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We investigate, via computer simulations, coherent phase segregation in a microscopic model alloy
consisting of A and B atoms of unequal sizes on a square lattice. The effective Hamiltonian, obtained
by minimization over the displacement of the atoms from their lattice positions, contains long range
linear elastic interactions that cause the precipitates to be highly anisotropic. Under external load they
acquire “wavy” long sides and align parallel to one of the axes. Their size, measured by the reciprocal
of the number of A-B bonds, grows approximatively as ¢'/3,
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Directional coarsening or “rafting” is a well-known
phenomenon observed when certain alloys containing
misfitting precipitates, like nickel-based superalloys, are
subjected to uniaxial external load. Depending on the
material, a morphology consisting of either platelike struc-
tures perpendicular to or rodlike structures parallel to the
stress direction develops [1-3]. Up to now modeling of
the process has been done only macroscopically [2,4-6].

Here we investigate a conceptually simple microscopic
model of this phenomenon in two dimensions. An
extension to three dimensions, which is in principle
straightforward, is being planned. The model of misfitting
precipitates in an elastically anisotropic matrix generalizes
one developed in [7], from here on referred to as I.
It describes a system of A and B atoms with different
sizes, on a planar square lattice £ with periodic boundary
conditions. The configuration is specified by I, and the
atomic positions by U, with y(p) = =1 and u(p) the
deviation in the position from the lattice site p € L.
The atoms are connected by elastic springs that feel the
difference of the atomic sizes, with longitudinal (L)
and transverse (T4) stiffness between nearest neighbors
and springs with longitudinal stiffness (Lx) between
next nearest neighbors. There is also a nearest neighbor
attraction J between like atoms.

In the present work we add to the Hamiltonian, given
in Eq. (6) of I, an external stress corresponding to a ho-
mogeneous strain tensor €’. To model the linear depen-
dence of the elastic constants on the transformation strain
we introduce here a linear dependence of the coupling con-
stants on the discrete strain 17(p) defined as in I by n(p) =
%(RA — Rp)[v(p) — (1 — 2&)], where R4 and Ry are the
radii of A and B atoms (or ions), respectively, and ¢ is
the average concentration of A atoms in the alloy so that
>np)=0. Welet Ly — L.(1 + a[n(p) + n(p")])
and Ly — Lx<(1 + a[n(p) + n(p")]/~/2), where p and
p’ are lattice sites connected by the springs, and then keep
in the energy only these terms in « that are of the form
a €Y. This corresponds to considering a very weak depen-
dence of the coupling constants on composition (¢ K 1)

4448 0031-9007/95/75(24)/4448(4)$06.00

and large external stresses. This gives the Hamiltonian
H(,V;€e%) = Hy(T) + 3V - A() -V + B - V,
(H)

where H is just the Ising Hamiltonian and V describes the
displacement U relative to the homogeneous strain. We
now minimize H with respect to V. This corresponds
physically to assuming that the displacement variables
accommodate themselves very fast to the instantaneous
composition I'. The minimization also corresponds to
replacing the displacements by their average values for a
specified configuration I'. We then obtain an effective
Hamiltonian, which can be written conveniently in the
form

H(T; €% = % > W) 152, @)
k

where ¥(k), W(k) are the Fourier transforms of y(p) and
the effective pair potential, ¥(p — p’). W (k) is shown in
Fig. 1. The potential ¥ (r), which is a simple modification
of that given by Eq. (12) in I to include the external strain,
can be written as a sum of a “short” range part and a
long range part Y (r) whose continuum limit is the Fourier
transform of Y(k), k = k/|kl|, given by limy—q ¥(k),

FIG. 1. Potential W(k) represented in the first Brillouin zone
of the square lattice using a pseudogrey scale. The lowest
values of the potential are dark, while the highest are white.
The origin k is in the center of the picture. The left picture
shows the case b = d = 0 (no external stress) and the right
b = 0,d = —0.4 (uniaxial stress along the lines of the lattice).
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less its circular average,
Y(k) = Yo[1 + alk,k,)® + blkyky)
+dkl — KDY/ + glheky)?]. 3
with IAcx = cosf, /Acy = sinf. The normalization
2TY(k)de =0 gives a=g — (4 +g) 2+ JET g)/
2. The remaining constants Yy, b, d, and g in (3) are
related to the elastic properties of the material with b and

d proportional to 6(1)2 and e?l - egz corresponding to the
external shear and uniaxial load (or stretch), respectively,

!

dc(r,t) _v
ot

Here o{c) is the mobility tensor that can be concentration
dependent, and the integral over the system volume
is the total free energy F of the nonuniform system
driving the kinetics. The integrand consists of three
terms: a ‘“constrained” local free energy density f(c)
of the system with effective “short range” interactions,
having a double well shape below the critical temperature
with minima at the compositions of the two equilibrium
phases, a gradient square term giving the contributions
of the interfacial energy and the integral over dr’,
which can be rewritten as Xy(ﬁ)é(k), representing
the long range elastic energy contribution to F [10].
Equation (4), with a constant mobility o, is essentially the
one used by all continuum models [5,9-12] of spinodal
decomposition with elastic effects. Some continuum
models also consider an additional ordering field [11,12],
and in some cases set the denominator in (3) equal to 1
[5] thereby replacing (4) by a differential equation in ¢
and an auxiliary function w = V~2¢. The morphologies
obtained from these models are, at least visually, very
similar to those obtained directly from the microscopic
dynamics that we shall now describe.

Computer simulations were performed using the full
interaction potential W(r), on a periodic 128 X 128 lattice
at a temperature kT /J = 1.8, T = 0.8T,, with T, the
Onsager critical temperature on a rigid square lattice,
with and without external stress. Two “alloys” with
concentration of (large) A atoms ¢ = 0.5 and ¢ = 0.2
were considered. The simulations were performed using
Kawasaki dynamics with the Metropolis algorithm, where
an exchange between a nearest neighbor pair chosen at
random is performed if it leads to a decrease in total
energy (2), otherwise it is only done with the probability
exp(—8E/kT), 8E > 0. Since the interaction potential
is long range, a special truncation (to a range of ~20-
30 lattice spaces), and updating procedure (described
in I) was used. From the configurations, the structure
function |7 (k)|? as well as the strain fields were deduced.
These strain fields are €,,(p) = uy,, €2(p) = uz,, and
€12(p) = w12 + uyy, where u;; is the lattice derivative
of u; in the direction j averaged over the four sites

. {O‘(C‘)Vﬁ[ dr[ fle) + %)lch]2 + fdr’Y(r - r')c(r/,l)c(r,z):”.

and where g is a function of the cubic elastic constants
cij, & = (ci1 — c12 = 2caa) (e + c12)/(cricaq).

The important elastic effects on the coarsening all come
from the long range elastic potential that decays like
r~2 (#73 in three dimensions). When Yy = 0 in (3),
as happens when R4 = Rp, we expect the model to be
in the same universality class as model B of [8]. In
general, we expect that the kinetics will be described on
the macroscopic scale by a Cahn-Hilliard type equation
[9], for the local concentration

4)

(p, p + ae,, p + ae,, p + ae, + ae,) of a square
“plaquette.”

Figures 2 and 3 show snapshots of evolving configura-
tions and the corresponding strain fields. The parameters
in the long range elastic potential ¥ (k) are Yo = —0.57J/,
a = —5.0, and g = —2.4 for the evolution without the
external strain shown horizontally in Fig. 2. In terms
of the macroscopic elastic constants they give an elastic
anisotropy (ci1; — c12 — 2¢44)/caqa = —1.4, which de-
scribes a material like nickel or copper. Clearly, the elas-
tic energy (without applied stress) has a tendency to favor
the formation of stripes along the elastically soft direc-

FIG. 2. Typical configurations (top row) obtained by letting
the system evolve without any external stress. Times shown
are t = 0 (random configuration), ¢ = 10> MCS, and ¢ =
10* MCS. The large A atoms are in black and the smaller B
atoms in white and are in equal number. The second row shows
the local strain €7, for each configuration, while the third row
shows €3,. Dark (clear) regions with €; > 0 (<0) correspond
to an expansion (compression) along the given i axis (i = x,y),
average grey means €; = 0.
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FIG. 3. Results obtained after 10* MCS with external stress
(¢ = 0.1) starting from the configurations shown in Fig. 2 pre-
pared for O, ¢ = 10? MCS, and ¢ = 10* MCS without external
stress (£ = 0). The strains relative to the external (homoge-
neous) strain €, — €y and €3 — e2°2 of each configuration are
shown in the second and third rows, respectively, with the same
grey scale as in Fig. 1.

tions that are either horizontal or vertical in agreement
with many earlier studies on the subject {5,11,13]. In the
case of externally applied uniaxial stress (Fig. 3) where
we took b = 0 and d = —0.4 in Eq. (3), the symmetry
is broken and the stripes appear only with one orientation
depending on the sign of b, in this case the horizontal.
This is again in good agreement with theoretical [2,4,5]
as well as experimental [1,14] studies of precipitate “raft-
ing.” The parallel stripes are extremely “wavy,” and they
thicken by a process where two stripes first touch and
then join, reducing the number of stripes in the system.
In the case where rafting starts from a random mixture of
A and B atoms, this process dominates from the begin-
ning. When rafting is started with a configuration pre-
pared without external stress, the process starts with the
breakdown of stripes with the “wrong” orientation. These
are rearranged into horizontal stripes, and then thicken by
the process mentioned earlier.

Looking now at the strain inside the lattice (second and
third rows in Figs. 2 and 3), an interesting effect becomes
immediately obvious: While for the case with external
stress the picture of €7 — 6(1)1 is almost uniformly grey
(second row in Fig. 3) the one for e — 632 reproduces
exactly the stripe pattern seen in the configurations. This
indicates that the horizontal strain inside the horizontal
stripes is uniform, consistent with the periodic boundary
conditions. In the direction perpendicular to the stripes,
however, the lattice spacing is larger (smaller) where the
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atoms are larger (smaller). In this way, the small spacing
in the black stripes compensates for the large spacing in
the white stripes. A similar effect can be seen even in the
case without external stress, where only the vertical stripes
show up in the graph of €, while only the horizontal ones
can be seen in the graph of €;2. From this it follows that the
total elastic energy will not depend much on the thickness
of the stripes. Indeed, a change in stripe thickness means
only a redistribution of the strains (with roughly the same
absolute value) in space. Since the elastic energy depends
only on the sum of the squares of the strain, it will not
change much (this holds for large enough stripes for which
the dependence of the elastic potential on the length |k| of
the vector k does not matter). This has been verified by
calculating the evolution of elastic energy and the short-
range energy separately as a function of time. Hence, the
only driving force for the thickening of the stripes is the
reduction of the total interface, just as in the case without
elastic interactions. It is, therefore, quite reasonable that
a suitably defined characteristic length should increase as
1'73, t being the time, just as in the case without elastic
interactions.

The number of A-B bonds in the horizontal and vertical
directions, S, and §,, measure approximately the “surface
area” perpendicular to these directions. In a typical
coarsening process [15] with constant volume fraction of
the phases one would expect the interface S to behave as
1/R, where R is an average domain size. In analogy, we
define the length scale R; and an “aspect ratio” p by

R, = 2L%/(S, + S,), p = Sy/Sx. (5)

R; and p are plotted for a number of cases in Fig. 4 at
¢ = 0.5. As can be seen in Fig. 4(a), R, grows at essen-
tially the same rate whether an external stress is applied to
the system or not, except for the very final stages where
finite size effects may become important. Such a ¢'/3
growth is consistent with some experiments on nickel-
based superalloys [14,16], but smaller growth exponents
were found in a continuum model when external stress
was applied [5]. However, in that case the thickness D
of the stripes was obtained only over a rather narrow time
range (typically a factor of 10). The data shown in [5]
would, in fact, still be compatible with a time behavior in
the form D = Dy + Arl/3, D¢ and A being constants. To
decide whether the microscopic model presented here and
the continuum model give the same or a different growth
law for the domain, one would have to obtain data over a
larger range of times for the continuum model.

The “aspect ratio” [see Fig. 4(b)], on the other hand,
is strongly dependent on the external stress. As long as
no stress is applied, p stays close to 1, since horizontal
and vertical directions are equivalent in terms of the
interaction potential. When an external stress is applied,
this symmetry is broken and p increases. Surprisingly
p never exceeds the value 2.5 even though rather long
stripes are present in the system. The reason must be the
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FIG. 4. Growth of (a) the typical length scale R; and (b) the
aspect ratio p defined in (5) plotted against (time)'/* for
systems evolving with and without an external stress. These
include runs starting from a homogeneous distribution with (<)
and without (+) external stress, as well as runs with external
stress started after 10% ({J) and after 10* MCS (X) pretreatment
at the same temperature but without external stress. The full
line in (a) is a linear fit to the data without external stress.
All the points were obtained by averaging over 20 independent
runs.

“waviness” of the stripes, which implies a large number of
horizontal A-B bonds even when the stripes are horizontal.
Nonetheless it is not quite clear why p seems to approach
the same value in all cases after long enough times. We
have also studied a number of runs starting with 8 or
16 perfectly straight stripes, where p = «. In all cases
p started immediately to decrease as the stripes became
wavy. After typically 5000 MCS, p reached a value close
to 2.5 and did not change significantly anymore. Even
though we have no explanation for this effect, it seems
to indicate that the waviness is an intrinsic property of

the model and corresponds to an instability of the straight
lines with respect to deformations of the surface. In a
more general context, it may be related to the general
instability of flat surfaces in stressed solids [17], see
also [18]. Most interestingly, the stripes observed in
experiments [1,14], as well as in the continuum model
studied by Nishimori and Onuki [5] are also quite wavy.
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FIG. 1. Potential W(k) represented in the first Brillouin zone
of the square lattice using a pseudogrey scale. The lowest
values of the potential are dark, while the highest are white.
The origin Kk is in the center of the picture. The left picture
shows the case b = d = 0 (no external stress) and the right
b = 0,d = —0.4 (uniaxial stress along the lines of the lattice).



FIG. 2. Typical configurations (top row) obtained by letting
the system evolve without any external stress. Times shown
are 1 = 0 (random configuration), + = 10° MCS, and r =
10* MCS. The large A atoms are in black and the smaller B
atoms in white and are in equal number. The second row shows
the local strain €, for each configuration, while the third row
shows €3;. Dark (clear) regions with €; > 0 (<0) correspond
to an expansion (compression) along the given i axis (i = x,y),
average grey means €; = (.



FIG. 3. Results obtained after 10° MCS with external stress
({ = 0.1) starting from the configurations shown in Fig. 2 pre-
pared for 0, r = 10°* MCS, and + = 10* MCS without external
stress ({ = 0). The strains relative to the external (homoge-
neous) strain €;, — €}, and €, — €5 of each configuration are
shown in the second and third rows, respectively, with the same
grey scale as in Fig. 1.



