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Some bounds are obtained on ®(V), the radius of convergence of the density expansion for the
logarithm of the grand partition function of a system of interacting particles in a finite volume V,
and on ®, the radius of convergence of the corresponding infinite-volume expansion (the virial expan-
sion). A common lower bound on ®&(V) and ® is 0.28952/(u + 1)B, where u = exp [—Min 8713 ic;<.
2¢0(x; — x;)]/«T [so that u > 1, with equality for nonnegative o(r)], B = fle-e () /T — 1| d® 1,
and ¢(r) is the binary interaction potential; the irreducible Mayer cluster integrals have the related
upper bounds 8x < [(u + 1)B/0.280952]*/kiu = 1, when ¢(r) > 0]. For potentials with hard cores
the maximum density is an upper bound on ®(V), though possibly not on ®; an example shows how
both ®(V') and ® can be less than the maximum density, even if there is no phase transition. A theorem
is proved, analogous to Yang and Lee’s theorem on uniform convergence in the complex 2 plane,
defining a class of domains in the complex p plane within which the operations V — « and d/dp
commute. This theorem is used to show that limy., ®R(V) < @&, and that there is no phase transition
for 0 < p < 0.28952/(u + 1)B.

1. INTRODUCTION

ECENTLY several authors’™® have obtained
upper and lower bounds for the radius of
convergence R(V) of the Mayer fugacity expansions.*

V7 log E(, V) = ple, VIAT = 2 b(V)e!, (L.1)

functions n,(x, -+ x, | 2, V) can also be expanded
as power series in 2, with radius of convergence
at least’ R(V).

The thermodynamic pressure and density are
given'~® for small z by

pe) = limp(e, V) = «T 2202,  (1.3)
V-0
oz, V) = (/«T) dp(z, V)/dz = 0,(VX. (1.2
‘Z ‘ p) = lim pz, V) = 3 £b2', 1.4)
Here Z(z, V) and p(z, V) are the grand partition e ¢
function and the mean number density at fugacity = where
and temperature T' for a system of particles with b, = lim b(V) ¢t=12,--). (1.5)

Voo

two-body interactions, confined to a spatial region V'

. ) - )
whose volume is V. Boltzmann’s constant is denoted  Moreover, the common radius of convergence R

by «. The coeflicients b,(V) are the finite-volume
Mayer* cluster integrals. The s-particle distribution

* Supported by the Air Force Office of Scientific Research
under Grant 62-64.

t Present address: Imperial College, London, England.

1 J. Groeneveld, Phys. Letters 3, 50 (1962).

* D. Ruelle, Correlation Functions of Classical Gases (Insti-
tute for Advanced Study, Princeton, 1963); Ann. Phys.
(N. Y.) 25, 109 (1963).

# O. Penrose, J. Math. Phys. 1312 (1963).

¢ Mayer describes his theory in Handbuch der Physik
(Springer-Verlag, Berlin, 1958), Vol. 12.

of these two series satisfies®
R > lim inf R(V),

Voo
since any point z = a with ja| < lim infy.. R(V)
must be a regular point of p(z). This follows from
Yang and Lee’s theory.®
§C. N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952).

The theory is generalized to a wider class of potentials by
D. Ruelle, Helv. Phys. Acta 36, 183 (1963).

(1.6)
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The purpose of this paper is to make a similar
study of the radii of convergence ®R(V) and ® of
the finite- and infinite~volume density expansions
obtained by eliminating z from (1.1) and (1.2), and
from (1.3) and (1.4). These expansions may be
written

p@z, V) = P(o(z, V), V) = «Tolz, V)
X [1 Zk 7 B(V)etz, V)] (1.7)
p) = P(p(z)) = «T(z)
X [1 ZH 16kp(z)] (1.8)

The 8.(V)s can be expressed in terms of the
bé(V)’s by algebraic relations, such as 8:(V) =
2b,(V), B2(V) = 3bs(V) — 6by(V)?, ete., which do not
involve V explicitly. It follows by (1.5) that

B, = lim Bk(V)

V—o

1.9

The 8.’s are the irreducible Mayer cluster integrals*
and (1.8) is the virial expansion. We shall study
®(V) by a method based on Lagrange’s theorem
for the expansion of one function of z in powers
of another. This method incidentally yields upper
bounds on the absolute values of the 8,’s and 8,(V)’s.
We shall study ® by means of a generalization to
the complex p-plane of Yang and Lee’s results® on
uniform convergence in the z plane.

Our lower bounds on ®(V) and ® apply to systems
of particles whose positions x,, x,, --- are either
continuously variable or confined to a lattice. Their
interaction stems from a two-body interaction poten-
tial ¢(r) for which there exists a constant ® such that

Y ox:—x;)> —sd forall s, x, ---x,. (1.10)
i<j<s
The circumstances under which (1.10) is satisfied
have been discussed by Ruelle*® and Penrose.® We
shall also make the convergence assumption

B = Ie—v(r)/xT _

1dr < w, (1.11)

all space
where » is the number of space dimensions (= 1, 2,
or 3). In discussing the upper bounds on ®&(V) and
®, we shall further assume that the potential has
a hard core, i.e., that a positive constant ¢ exists
such that

o) = 4o (1.12)
but this assumption is unnecessary in the other parts
of the discussion.

¢ D. Ruelle, Ref. 5.

if r<a,
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2. LAGRANGE’S THEOREM

Lagrange’s theorem,” adapted to the expansion of
p(z, V) in powers of p(z, V) may be stated thus:
let the function z/p(z, V) be analytic within and
on a closed contour C surrounding the origin of the
z plane, and let p be a complex number satisfying

lo| <= Min |o, V)|. @2.1)
Then the equation p(z, V) = p is satisfied by just
one value of z inside C, which we denote by z(p, V);
further, if the function p(z, V) is analytic within
and on C, it has the convergent expansion

PG, V) = plele, V), V) = Lo, 22)
where
_ 1 dpz, V) dz
& = omi ¢ dz nipl, VI
_ 1 47 | dpe, V) z "
T onld! [ dz {p(z, V)} ].-o @3)

The path of integration is any contour C’ surround-
ing z = 0 such that |p(z, V)| < u for all z on C".
The uniqueness of z(p, V) follows from Rouché’s
theorem,® which shows that the functions z/p and
2/p — z/p(z2, V) have the same number (one) of
zeros inside C. The formula for ¢, is obtained by
expanding in powers of p on both sides of the follow-
ing equation derived from Cauchy’s residue theorem:

P(P; V)
_ 1 dp(z, V) dz
- 21r’l,'9g PG, V) dz  pz, V) — p'

and then integrating the resulting formula for c,
by parts. By virtue of the relation (1.2) between
p(z, V) and p(z, V), and the definition (1.7) of the
B:(V), Eq. (2.3) for n = 2, 3, --- is equivalent to

1 dz
2mi I 2{p(z, V)}F

for'k =1, 2 . This formula is used in Sec. 3
to estimate the 8,(V)’s.

3. LOWER BOUNDS ON &(V) AND &

According to Lagrange’s theorem, the series (2.2)
converges if |p] is less than the lower bound u of
lo(z, V)| on the contour C; that is,

®(V) 2 u = Min |p(e, .

2.4

—kBu(V) = (2.5)

3.1

TE. Whittaker and G. N. Watson, Modern Analysis
(Cambndge University Press, New York, 1927), Sec. 7.32.
8 B. T. Copson, Theory of Functions of a Complex Variable
(Oxford University Press, London, 1935), Sec. 6.21.
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CONVERGENCE OF VIRIAL EXPANSIONS

A suitable lower bound on |e(z, V)| can be found
from Penrose’s generalization’ of Groeneveld’s es-
timates' of the b,(V)’s

I‘bl(V)l S ul_z[ﬁB]l_l/a (( = 2: 3) t '):

where

(3.2)

u=e*T>1, (3.3)

and ® and B are defined in (1.10) and (1.11). These
estimates imply''® that R(V) > 1/euB. In the rest
of the section we ensure the convergence of (1.1)
and (1.2) by requiring

2] < 1/euB. (3.4)
Since b, = 1 the series (1.1) now gives the inequality

lp(Z, V) - Zl

> bt

=2

__1-_ = -1 [4 !
< 715 2 £ D)/

= w/uw'B — |z|/u, (8.5)
where w is defined by
we " = uB ], 0<w<l. (3.6)

Since the function we™™ increases monotonically from
0 to ¢! in the range 0 < w < 1, the condition
(3.4) guarantees that w exists and is unique. In
deriving the last line of (3.5) we used Euler’s
expansion® for w in powers of we™*:

w= 2, £ we ™) /Ll 8.7
From (3.5) and (3.6) we obtain a lower bound
on |p(z, V),
lo@z, V)| 2 (1 + 1/u) [¢| — w/u’B
= {(u + )¢ — 1}w/u’B. (3.8)

As the contour C in (3.1), we may choose any
circle 2] = const < 1/euB. By (3.6) the equation
of this circle may be written w = const, and the
corresponding value of pis > {(u+1)e™"—1}w/u’B.
Since (3.1) holds whatever value of w in the range
0 < w < 1isused to define C, we must have
®(V) > Max {(u + e — 1}w/u’B.

0<w<l1

3.9
To obtain a convenient estimate of ®(V), we use
the identity

{(u + 1) — 1}w/u’B

= [v = vy 2) [ + w8,

* G. Pélya and G. Szegd, Aufgaben und Lehrsdtze der
Analysis (Springer-Verlag, Berlin, 1925), Vol. I, Part III,
Chap. 5, No. 209.

(3.10)
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where v = w(l + u)/u and glw) = (1 — ¢ *)/w.
Since /{1 + u) > 3 by (3.3) and g(w) decreases
monotonically, the right side of (3.10) is at least
[v — v’9(3v)]/(u + 1)B. Hence (3.9) implies

®(V) > Max [v — v’g(3v)]/(u + 1)B
= 0.28952/(u + )B.  (3.11)

The maximum is attained when » = 0.62984. If we
had not replaced g(vu/(1 + u)) by ¢(3v) the numera-
tor in (3.11) would have been replaced by a function
of u increasing monotonically from 0.28952 when
u = 1 (nonnegative potentials) to ¢”' = 0.36788
as u — ©,

These methods also yield upper bounds on the
B:(V)’s. Taking the contour in (2.5) to be a circle
|z = const, we obtain the estimate

d |z| Max

zonC

____|
2{p(z, V)}*|
[Mm lolz, V)I7*.

zon C

BB < 5 ¢
(3.12)
Choosing the radius of the circle, as before, to

maximize the quantity in square brackets, we find
that

k|B(V)] < [Max {(u + e — 1}w/u’B]™*
s[%%ég} h=1,2-). (313

Combined with (1.5) this gives upper bounds on
the irreducible Mayer cluster integrals

k |6.] < [(» + 1)B/(0.28952)]".

This set of inequalities implies, by (1.8) and
Cauchy’s kth-root convergence test, that

(3.14)

—1/k

® = lim inf

k-

k
h+1%
> 0.28952/(u + 1)B, (3.15)
so that & and ®(V) have the same lower bound.
The result (3.15) can also be obtained by applying

to the function p(z) the same arguments which when
applied to p(z, V) led to (3.11); or by using (6.1).

4. UPPER BOUND ON ®(V)

One way of finding an upper bound on ®R(V) is
to locate singularities of the analytic continuation
of the function P(p, V) defined for small p in Sec. 2.
This analytic continuation is easiest for the phys-
ically possible values of p.

The physically possible values of z are the real
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positive values. The theory of fluctuations shows
that dp(z, V)/dz = [(N*) — (N)*]/20 is positive
for positive z. Therefore, as 2 increases from 0 to «,
o(z, V) increases monotonically from 0 to some
limiting value px(V), (which may be -+ ) and
p(z, V) = «T [; p(2, V) dz/z increases monotonically
from 0 to «. Thus the physically possible values
of pare 0 < p < pu(V). For hard-core potentials
px(V) is given by

pu(V) = M(V)/0, 4.1)

where M (V) is the largest number of nonintersecting
spheres of diameter a whose centers can be fitted
into the region V. For potentials without hard cores,
pu(V) is + o,

Since p(z, V) increases monotonically for 0 <z< o,
its inverse function z(p, V)—although many-valued—
has a branch Z(p, V), which increases monotonically
from 0 to « as p increases from 0 to py (V). For the
physically possible values of p we may therefore
define P(p, V) by

Plo, V) =p(Z(, V), V) 0<p<pu). (42

This function increases monotonically from 0 to «,
and is therefore singular at p = px (V). Moreover,
the two definitions (2.2) and (4.2) are equivalent
when 0 < p < 0.28052/(u + 1)B. It follows that
the series (2.2) must diverge when p = pu(V),
so that

&(V) < pu(V). 4.3)

Unfortunately this upper bound provides informa-
tion only for hard-core potentials.
Taking the limit V — « we obtain®
lim ®(V) <

Voo

pu = lim pu(V). “.4

To obtain an upper bound on ® we may try using
the same argument for p(z) and z(p) instead of p(z, V)
and 2(p, V). Provided that the system has no phase
transition [so that p(2) is analytic at every point
on the positive z axis], and provided that

do(@)/dz > 0 forall z> 0,
the same argument goes through, giving

R <L pu = %im pu(V)

4.5)

(4.6)

if there is no phase transition. However, if there
is a phase transition, ® may perhaps be larger than
pu. The approximate equation of state found by

10 Tf the limits in (4.4) do not exist, the inequality is true
for both the largest and the smallest limit points of ®(V)

and ppu(V).
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Reiss, Frisch, and Lebowitz'' for the hard-sphere
fluid illustrates this possibility since its only sing-
ularity is a triple pole at p = 6pa/ V2 = 1.3505px
which suggests that ® =¢ 1.3505px% > par.

5. YANG-LEE THEORY FOR THE ¢ PLANE

In this section we generalize Yang and Lee's
theory of uniform convergence in the z plane by
proving a corresponding theorem for the p plane.
This theorem indicates, for example, the circum-
stances under which the operations limy... and d/dp
are interchangeable.

Theorem. Let p, < p < p, be a segment of the
real p axis, with 0 < p, and p, < ps. Let D be
any bounded simply connected region in the p plane,
whose intersection with the line segment 0 < p < par
is the set p, < p < p,, and into which analytic
continuation of the functions P(p, V) defined by
(4.2) yields a single-valued regular function for all
sufficiently large V. Then the sequence of functions
P(p, V) converges uniformly on any region bounded
by a contour inside .

Proof: The proof depends on Vitali’s theorem"
which states that, if © is a region and f(p, V) is a
sequence of analytic functions which are

(i) regular in D,
(ii) uniformly bounded in D,
(iii) convergent, as V — =, on a set of points
having a limit point in D,

then the sequence f(p, V) converges uniformly in
any region bounded by a contour inside . We shall
apply Vitali’s theorem to the sequence

1(o, V)= P/Z(p) V)) (5.1)

where Z(p, V) is the analytic continuation, into D,
of the function Z(p, V) defined for 0 < p < py in
Sec. 4. We start the sequence (5.1) with V suffi-
ciently large to make the analytic continuation of
P(p, V) into D possible for all larger V. According
to the definitions (1.1) and (1.7), the functions
flo, V) and P(p, V) are related by the differential
equation

1dPe.V) _, _
«T dp

11 {, Reiss, H. L. Frisch and J. L. Lebowitz [J. Chem.
Phys. 31, 360 (1959)] find that p/pkT >~ (1 + a4+ a?)/(1 — a)
where @ = V2rp/6oy. The same equation of state also
follows from the Percus—Yevick equation: see M. Wertheim,
Phys. Rev. Letters 8, 321 (1963); E. Thiele, J. Chem. Phys.
39, 474 (1963). '

2 5, C. Titchmarsh, The Theory of Functions (Oxford
University Prese, London, 1939), 2nd ed., p. 168.

dflog f(p, V)1
P do (5.2
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Since P(p, V) is regular and D is simply connected,
it follows that log f(p, V) is regular and single-valued
in D; therefore, the analytic continuation used in
the definition (5.1) leads to no ambiguities, and
moreover f(p, V) satisfies the condition () of
Vilati’s theorem.

To deal with the condition (ii), consider first the
part of D where Z(p, V) > 1/euB. Clearly (o, V)
is bounded in this part, since the denominator
of (5.1) is bounded away from zero and the nu-
merator is bounded because © is a bounded region
of the p plane. For the other part of D, where
Z(p, V) < 1/euB, we write z for Z(p, V) and use
(3.5) to show that

I6e, V)| < w/u'B + (1 — /) o] < w/uB,  (5.3)
so that
o, M = |22 CuflluB =o* <o, (5.9)

Thus f(p, V) is bounded in both parts of D, and
(ii) is satisfied.

To show that the sequence defined in (5.1) satisfies
condition (iii) it is sufficient to show that, as V — o,
Z(p, V) converges to a limit at almost all points
on the segment p, < p < p,, since then any sub-
segment p; < p < pj, where p; < p] < pf < py,
lies within D and contains'® at least one limit point
of the points where Z(p, V) converges.

We shall begin by proving the corresponding
convergence property for the function p(z, V) of
which Z(p, V) is the inverse. The proof depends
on the fact, proved in Sec. 4, that p(z, V) is an
increasing function of z for real positive z; this fact
implies that, for any positive z,

p@, —h, V) < oz, V) < 02, h, V),  (5.5)
where % is a positive number less than z, and
P(z) ih: V)
3
= [ ol t, V) diyt (.6)
o
= [ple &= h, V) — ple, V)I/(=T)  (5.7)

by (1.2). It is known from Yang and Lee’s theory®
that

p@) = lim pz, V) 5.9)

exists for all positive z; therefore taking the limit
V — = in (5.5) gives

plz, —h) < lim inf p(z, V)
V-

< 111]!71 sup (p(Z, V) < P(z) +h)):
18 Ref. 7, Sec. 2.21, p. 12.

(5.9)

845

where

oz, £h) = [p@ = B) — p@))/(xMT).  (5.10)

Taking the limit A — 0 in (5.9) we find that
limy.. p(z, V) exists, and is equal to (z/«xT) dp(z)/dz,
for all positive values of z where dp(z)/dz exists.
But p(z), being a nondecreasing function, is'*
differentiable for almost all z; therefore

p(d) = ym p(z, V) (6.11)

exists for almost all positive values of 2.

Since the p(z, V)’s are increasing functions, the
limit function p(2) is nondecreasing. Its inverse
function 2(p) is therefore uniquely defined'® for all
values of p satisfying 0 < p < py, apart from a
set of exceptional values of p for which the equation
p = p(z) has more than one solution. Each excep-
tional value corresponds to a segment of the real
2 axis on which p(2) is constant. Since these segments
of the z axis are countable, the exceptional values
of p form a set of zero measure.

To show that lim Z(p, V) exists, let p, be any
nonexceptional value of p, let 2z, = Z(p,), and let
¢ be a small positive number such that p(z, — )
and p(z, + ¢ exist. Since p(z) is monotonic and
pois nonexceptional, we have p(zo—¢) < po < p(20+e¢),
and hence by (5.11) the inequality

pleo — 6 V) < po < ples + ¢, V)  (5.12)

holds for all sufficiently large V. Applying the non-
decreasing function Z(p, V) to (5.12) we find

20 — ¢ < Z(po, V) Lz +e (5-13)

Since ¢ can be made arbitrarily small, it follows that

lvug Z(po, V) = 20 = Z(po) (6.14)
for almost all values of p, in the range 0 < p < py.
Consequently, condition (iii) of Vitali’s theorem is
satisfied.

Vitali’s theorem now tells us that the sequence
f(p, V) converges uniformly in any region bounded
by a contour inside Dj; its limiting function f(p) is
therefore regular inside . To prove our theorem
that the same is true of the sequence P(p, V) we
consider two cases separately. Suppose first that
f(o) has a zero inside D, say at p = a. The value
of a cannot be zero, since if the point p = 0 is
within © then the conditions of the theorem imply

1 Ref. 12, Sec. 11.42.
15 Either as the solution of p = p(z) or, if this has no
solution, by means of a Dedekind section of the real z axis.
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that the segment of the nonnegative real axis inside
Dis 0 £ p < p, so that by continuity f(0) =
lim, e p/Z(p, V) = lim, p(z, V)/z = 1 = 0.
By Hurwitz’s theorem,'® all the f(o, V)’s for large
enough V must also have zeros at points near
p = a # 0inside D. Hence, by (5.2), all the P(p, V)’s
for large enough V have logarithmic singularities
at these points. This contradicts the condition that
the P(p, V)’s must be single-valued within © for
large enough V, and thus rules out this first case
where f(p) has a zero inside D.

In the remaining case the function f(p), having no
zeros inside ®, must be bounded away from zero
inside any contour within ©; consequently all the
f(p, V)’s are also bounded away from zero inside the
contour for large enough V. It follows that the se-
quence log f(p, V) converges uniformly within the con-
tour, and so also do'’ the sequences d(log f(p, V))/dp
and [by (5.2)] dP(p, V)/dp. Evaluating P(p, V) by
integration of its derivative along a path inside ©
with one end fixed on the positive real axis, we
conclude'” that the sequence P(p,V) does converge
uniformly within the contour. Q.E.D.

6. RELATION BETWEEN & AND lim G(V)

The theorem of Sec. 5 leads at once to a result
analogous to (1.6). Let § be any small positive
number. Then the disk |p| < lim infy.. R(V) — &
satisfies the conditions required of the region D,
gince the power series (2.2) whose radius of con-
vergence exceeds the radius of D for all sufficiently
large V, provides the analytie continuation of P(p, V)
from the real axis into ©. The theorem then implies
that P(p), being the limit of a uniformly convergent
sequence of analytic functions, is itself analytic
inside the contour |p|] = lim infy_. ®(V) — 2.
Therefore the power-series expansion (1.8) for P(p)
converges if |p| < lim infy_. R(V) — 24. Since § can
be made arbitrarily small, it follows that

lim inf ®(V) < ®.

Vo

(6.1)

7. OTHER DENSITY EXPANSIONS

Besides the pressure, other quantities have useful
expansions in powers of p. We can relate their
radii of convergence to ® and &(V).

Foremost among these expansions is that of the
fugacity 2. Since the analytic functions P(p, V) and
Z(p, V) are both regular near p = 0, it follows
from the differential equation (5.2) that their sin-
gularities in the p plane (appropriately cut) coincide,

18 Ref. 12, Sec. 3.45.
17 Ref. 8, Secs. 5.13 and 5.12.
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and hence that the series expansion of Z(p, V) has
radius of convergence ®R(V). Similarly, the series
expansion of Z(p) = limy.. Z(p, V) has radius of
convergence ®.

The density expansions for the s-particle distribu-
tion functions n,(x,, --+ x,) are also important.
To study their convergence, consider the disk
lo] < ®(V) and its image D in the z plane under
the mapping z = Z(p, V). Since the function p(z, V)
is single-valued, it is regular within D; therefore®
Z(z, V) has no zeros in D, so that® n,(x,, --- x,)
is a regular function of z within D. It follows that
n,(Xy, - x,) is a regular function of p within
o] < ®(V), so that its expansion in powers of p
has radius of convergence at least ®(V).

8. DISCUSSION

The information we have obtained about ®(V)
and @& can be summarized in the formulas

0.28952/(u + DB < &(V) < pu(V),
lim inf ®(V) < ®,

Voo
which come from (3.11), (4.3), and (6.1). The
quantities u, B, and py(V) are defined in (3.3),
(1.11), and (4.1).
The simplest illustration of these formulas is
provided by a system of hard rods in one dimension.
Its equation of state is

PiT = p/(l —ap) = p+ap"+ ---, (8.3

where a is the length of each rod. The value of & is
therefore 1/a. The value of lim infy_... ®R(V) is harder
to calculate, but (8.1) and (8.2) provide the rather
wide bounds

0.07238 < aliminf®(V) < 1

Voo

8.1)
8.2)

8.4)

since v = 1, B = 2qa, and py = 1/a.

The main physical conclusion to be drawn from
our results is that there can be no phase transition
for densities less'® than 0.28952/(u + 1)B, since
the series (1.7) converges for these densities and
is equal (by the theorem of Sec. 5) to the thermo-
dynamic pressure, which is therefore an analytic

18 D. Ruelle, Ref. 2, shows that for nonnegative potentials
there can be no phase transition for densities less than
1/3.8B = 0.26/B. Using an inequality due to E. Lieb [J.
Math. Phys. 4, 671 (1963)], this number can be slightly
increased to 1/(1 + €)B = 0.27/B. For general hard-core
potentials the corresponding number is 1 /u[(1 + ¢) B, - eB_],
where B, and B_ are the contributions of the positive and
negative parts of ¢(r) to the integral (1.1) [see O. Penrose,
J. Math. Phys. 4, 1488 (1963), Eq. (8.3)]. For more general
potentials, however, the bound 0.28952/(w -+ 1)B given in
the text is the best available.
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function of p. Moreover, if lim inf ®&(V) is known,
it provides a better lower bound on the density at
a phase transition. This follows from the arguments
of Secs. 5 and 6.

On the other hand, our results do not prove that
® is a lower bound on the density at a phase transi-
tion. For quantum systems, Fuchs'® has shown that
® can actually exceed the value of p at a phase
transition (for an ideal B-E gas). Tor classical
systems the question remains open, although the
example mentioned at the end of Sec. 4 suggests
that here too, ® can exceed the value of p at a
phase transition.*

Although the value of p at the first phase transition
cannot be less than lim inf ®(V), it can be greater
than both lim inf ®&(V) and ®. This can be shown
by considering a one-dimensional system of inter-
acting hard rods with the interaction potential

+o (] <a),
er) = T'n2 (a < |r| < 2a), (8.5)
0 @a < |r.

For this potential, fugacity and pressure are related
byBl
19 W. H. J. Fuchs, J. Ratl. Mech. Anal. 4, 647 (1955).

2 M. Kac, G. E. Uhlenbeck and P. C. Hemmer, J. Math.
Phys. 4, 216 (1963), consider a one-dimensional system with
© "l < a

olr) = {—2a’ye"7", [* > a,

and find that this system has a phase transition in the limit
¥ — 0, which can be obtained from Maxwell’s equal area
construction applied to

po(p) = KT[I _’:’ P — apz] = KTp[l—Zk % Ifl— 1 ﬁkﬂpk]’

where 83® = lim,.¢8i(v), and 8i(y) = limp.B8:(y, V). Thus
®R® = a7, the radius of convergence of the above series
exceeds the value of p at the phase transition.

#t H. Takahasi, Proc. Phys. Soc. Japan 24, 60 (1942);
F. Gursey, Proe. Cambridge Phil. Soc. 46, 182 (1950).

847
_]_-_ _ fm ~[rp+e(r)1/xT
7=/ e dr
«T —8ap/2xT

= ; e cosh (ap/2«T), (8.6)
so that
1 _ding) 1, 3a a .., op
oT — dp — p AT AT tanh 2T ®.7)

As p moves in its Argand plane from the origin
along the positive imaginary axis, the value of
1/p — %a moves along its imaginary axis from —¢e
to a value —(1.1322)7a, achieved when p = 2:zxT/a
where z = 0.7393 is the real solution of x = cos z,
and then retreats again to —7«. Hence the image
point of p starts at the origin of its Argand plane,
moves along & circular arc whose furthest point from
the origin is its other end at 1/(1.5000 — 1.13227)a,
and returns to the origin. Therefore the function
P(p) has a branch point at 1/(1.5000 — 1.13227)q,
and ® is at most 1/]1.5000 — 1.13224| a = 1(0.5321),
which is less than p), = 1/a. Thus, for this system,
unlike the simple hard-rod system, both ® and
lim inf ®&(V) are less than p,, despite the fact that
there is no phase transition for 0 < p < py. There-
fore, the actual values of ® and lim inf,.. ®(V)
have, in general, no physical significance since they
may be determined by singularities off the real
positive p axis.”?
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2 The nearest singularity of P(p) is off the real positive
p axis if and only if an infinite number of virial coefficients
are negative. This example therefore supplements Wertheim’s
proof that the virial coefficients need not all be positive even
if ¢(r) is nonnegative. [Wertheim considers the case o(r) « r—=;
forthcoming paper.)
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