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A suggestion by Fisher that the specific heats of lattice gases and continuum fluids near the critical point
be compared on the basis of specific heat measured in units of the volume per particle at close packing is
examined for systems with hard cores and long-range attractive potentials (van der Waals systems). It is
found that the discontinuity at the critical point in the specific heat so defined is indeed similar for lattice
gases and continuum systems in one, two, and three dimensions, while the critical density varies widely.
No explanation is offered. Numerical values of other critical constants are also given.

IT was shown recently by Fisher! that the specific-heat

data of argon (and perhaps also oxygen) along the
critical isochore are, in the vicinity of the critical point,
in semiquantitative agreement with that computed
theoretically for lattice gases with nearest-neighbor
interactions. In order to achieve this agreement, Fisher
compared the configurational specific-heat density C*(T)
=pCeont(T)/pmax With the theoretical configurational
specific heat per lattice site. Here Ceont(7') is the specific
heat per particle, p is the number of molecules per unit
volume (which is equal to p, along the critical isochore),
and pmax is the number density at close packing. For a
lattice gas, as is well known, pmax=2p., pmax being equal
to the number of lattice sites per unit volume. For argon
Fisher estimated pmax by extrapolation of the “liquid”’
density to zero temperature obtaining roughly
Pmax§3-3pc-

Fisher gave several arguments to justify choosing
C*(T), the “specific heat per particle volume” as the
fundamental quantity most directly comparable in
continuum fluids and lattice gases. In particular he
pointed out that for a one-dimensional van der Waals
system, for which pmax/p.=3 in the continuum and 2
in the lattice, the specific-heat discontinuities at the
critical point AC are $%& and 3k, respectively, so that
AC*=3k in both cases. The question then arose im-
mediately of whether this remarkable agreement
between the continuum and lattice van der Waals
systems was a pure coincidence for the one-dimensional
case, or whether it holds also in higher dimensions

TaBLE I. Properties of lattice gases and continuum
fluids with long-range interactions.

Lattice gas Continuum

r=123-- y=1 y=2 y=3
Pmax 1 a V3a? a3/V2
Pe/pmax 0.5 1 0.233 0.176
AC*/k 1.5 1.5 1.465 1.480
Bp/p)e 0.386 0.375 0.366 0.359
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where pmax/p; (pmax being the close packing density) is
very different from 3. (For this system pmax is also the
density of the fluid, or solid, phase at 7’=0.) The sur-
prising answer that AC* is indeed ~3k, the lattice-gas
value, in all dimensions is presented in Table I.

To obtain the correct generalized van der Waals
equation in any dimension one considers? a system
whose interparticle potential v(r) consists of two parts:
a “well-behaved” part ¢(r) and a “Kac potential”
Yo (1),

v(@)=g@)+v" (1), 1)

where » is the dimensionality of the space considered
and we have written v as a function of r, the vector
displacement between two particles, so that our results
apply also to lattice gases. It was then shown, for one
dimension and special forms of ¢ and ¢, by Baker® and
by Kac, Uhlenbeck, and Hemmer* and for an arbitrary
number of dimensions and quite general forms of the
potential ¢ and ¢ by Lebowitz and Penrose,? that in the
limit v — 0 (taken after the size of the system has been
made infinite) the thermodynamic quantities are given
by a generalized van der Waals-Maxwell theory, e.g.,

lim p(T,p,7) = 9" (T,p)+Jap? (-Maxwell’s rule) ,  (2)
’y—)

where p is the pressure, p°(7,p) the pressure of the
reference system for which =0, and

o= / o(5) &y. ®)

We shall be concerned here exclusively with the case
where ¢(r) is a pure hard-core potential, which is either
infinite or zero, so that the reference system has no
configurational internal energy. We then have

Coont=0, in one-phase region

=—3aTd[pi+p2—pip2/p]/dT?|p,
in two-phase region, (4)

where p; and p, are the densities of the two phases, the

27. )L. Lebowitz and O. Penrose, J. Math. Phys. (to be pub-
lished).
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two-phase region existing only for «<0. The jump in
C at T=T, for p=p, is then given by

aﬂ?() 2 a3ﬁp0
)L/ 5]
Pc 6p3

dp
where 8p°=p°/kT is a function of p alone.
Choosing, for lattices, ¢(r) to be a hard-core potential
which prevents the multiple occupancy of a lattice site

: ©)

Pec

AC= 3k<

q(r)= »,r=0, (6)
= 0, r%0,

we have p9(T,0)=—kT In(1—p) in all dimensions and
we obtain the results quoted before.

For the continuum fluid we shall again take ¢(r) to
correspond to a hard-core interaction with diameter a,

q(r)= =, 7<a, )
= 0,7>a.

The thermodynamic properties of the reference system
will now depend strongly on the dimensionality of the
space being known exactly only in one dimension where
P (T,p)=kTp/(1—p/pmax) With pmax=0a7, from which
follow the previously mentioned results. For two and
three dimensions the best available equation of state,
$°(T\p), is the Pade approximation found by Ree and
Hoover® on the basis of the first six virial coefficients,

B° 14-0.1881036+0.1520276%

=6§+42.9619262 , ;
Pmax 1—1.6630986+-0.7133586* )
BP° 1—0.3567806+0.02144762

=6-41.813806> , v=2,
Pmax 1—1.77517164-0.7878086*
where

p
0:
Pmax

5 F. H. Ree and W. G. Hoover, J. Chem. Phys. 40, 939 (1964),
Eqgs. (28) and (29).
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These equations of state agree to better than 197, with
machine computations for densities in the “fluid range”;
Pmax/p~1.312 for »y=2, pmax/p~1.63 for »=3. The
critical density p. of the gas-liquid transition due to the
long-range attractive potential ¢ (1) is found from
the solution of the equation

dZB PO dﬁ pO
=, ©)
dp*  dp

and is independent of a. The results for AC* as well as
for the critical ratio p,/p.kT are presented in Table 1.
(For comparison, the critical ratio of argon is variously
quoted as® 0.291 or” 0.314 while machine computations
for a system with a hard core and square well extending
to 1.5¢ yield?® a critical ratio of 0.306.)

The apparent insensitivity of AC¥, for van der Waals
systems, to the dimensionality of space considered, (the
lattice gas behaving in some way as a space for which
»=0), is indeed remarkable. As seen from Eq. (5) AC
depends only on B#° which is quite different for different
v’s, leading to widely different values of AC and of
Po/Pmex. Why then does AC* appear to remain essen-
tially unchanged? (Conceivably it might even be
exactly 1.5 % for all ».) We have no ready explanation
for this but it does seem to lend support to Fisher’s idea,
that C* is a more “natural” quantity for comparison
between lattice and continuum systems in the vicinity
of the critical point.
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