervertices. Representing such bonds by dot—

dash lines we have,

(‘3(1’12)= f——— t 4+ ittt 41—t 1 + e

= <I>(ru) + Z Z q’(rla)Vz 5(r3 - f4)<p(1'42) + .-

= Q™ ; exp (ik-r,;)3®)/[1 — »3kK)]

e (217) [ e Gr) 30/t — 7800 di, (219)

Q-

where ®(k) is the Fourier transform of'* &(r),

3k) = D exp (—iker;;)8().

Tas

with k confined to the first Brillouin zone of the
reciprocal lattice, k = (2r/L)m, with L = @',
and the components of m taking on integer values
between —1iL and 1L. In terms of graphs with C-

bonds, the equation analogous to (2.5) has the form

2.15)

14 We are dealing here with simple cubic lattices in »
dimensions of unit spacing. The lattice is assumed wrapped on
a torus of sides with length L, @ = L”, L an even integer. The
components of R then take all (integer) values from — 3 L to
3 L; the two end points coinciding and w(R — R’) = w(r), an
even functions of r, has to be defined for the components of r
assuming all (integer) values from — L to L, and then periodic
with periodicity L. This is readily done by having first w(r)
defined over the infinite lattice, e.g., w(r) ~ e~7!r! then, for
finite Q, setting the interaction w(r; Q) = Q7 ) e’k *r (k)
where @W(k) = Z, e~‘k°r w(r), the summation over r being
over an infinite lattice and k restricted to the first reciprocal
Brillouin zone, k = (2«/L) n, the components of n being
integers going from — % L to } L. Since this dependence of w on
© produces no effect in the thermodynamie limit, we do not
write it out explicitly (cf. also Ref. 6). We also ignore, for this
reason, graphs which “wind around the torus” and vanish
when L — o (cf. also Ref. 10).
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Fy(r,, - -+, 1;) = the sum of all irreducible
graphs, with @ bonds and v, hypervertices
having [ white circleslabeled by 1,2, - - -, [,
respectively, such that each hypervertex
of second order », must contain at least

one labeled point. (2.16)

A. Auxiliary Functions

We also introduce here, for lattice gases, the
direct correlation function C(r,, r;) of Ornstein and
Zernike,”” defined for uniform systems by the
relation

Fot, — 1) = PZC(rl — 1)

+p 2 Clt, — 1)F;, — ). (2.17)

The function
Cay,r) = p7' 8@ — 1) — Clry, 1) (2.18)
is the matrix inverse of Fz(rl, I,),
C) = (FE)]™, 2.19)

where C(k) and F,(k) are the Fourier transforms
of C(r) and P,(r). C(ry, 1) [or C(r,, 1,)] has a simple
graphical representation in terms of graphs with
p vertices and Mayer f bonds,’® and can also be
divided, in analogy with F,(r,, r,), into two parts
(cf. I, Sec. V)

6(1'1: ) = 0.(1'1; ) + GL(ru r.), (2.20)

and we have, for lattice systems with ¢(r) given
by (1.2),

C*r,, 1) = v3' 8@, — ). (2.21)

Unfortunately, however, the long-range part of C,
C* = — (", cannot be given a simple representation
in terms of graphs with & bonds and », hyper-
vertices. For this purpose we introduced in I,
Eq. (I-5.23), a different function, W(r), closely
related to C'(r), which does have such an expansion.
Calling W(r;;) = o°W(r.) + pé(r;,), we have for
its Fourier transform W(k),

Wik) = [Ck) + 3®]™
= F,®/[1 + 3®&F,E)] (222

or

Il

F,® = W)/l — Wk)I®].

15 1,, 8. Ornstein and F'. Zernike, Proc. Akad. Sci. Amsterdam
17, 793 (1914). Reprinted in The Equilibrium Theory of
Classical Fluids, H. L. Frisch and J. L. Lebowitz, Eds. (W. A.
Benjamin, Inc., New York, 1964).

16 See, e.g., G. Stell in Ref. 15.

(2.23)
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Now, W(r) = W) + W:(r) (with W* = F;) has
the same graphical expansion as F,(r), Eq. (2.5)
or Eq. (2.16), with the additional restrictions that
no graph contain any cutting bonds, i.e., bonds whose
removal separates the graph into two parts, each
of which contains a white vertex.

In the case of a field-free (H = 0) lattice system,
the function W(r) reduces (when r 5 0) to the func-
tion $[w(r)] introduced by Stillinger,’* and coincides
with the function I(r) introduced by Abe.'’ (Both
authors consider only the field-free case.)

B. Thermodynamic Properties

The thermodynamic properties of our system may
be obtained from F, in several ways (cf. Sec. VI
of I), chief among these being the fluctuation-
compressibility relation®

p/Bp/dp) = 22 Fy@) = F,(0), (2.24)
and the energy relation
u(B, ) = 32’ + 1 2 w0
= 9Ba(B, p)/38,  (2.25)

where u(8, p) and a(B8, p) are the internal and
Helmholtz free energies per unit volume, and use
has been made of the fact that w(0) = 0. All the
thermodynamic properties of the system follow from

a(B, p), with
a3, p) = ai(8, p) + 367" 2 w()

8
X f P8, ) dE',  (2.26)

where
ai(B, p) = a°B, p) + 3a'p’

with a° given in (1.13) and o’ defined in (1.4).

An explicit graphical representation for 8p =
Q7' In E was derived in Appendix C of I, which
yields, for lattice systems,

InE = 9Q8p = 98p, + S

= ZnGlr, B, (220)
where )
Gults; =+ 5 1)
=L S Mew 0l - x) (229
and

8 = the sum of all irreducible unrooted
graphs, consisting of &-bonds and at least
two »-hypervertices and two &-bonds =

O+@+A+...

and Bp, = —In (1 — p) + 3Ba’p’, as given

by (1.15). (2.29)

C. Evaluation of the »,

In order to be able to use Egs. (2.5) and (2.27)
to express the 7, and In % in terms of ® and quan-
tities that refer only to the reference system, it is
necessary to have a prescription that enables us
to express the », in such terms. The Eq. (I-2.18),
derived and discussed in I, yields this prescription
when combined with (2.5). For our lattice system
(I-2.18) can be written as

= won {5 (L)irron S

where 91 indicates a normal order in which all
derivatives go to the right before evaluation, and
FE0) = Fi*(r,, --+ , 1) forr, = -+ = 1, with
F}" the “very long”’-range part of 7, defined as

(2.30)

F7* is given by the same graphs, Eq. (2.5),
that we use for F, itself except that we
exclude all graphs in which any two labeled

circles are shared by a single hypervertex. (2.31)

(For k = 2, F{* and FY coincide.) Actually, for our
lattice system the right-hand side of (2.30) contains
only a finite number of terms for every I, since »°
is a polynomial in p of order &, so that 8%%/dp' = 0
for I > k. As a result we have

vs = vy + (8 vg/apz)ﬁg‘(O) = y) — F’;“(O),
vs = v3 + 38" »3/90°)F3(0) + (3" 3/80°) F3(0)
= v; — 3(1 — 2p)F3(0) + 2F3%(0). (2.32)

We can also get the above equations for », by using
(2.9) and (2.10) to solve for the », in terms of the
vo, but (2.30) is more direct and comes from the
general relation Eq. (I-2.18).

The equations considered in this section are not
based on any particular parameterization or ordering
scheme. Nevertheless, the detailed results of elim-
inating the », in favor of ») and 9%2/8p’ through
the use of (2.30) are only of use if we have some
means of estimating the relative importance of the
terms in the series that we finally obtain. One such
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means involves the use of a range parameter 7,
which we discuss in the next section.

D. Use of Fugacity, (or H), as the Independent Variable

The functions », and »; are natural functions to
use when the properties of the system are to be
expressed in terms of p and & or, in spin-system
language, (o) and ®. However, H or 2z rather than
(o) is more likely to be the independent variable
of interest when the system is being used as a model
for a magnet. To obtain expansions in terms of z
and ®, we use the expansions in I that contain
P hypervertices instead of £2 hypervertices. Apply-
ing the results of I to a lattice system then yields,
instead of (2.5),

F, = the sum of all connected graphs with
® bonds and F! hypervertices, having I
white circles labeled by 1, 2, --- | [, re-
spectively. (2.33)

Here, Fi(r,, -+- , 1) is the subset of all composite
graphs with z-vertices and K and &-bonds in F,,
in which there is a path consisting of K-bonds alone,
connecting every pair of points in the graph. The
last requirement implies that, for the lattice gases
considered here, K(r) = —¥&(r), all the z-vertices
in #{ must coincide. Hence, since we have assumed
that ®&(0) = 0, £/, considered as a function of the
fugacity 2z, must be equal to its value in the reference
system
Fl:(rl) te ’rk;z) = F:(rn te 1rk;z)

= m@) 6@ — 1) - 8T —1).  (2.34)

The p: may now be found directly from the
properties of the reference system (ideal lattice gas).
Introducing the variable z = In z = 8H + }8</,
we have

m = &' lln (1 + 2))/3(In 2)*

= (8*/92")[In (2 cosh z/2) + /2], (2.35)
S0

9" p/0z' = mees (2.36)

and
i =2/l +2 = }tanh o) + 3,
pa = 2/(1 +2)* = % sech’ (§2),
po = 2(1 —2)/(L +2)° = —2(u, — P, . (2.37)
Instead of (2.30) we have [from (I-C-6)]

v, = {exp [1;1 Gi(0)(8"/3z )},  (2.38)

STELL, LEBOWITZ, BAER, AND THEUMANN

where G, is defined in (2.28) and
Gi(0) = Gi(my, - - =1. (2.39)
Finally, instead of (2.27), we have [from (I-C-3)]

In £ = (In )° + the sum of all connected
graphs with ® bonds and at least two un-
labeled p; hypervertices,

+,1) for r, = .

(2.40)
where
Q' 5’ =m{ + 2,

so that, from (1.2), we have the expression that gives
the free energy of the spin system:

mM@Q=In(1l+2)~1n:z
<+ the sum of Eq. (2.40).

(2.41)

(2.42)

E. Comparison with Other Work

Having obtained the u,~hypervertex and »,-hyper-
vertex expressions from the general results of I, we
can make contact with the spin-system expansions
of others.

Although Eq. (2.40) and (2.33) have the same
graphical structure as the “unrenormalized” linked-
cluster expansions that have been derived by others*
especially for spin systems, they are not identical,
graph by graph, to the latter owing to a difference
in the functions represented by the hypervertices.
The semi-invariants used most often in discussing
the spin systems—for example, Englert’s'” M3(z’)
or Stillinger’s D,—are somewhat different functions
[e.g., after adjusting the units, M3(z’) =3 tanh (z'/2)
instead of u, = % tanh (x/2) 4 1] of somewhat dif-
ferent arguments (¢’ = BH instead of z = SH + 3p),
the general relation being

:(xl + %ﬁa') + 3 6.

These two differences just compensate one another
to lead to the same final graphical prescription
whether the hypervertices represent the u,’s or the
MPs.

On the other hand, in comparing the »’s with
the “renormalized” semi-invariants—for example,
Englert’s M ,—these differences are no longer found.
There is, at most, only the trivial difference of
notation; in a spin system, it is natural to express
the v, as a polynomial in the long-range order
R = 1 — 2p instead of p itself.” Whether », is
expressed as the function ».(p) or as M.(R), each
graph in the expansion (2.16) represents the same
function of p and &.

() = (2.43)

17 ¥, Englert, Phys. Rev. 129, 567 (1963).
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The M, of Horwitz and Callen® would also
coincide with », if their renormalization procedure
to obtain M, to all orders were explicitly carried
through (which is indeed what Englert did) and
in the field-free case (H = 0) our », also appear
to reduce to Stillinger’s D,.

Our »; are related to the vertex functions appearing
in the expansions of Brout,' and of Coopersmith and
Brout,® in the sense that they depend explicitly on
p or R rather than on z or H, but there is a technical
difference resulting from our use of the 8%3/dp"* in-
stead of the combinations of Kronecker §’s and »’s
that appear in the expansions of those authors.

We have thus established the connection between
the general expansions that were derived in I for
an arbitrary decomposition of a potential into two
parts and the Ising spin-system expansions here-
tofore derived by means of procedures that are
immediately applicable only to those systems, The
connection is made via lattice systems for which
the reference potential is identified with the exclusion
of multiple occupancy of a single site (i.e., the asso-
ciation of a single spin to each site). Our method
has the advantage of giving a simple direct inter-
pretation to the hypervertices », in terms of the
short-range part of 7, as well as suggesting some
new generalizations.

One natural generalization that our expansions
suggest is the consideration of a wider class of
reference systems. One might, for example, use the
exactly solvable 2-dimensional Ising model with
nearest-neighbor interaction as a reference system,
and introduce a further interaction as a perturbation.
Alternatively, the nearest-neighbor potential itself
could be considered as part reference potential and
part perturbing potential to facilitate the develop-
ment of new approximation schemes. This is the
starting point of an approximation scheme developed
by G. Horwitz.*® For such reference systems, the
F2 no longer have the simple form (2.6), but all
our formal results immediately apply.

III. LONG-RANGE KAC POTENTIALS

Following the analysis developed in I, we now
consider the case where w(r), which was arbitrary
so far, contains an inverse range parameter v which
can approach zero {after the size of the system has
become infinitely large). Following Baker,® we shall

(19:; ? Horwitz and H. B. Callen, Phys. Rev. 124, 1757

1).

(19201)1. Brout, Phys. Rev. 115, 824 (1959); tbid. 118, 1009
2 G. Horwitz (to be published),
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use, for lattice systems, a slightly modified “Kac
potential” of form (1.10) for w(r, ),

w(r, v) = {7'>\('r)sa(vr), r 0,
0, r=o,

3.1

where » is the dimensionality of the space con-

sidered,™ and A(y) is so chosen that
mAY) =1 (3.2)
¥—0

and the “integrated strength’” of the long-range

potential

2w,y =o =\y) L oty = a (3.3)

is independent of . The last summation is over
an infinite lattice with the r = 0 term omitted.
We assume for simplicity'* that we are dealing with
simple cubic lattices of unit spacing, so that in the
limit ¥ — 0, (3.3) becomes the integral of o(x)
over all space, coinciding with (1.12). [The advantage
of introducing the multiplying factor A(y) which has
only trivial effects for y — 0 is that it permits
simultaneous consideration also of very large v, in
which case w(r, v) becomes a nearest-neighbor po-
tential with the “integrated strength” of the poten-
tial remaining fixed.] We generally leave A as a
parameter and consider its explicit dependence on
v only at the end. It was shown in I how to obtain
an expansion of F, (and other F,) in powers of ¥
[for well-behaved ¢(y)’s, cf. (I-3.1) and (I-3.3)]. For
this purpose, it is necessary to treat Fi(r, v) and
F}(y, v) differently, considering them, respectively,
as functions of r and v, and as functions of y and ~;
y = 4r. This difference is completely obvious for
the lattice systems considered here, where Fi(r, v) =
v2(v)8(r), and need not, therefore, always be kept
track of explicitly, as long as we use the convention
that 8(y) = 8(r).

To facilitate the y expansion of F,, two kinds
of ordering, v and T ordering, of the graphs entering
into #,, were introduced in I. In the y-ordering, we
classify all composite graphs with density vertices,
and & and K-bonds according to the difference
between the number ¢ of ®-bonds and the number
of free integrations m occurring in the graph. The
number of free integrations in a graph is found by
deleting all the ®-bonds in a graph for F, and
counting the number of separate pieces not connected
to any root point by a K-bond. All such graphs
are then of O(y")*™, We then have

pz=pz(ox+pxlxx+"‘ (3-4)
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with

F,m, k=1t— mof O(‘Yy)k;

= Z'yipl[k]i-

IF=vk

(3.5)

The I ordering applies directly to graphs with
®-bonds (or e-bonds) and F; hypervertices entering
F, in (2.5). These are ordered according to the dif-
ference j between the number of ¢ bonds (or € bonds)
and the number of hypervertices containing no
labeled vertices in the graph. Calling such a subset
I'{?, we have

NEQ s @ annn @ INL O s @ St @0

ue(}-~-—-C:::::ZI)~-—-~*O°'> .
= Doz, ¥) + T1(¥12, v; 72)
+ Tz, v; v2s vs) + o0,

P, = b) N ( Z'D._._A_.Q,, +:D.._.0.
+§).___qo,) .

= I‘(g”(rl; I, I, 'Y)

(3) .
+ I (rl; T2, I3, 75 Vo, V-‘S) + ey

(3.6)

(3.7)

where we have set I'{¥ = I;. Writing out the first
few terms more explicitly yields

F5) = To(r, v) = ) 8@), (3.8)
I‘l(y’ 'Y) = V:G(Y, 'Y)
rY " ixey __V_géﬁ'f_;_:!)_
- (27) f/ O Rl e T TR
with
B(x, v) = Z’ ¢ "7a(y) = —BN) Zy: ¢ oy

— =g [ &) dy = 8D, (310

the summation over y = ~r being over a lattice
with spacing v, and the integration over x = v 'k
having a range —w/y to w/v (after taking the
thermodynamic limit  — «). &(x, v) is equal to
(k) = —pBw(k) defined in (2.15), which we shall
also write sometimes as ®(k, v) = —pw(k, v); the
range of k = yx always being —= to . When we

STELL, LEBOWITZ, BAER, AND THEUMANN

go to the limit ¥ — 0, &(x, v) — $(x) which coincides
with the continuum Fourier transform of —Be(y)
used in I. Similarly,

1 »
Pz(y; 'Y) = '27 <g_7r')
x/7 n: y 2 8(1C ‘y)
vew _-_.__-—J—...
XL E B @Y

where §, the Fourier transform of @*(y, v), is given by

S, 7) = (2”7) [ & — w0, 612)

with

ek, 7) = Bk, V)/[1 — wd(x,v)]. (3.13)
Also,
(T, oy T5) = v3 8(r10) 8(T2a), (3.14)
L1, 13, T357) = v92[8(12) €(F1s, )
+ 811) €Y1z, 1) + 3@0)C(Yus, W] (3.15)

The T ordering may also be applied directly to
the function W introduced in Eq. (2.22), where the
first few terms become particularly simple since
there are no cutting bonds in W,

Po im0 SEm'e i e s S St S o 8

'/{r;xwwzzxﬁ+
= Wo(ru; 7) + Wz(Ym ¥; va)
+ Wa(le, Yiva, va) + v (3.16)

with
Wo(r) = V2 5(1'), Wz(}': 'Y) = V:ziez(y: 7)) ete. (3-17)

It is clear from the I'-ordering scheme mentioned
before that I'{" and W; are of O(y’?),

I = IO T ],

(3.18)
W;=x« ’[W:'.o +Win + -1
Thus, to different orders in 7,
Fz(r) = 5, 8(r) + 0(Y")
= [+ .+ 180 +06), (.19
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where 8(y) = 0 unlessr = 'y = 0, and generally;

Fiy) = v 8@ + Iy, v) + -
+ iy, v) + 0 YY)

_ (l_), fx/y o fe‘,.,
27[' -/

X ' = 3k, I de + 06)

_ (l), fw/v ‘ .fe;,.y
27!' —x/y

X [Wo — &, W] de + 0(6).  (3.20)
Alternatively,
4 /Y
— _’Y_ .. ix*y
FZ(y) - (217') «/;,;/7 fe
X {[WO + W2(K7 ’Y) + e + W:‘(“:: 7)]-1
— 3(x, N} dx 4+ O YTY), (3.21)

where we have used Eq. (2.23) to express F, in
terms of W. This ordering of F, on the basis of
the T ordering of W turns out to be very convenient
later when we consider self-consistent type approx-
imations for ..

A, Expansion of the »,

A function that appears often in our results is
the chain with »J as a vertex-function instead of »,;
we denote this as €(y; v) or simply (‘Bo(y),

) = (2) f_,,,, f a2 e

3’2@(’(: 'Y)
We also find it useful to introduce the functions

So(y) = &),

(3.22)

0
A = — Vi

(3.23)
Ty) = €F), QF) = &G),
and the identities
é(ki‘Y) = éo(k§’7)/ [1- Azéo(k: v, 324

In [1 — »,@]
=In[l -3 +In[l — AC). (3.25)

From (2.30) and (2.31), making use of (3.23) and
(3.24), we find

(Vz) eo(O) + [2(1’2)3 - (Vs) ]So(o)
+ ()0 Sy ~E

{(2) [ BT a
— (DOET0) + 06™).

vy = vy —

(3.26)
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For arbitrary p, the next higher order in v” already
includes a considerable number of terms. For p = %,
however, there is appreciable simplification owing

to the fact that 9%3/6p" = O when p = L if k + I
is odd.
We have for p = %
V3 = 4 (‘30(0) + 55z 256 80(0)30(0) + So(o)
1
768 T“(O) 768 QO ~ 6144

{(2) [ €T ag - e 5.0

{(2@ | e a } 515 S{5:0)

~ 255 SOLSOT + 06*). (3.27)

The expansion of », for ¥ > 2 is similar. In order
to find In% through O(y*") for arbitrary p, and
O(y") for p = 3}, we need only

vs = 3 + 38" ¥3/30") ()" €o(0) + 0v™), p arbitrary,
+ $(6° 2/80) (%) Co(0) + 0(*), p arbitrary,
(3.28)

P )
Vs = ¥y

where

= p(l — p)(1 — 2p)
and

ve = 31 — p)[(2p — 1)* — 1.

A general ®-bond, (6}/9p")-hypervertex expan-
sion of the »; can be obtained by repeated use of
(2.31) to eliminate the #** in (2.30). This expansion,
which can easily be re-expressed in terms of e,
instead of &, gives the general term in (3.27) and,
when used with (3.24), (2.16), and (2.29), also
yields the full expansion of InX in terms of €, and
38'vi/dp'. In characterizing the Co-bonds (3%2/8p%)-
hypervertex expansion of », and In= graphically,
the distinction between those lines incident upon
a hypervertex that are associated with the index 7"
and those lines associated with the “k” is important;
in Appendix B of I we used the designations “in”’
and “out” in considering the “I’s” and “k's ', and
we refer the reader to that paper for the grapho-
logical details. These expansions are simple enough
to be written out explicitly through one higher order
of v” beyond (3.26), (3.27), and (3.28) without undue
labor. Beyond that, the large number of terms makes
explicit enumeration awkward.
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B. Expansion of the Free Energy

The ordering of F, combined with the expansion
of the », introduces, using (2.26), a corresponding
expansion of the Helmholtz free energy. We find
in analogy with (I-6.14)

2®8(k, 7)] dk

Ba = Bao(ﬁa P) +3 2

-

08O} + 0. (3.29)

(2 )
— 36D E Toly) —

Brout'® seems to have been the first to suggest
developing a formal program using 4" as an ordering
parameter to investigate the free energy, and he
considered the results of retaining only zero and
first-order terms (i.e., of dropping »; for & > 3},
and evaluating the », by means of a spherical model-
like approximation that we discuss in detail later.
A similar analysis can be made of expansions in
terms of H and ® rather than p and &, and sub-
sequent to Brout’s initial work Horwitz and Callen'®
suggested an approximation obtainable by retaining
the zero and first-order terms in such expansions.
Equation (3.29) agrees with the result obtained from
the prescription of Coopersmith and Brout.®

C. Lllustrative Examples
1. Exponential Potential in One Dimension

'We consider a one-dimensional system where ¢(y)
of (3.1) has the form 1ae™'*'. We then have

3k, v) = —B(e/2)My[sinh v/(cosh v — cos k) — 1],
(3.30)

where
My) =17 — 1) — 1 (3.31)

-0

making « the integrated strength of w, #(0) =
This gives to second order in v [see (3.6)]

Fz(?/: vive) = v 8(r) + )’ Coly, v;v3) + 0(yY),

(3.32)
where, from (3.9) and (3.22),
. o o 1 _ }
(Vg) @o(y; Y Vz) = ”2[1 — 3(0/2))\73’3 1 5(’)‘)
* sinhy _,,
~ B\ s Lo, (3.39)
2 {1 — Bla/DNps| SO
8 being determined by the relation
cosh (vs) = cosh y + —&@—"ﬂhasmh vy, (3.34)

Bla/2)Ms
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yielding
s = (1 -+ Banid)t 4 O(),

and », is given in terms of »; by means of (2.9),
(2.30), (3.9), and (3.23):

v =7 — (2)'€(0,7;4) + 04). (3.36)
In a way similar to (3.33), we get with (3.34)
vi = {1l —iBla/2M(1 — s’} + O(y)).  (3.37)

After expanding (3.33) to second order in v, we
obtain

Tu(y, v;va) = (9)°Bla/2)M[8(r) — s

(3.35)

X exp [—s [y[l] + 0(+"), (3.38)
and finally,
Foly, v;99) = 43 80) + 065)°Ble/2My
X [8() —exp [ — s [p[lls + 067).  (3.39)

This expression coincides with the one derived by
Kac and Helfand® [their (5.8)] for r £ 0, and p = }.

For the same one-dimensional potential we obtain,
for the free energy per unit volume given by (3.29),
the expression

BaB, o) = plnp+ (1 - pIn(l — p
+ (/20" — 3 {1+ Bla/DNp — [1 4 Baa(l — 9]}

7 [Bla/Dhe(t — ' :
2 1 +ﬁa?\p(l — p) { + = B(Ol/Z))\ (1—2p)

1
X [1 + Byap(l — p)]

This free energy may be compared after expanding
A, (3.31), in powers of ¥ with the one derived for
a continuum in (I-6.15). Both can be written as

Ba(B, p) = :Bao(:B: p) + /3(0‘/2)9” - (/2
X {1+ B/2)p ~ [B, 01} + 178, N0G), (3.41)

where (8, p) = 0 is the boundary of the meta-stable
region in the van der Waal-Maxwell equation of
state [cf. Eq. (4.1) and Fig. 1], and follows from
(1.15) for the lattice and from (I-1.2) for the con-
tinuum system.

Equation (3.39) can also be compared, after the
appropriate transcription, with the free energy per
lattice site of the spin system, and it coincides at
p = %} with the free-field expression derived by
Siegert,® including the terms of O(v?).

+ =

} + 00"). (3.40)
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2. Exponential Potential in Two and Three Dimensions

Following Baker® we consider a potential w,(r, v),
v = 2, 3, as given by (3.1) of the explicit form

ﬁ e—‘rlr‘l

fm=1

4 x"
(T, 7) = oy ———2(7) (3.42)
for r % 0 and vanishes for r=0, wherer=(r', - -- , ")
and

M) = 27" — 1)*/e” 2 L (3.43)

Aa(y) = 8y7°[(e” — 1)°/(6¢’ + 2)] = 1. (3.44)

Then

)~ T+ e

t=1

5'(k, 'y) = _ﬂa 7’2’7(7) [(621 -

II ( + & — 2" cos k.), (3.45)
=1
where k = (ky, -+, k,) and @,(0) = o.

For the free energy per unit volume we obtain
from (3.29), after expanding in powers of v, the
expression

Ba.(8, p) = Ba’(B, p) + 4Bap’

— 2" cos Ic.-):l

— 47 [ T &LO + 0y,  (346)
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where the form of the integrand I,(¢) depends

explicitly on the dimension ».

Two-dimensions (v = 2). In analogy to the result
obtained by Baker® for the corresponding I,(£), we
have for a < 0,

Ba(B, p) = Ba’(B, p) + 3Bap’ — 1fav’
1 1 n* 3
x | to2—n-L [* K el 9 |+ 009, 347

where K(k) is the complete elliptic integral of the
first kind which diverges as ¥ — 1, i.e., under an
appropriate upper limit in (3.47), when the relation
B la| »; = 1 holds. However, the integral in (3.47)
is still finite in this case as one can see from the
expansion of K(k) for & near 1. The same expansion
allows also to see that the coefficient of v* is already
divergent under the same relation. Therefore, we
obtain the behavior of the free energy predicted
after (1.14). Finally, from the properties of elliptic
integrals, it can be seen that for 8 |a| »; — 1 there
is a singularity in the 4* term of the specific heat
at constant density for p = §, of the form (7 — T.,)7,
where T, is the van der Waals-Maxwell critical
temperature 8, = —(r3a)”' = —4/a.

Three Dimensions (v = 3). In this case the expres-
sion for the free energy per unit volume differs from
(3.47) in that the integral in (3.46) has the form®

3 ¥s® x 2
¥ v’B la| £ )/ 21 _ o
L[ af anx (1 T )/ AT — 2 cosh),

giving again a finite result for the coefficient of ~”
even when g |a| »; — 1.

IV. DISCUSSION OF y-EXPANSION AND
SELF-CONSISTENT APPROXIMATIONS

Before discussing the usefulness of the y-expansion
developed in the last section, we discuss first the
known, or conjectured, behavior of our system for
different values of 4. In the van der Waals limit
¥ — 0, the free energy per unit volume a(8, p, 0+) =
lim,_, (B, p, 7) is obtained’ by applying the double-
tangent construction to the generalized van der
Waals free energy ao(8, p) = a’(8, p) + ap’. The
latter is, of course, the zero-order term in our ex-
pansion of a(p, v) in powers of y. In Fig. 1 the
exterior of curve I is the region in which a,(8, p) =
a(B, p, 0+) for « < 0. [For @ > 0, a(8, p, 0+)
coincides with a.(8, p) for all 8 and p.] Inside curve I,
the system will exist in two phases and have its
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thermodynamic properties described by a(p, 0+),
a linear combination of its properties in the two
phases; a,(p), on the other hand, describe the prop-
erties of the system when the system is in a state

Q =y p=1

Fia. 1. I. Boundary of two-phase region for y —0, II. Bound-
ary of metastable region for y —0. III. “Expected’”’ boundary
of two-phase region for small v in two and three dimensions.
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of uniform density. This coincides with the meta-~
stable state in the region between curve I and curve
II. This latter curve is determined by the equation

B=—[wO]" = —[o(l ~ pa]™. 1)

We have also drawn in Fig. 1 the “expected”
two-phase region of the system in two and three
dimensions for some fixed small vy (keeping the
integrated strength of the potential « fixed). (In
one dimension there will be no transition for y # 0.)

Now, the coeflicients of the expansion in v [of
a(B, p, v) or Fy(y, v)] will diverge as the boundary
of the metastable region, curve II, is approached
from the outside and will be meaningless inside
curve I, where dp,(p)/dp is negative, cf. (3.40). The
expansion in vy can therefore be meaningful, as an
approximation to the real state of the system, only
outside curve I. Inside curve I, the correct a(B, p, v)
is not analytic in y for small 4. The coefficients
of our expansion will become large as the boundary
of curve II is approached (this curve coincides with
curve I at the critical density p = 1).

The first few terms in the expansion may therefore
be used as an approximation to the properties of
the system for small values of ¥ only in the region—
call it R—outside curve I, and not too close to the
critical point [outside a region of O(y') in one
dimension®]. In the region R, the expansion in «
is straightforward (we have not, however, in-
vestigated the question of the convergence of the
expansion at all).

The above analysis indicates that the straight-
forward y-expansion is incapable of yielding reliable
information inside the critical (or two-phase) region
for finite v. In order to overcome this limitation
on the y-expansion, as well as to consider situations
where v is not very small, one can use approximation
methods for #; which do not assume analyticity in
v; a(p, v) may then be obtained from F, via (2.26).
Now, our expansion procedure in the last section
consisted of two parts: (1) T ordering of the graphs

F;(l'l, e 7rl)
= 2 0, -
%=

0

yLi; Yy Vay * :Vk+l) (42)
and (2) an expansion of each T} in powers of v.
It was this second step, which involved the expansion
of the », in powers of v, that led to the singularities
discussed before. It seems therefore sensible to avoid
the expansion of the T'; in powers of . This requires
some method for evaluating the », to each order
in the T ordering (without any reference to v at all).

STELL, LEBOWITZ, BAER, AND THEUMANN

We shall now deseribe such a method but leave its
detailed analysis to Part III of this series.

A. Self-Consistent Method for the Determination
of the v;

Since our interest lies primarily in F,, and the
thermodynamic properties which may be computed
from it, we consider the following iterative self-con-
sistent method for the evaluation of the », appearing
in F,. [This method is based on I' ordering but does
not make any explicit reference to the range of w(r).]
The first-order step in our approximation scheme
consists of retaining only the Ty and T, graphs in
F, and evaluating the », appearing in them from
the exact relation (2.9),

Vg(P) = p(1 — p) = To(ty, I15v9) + Ty, 10 02)

= -t Y
=& zk: 1 —»,dk) .3)
In the next order of our approximation we retain
the Ty, Ty, and T, graphs in F, and the I'® and I
graphs in #,. We then determine the », and »; which
appear in these graphs from the set of two coupled

equations taken from (2.9),
va(p) = v, + Ty(ry, 115 99) + Tolry, 5 va, v3), (4.9
v(p) = vz + Ty, 1, 145 02, 73). (4.5)

In general, the kth order in our scheme consist in
evaluating the T'j for j +1 =2, -+- , k + 1, as
functions of the »;,, ¢ = 2, -+ , k + 1 and then
solving k-equations of the form

28 = fi, - i=2, k4146

The self-consistency in our scheme refers to the fact
that in each order we have F,(r;, r,) equal to its
exact value at the given density p. In other words
ny(r,, r;) = 0 in each order, i.e., the average pair
density vanishes when the positions of the two
particles coincide. In spin language this means that
{[e(r))]’) = % in all orders. The discussion following
Eq. (2.10) shows that the symmetry properties of
F, and », as a function of p — 3 = {¢) remain valid
in all orders of our iterative scheme.

A slight modification of this method is to use
the auxiliary function W (from which #, may then
be determined), Eq. (2.23), in the above iterative
scheme. According to (3.16), the lth term in the
I' ordering of W, W, will only contain », with
k< 1+ 1forl> 0, Wy = ».5(r). Thus, in the lowest
order, we equate W to W, and obtain the cor-
responding F,, (3.20), and again determine », from
(2.9). This leads again to (4.2). In the next order

) )Vk+l)7
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we retain W, and W, in W, compute the resulting
F, from (3.21), and determine », and »; from (4.5)
and the equation

(o) = Q7 Zk: {2 + 23 8(k; )] — W)} (4.7)

[8 defined in (3.12)], which replaces Eq. (4.4). This
process may be continued, yielding at each step
equations similar to (4.6). The set of graphs con-
tained in F, obtained from W in the nth order is
larger than the set T'y + -+ + T, for n > 1.
This appears to have advantages for systems where
w(r) is not very long range, to which these methods
are also applicable.

The results of this iteration scheme will be ana-
Iyzed in Part IIT of this series, where it is shown,
in particular, that our lowest approximation for the
pair-distribution function is identical with that ob-
tained from the mean spherical model of Lewis and
Wannier'®'** for spin systems which coincide in the
thermodynamic limit § — o with the spherical
model of Berlin and Kac."' This is also similar to
the result of Brout."

B. Bond Renormalization

We can go a step further in the use of W by
considering its L-bond expansion instead of its C-
bond expansion. For a lattice system the definition
of L [Eq. (I-2.19)] is**

L(r,,) = &) + ;; ‘I’<r13)p2(r34)‘13(rz4)~ 4.8)
In terms of graphs with L-bonds rather than
e-bonds, the prescription for W following (2.23)
includes the added restriction that no graph should
contain any ariiculation pairs of bonds, i.e., pairs
of bonds which, when cut, cause the graph to
separate into two or more parts, one of which con-
tains at least one hypervertex, but no labeled hyper-
vertex. Thus, we have

Wz(flz) = +

(4.9
(the solid lines now representing L-bonds). Graphs

like -~—¢<>——¢= do not appear.

26{. L. Lebowitz and J. K. Percus, Phys. Rev. 144, 251
(1966).

2 Qur L coincides, for lattice gases, with the ‘“renormalized
interaction’’ v of R. Abe, Ref. 13.
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The introduction of the L-bonds may be thought
of as a bond renormalization similar in some ways
to the introduction of the »’s in place of the u.'s,
which is a vertex renormalization. One reason for
introducing the bond renormalization is that it
provides a convenient means of analyzing certain
aspects of the critical behavior of Fy(r) as well as
suggesting a class of approximations that appear
to exhibit the kind—although not the precise ex-
tent—of deviation from the Ornstein-Zernike'®
theory that is actually found in the behavior of
the two-dimensional lattice gas and in real three-
dimensional systems. Such approximations can be
obtained by applying the same recipe that defines the
T’ ordering scheme, described in Sec. III, to the
L-bond graphs of W. However, we do not pursue
the investigation of any such particular approxima-
tion here, but instead restrict our remarks to ob-
servations that have a more immediate bearing on
the behavior of £, near the critical point.

The L-bond expansion seems better suited to ex-
amining critical behavior of £, than the expansions
we have previously considered, because one already
has the defining relation (2.23) for W in terms of
F, and any sufficiently simple second relationship
between W and L—and hence between W and 7,
through Eq. (4.8)—immediately provides a con-
venient means of determining the spatially asymp-
totic behavior of F, at the critical point where we
assume'®

1 — 3O)W(0) = 0. 4.10)

We start by assuming that when (4.10) is satis-
fied, F, behaves like some inverse power of r for
large r, and we use the kind of analysis initiated
by Green® and generalized by Stillinger and Frisch,*
Fisher,” and Stillinger.*® We find, then, that (2.23),
(4.10), and the assumptions that

W) ~ A[LOT", for r— o (4.11)

and

F,@®) ~ B/, for 11— o (4.12)

% M. 8. Green, J. Chem. Phys. 33, 1403 (1960).

(19211;“ H. Stillinger, Jr., and H. L. Frisch, Physica 27, 751

% M. E. Fisher, J. Math. Phys. 5, 944 (1964).

# ¥. H. Stillinger, Jr. {private communication). Stillinger
has made a detailed examination of consequences of assuming
more general forms than (4.11), including such possibilities
as an addition (In 7)« term in the denominator and the replace-
ment of the constant by some reasonable angular dependent
quantity. He has concluded that such modifications will not
chznge the relationship among constants such as our n, »,
ana m.
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imply that®
n=2/(1 4+ m), (4.13)

where we have also assumed that &(r) is short-
ranged enough so that, for large r, L(r) as well as
P, () is given by (4.12). Here, » is the dimensionality
of the space. Instead of (4.11) and (4.12), we now
consider the more general possibility [imposed upon
us by the form of (4.17)]:

W) ~ A[LOT.@), for r— o (4.14)

and
P.®) ~ Bf,/r*, for r— o, (4.15)

where f, and f, are functions of order less than any
positive power and greater than any negative power
of . (When the letter f appears hereafter in this
section it always denotes such a function.)

The same arguments that are used to obtain
(4.13) from (4.11) and (4.12) suggest that (4.14) and
(4.15) also yield (4.13), supplemented by a relation
between f, and f,. Although a general demonstration
for arbitrary f, or f, has not been given, and is not
attempted here, these remarks can be made more
precise®® for an important class of particular f, and f,.
For example, in the simple but representative case
of f, = (log r)* and f, = (log r)™¢, we obtain (4.13)
and the relation

I =¢1+ m). (4.16)

Furthermore, as Green®® and Abe' have pointed
out, simple dimensional arguments can be applied
to graphs of the sort that appear in the L-bond
expansion of W(r). These arguments indicate that
any graph in the L-bond expansion of W(r) con-
sisting of b-bonds and k-hypervertices will behave
like

r TR0 = LOLE), for r— e, (4.17)

where L(r) is assumed to go asymptotically as
f{(r)/r*. Such dimensional considerations are some-
what crude but they probably give a reasonable
picture of the relative dominance of the various
graphs at large r, and we now consider their implica-
tions. Equation (4.17) yields

W) ~ 2, Aa™ 0 o1a), for r— o, (4.18)

where the sum is over all graphs in W, and 4, b;, ki,
and f; are associated with the sth graph. At the

3 The argument leading to (4.13) from (2.23), (4.11),
(4.12), and the assumption that 1 — $(0) W(0) = 0 is
identical to the one used by Fisher (Ref. 25) in discussing the
hypernetted-chain equation, and we refer the interested
reader to that reference for details.
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critical point, p = % and any graph containing a
v, with odd % vanishes [thus, among the graphs
actually drawn in (4.9) only the last one remains].
Among the graphs that are left, the ones whose
hypervertices are all »,’s are the ones with the fewest
bonds for a given number of hypervertices (b-+1=2k).
We might expect these to be the dominant graphs
for large r, and according to (4.18) this expectation
is fulfilled as long as

Af; # 0. (4.19)
(be+1=2k¢)
Equations (4.13), (4.17), and (4.19) then yield
n = %, (4.20)

This is the case considered by Abe.** More generally,
it follows that

n = Vk.'/(b.- -+ 1) (4:21)

for the pairs {k;, b;} that correspond to the set
of graphs having the longest range (i.e., the single
lowest value of bn — vk, 4+ 2v) such that the
sum Y A.f; over these pairs is not zero, provided
that the series (4.18) is a valid and convergent
representation of W(r) at the critical point. This
latter stipulation, of course, involves not only the
validity of (4.17) but also the validity of the L-bond
expansion of W at the critical point in the first place.

In the case of a nearest-neighbor interaction on
square and cubic lattices, the exact F, at the
critical point appears to have the form (4.15) with
n = % wheny = 2, and n =~ }} when » = 3.* In
order to be in agreement with these figures, we
must have m = 15fory = 2and m >~ {# forr» = 3
(m = * would yield » = $%). In light of (4.21),
this suggests that either there is wholesale cancella-
tion among graphs or else the series (4.18) does not
provide a valid representation of W. We further
note that the cancellation that would enable us to
ignore certain subsums of graphs for n < v will
necessarily involve cancellation of graphs that are
individually divergent [in Eq. (4.18), bin — vk, + 2»
will always be <0 for some b; and k; when n < 3»].
This means that, strictly speaking, cancellation is
not an alternative to the breakdown of the graphical
representation (4.9) but rather a special case of
this breakdown.

Percus and one of the authors™ (G.S.) have con-
sidered a weakened version of the Ornstein—Zernike
theory' that does not rest upon the convergence
of (4.9). It indicates that the m in Eq. (4.14) may
" ®D. 8. Gaunt, M. E. Fisher, M. F. Sykes, and J. W.

Essam, Phys. Rev. Letters 13, 713 (1964).
2 J K. Percus and G. Stell (to be published).
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be closely connected with the shape of the critical
isotherm in the vicinity of the critical point, and
further progress in the direction of associating the
m and 4 in Eq. (4.14) with macroscopic features
of the lattice system seems likely. The task of
obtaining reliable estimates of these quantities
directly in terms of & and p appears much more
difficult, however.

The above considerations are not directly appli-
cable to the one-dimensional system with a Kac
potential. However, for this case an explicit com-
putation shows that near the critical point [see
Eq. (5.9) of Ref. 9] @ ~ Ale4" where A = gy ~ v*/?
so that we can use A instead of y as an ordering
parameter in C-bond expansions. It can easily be
seen that, in the expansion of F%, the graphs whose
labeled hypervertices are »,’s and whose unlabeled
hypervertices are »,’s are all of order A} and that
all other graphs are of higher order in A. Hence,
the sum of these graphs of order A? will yield the

2 ant exp [—biy*"r,

a2l

which Kac and Helfand have shown to be the dom~
inant term in F%(r) when the critical point is ap-
proached. Similarly, in the €-bond expansion of W*,
the graphs whose vertices are all »,’s are the dom-
inant ones in the critical region. Hence, in the
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L-bond expansion of W, the graphs whose vertices
are all »,’s are also the dominant ones in the critical
region, since, upon expansion of L in terms of C,
all of the @-bond graphs with », vertices come only
from the L-bond graphs with », vertices.

Kac®® has conjectured that, in such graphical
representations of F, and related functions, the terms
that are dominant in the critical region in the one-
dimensional case may be the ones that dominate
in all dimensions, despite the fact that the degree
and even the kind of singularities present can be
expected to be different in different dimensions.
If (4.19) were satisfied, the graph with », vertices
would have a special role in all dimensions and the
result would be consistent with Kac’s conjecture.
However, the confrontation with the known value
of n for v = 2 forces us to either abandon our
graphical representation altogether at the critical
point or at least conclude that a subtle kind of
cancellation among graphs must be occurring so
that (4.19) is violated.
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