JOURNAL OF

MATHEMATICAL PHYSICS

VOLUME 5, NUMBER 7

July 1964

Convergence of Virial Expansions*

J. L. LEBOWITZ AND O. PENROSET Belfer Graduate School of Science, Yeshiva University, New York, New York (Received 5 September 1963)

Some bounds are obtained on $\Re(V)$, the radius of convergence of the density expansion for the logarithm of the grand partition function of a system of interacting particles in a finite volume V, and on R, the radius of convergence of the corresponding infinite-volume expansion (the virial expansion). A common lower bound on $\Re(V)$ and \Re is 0.28952/(u+1)B, where $u = \exp[-\text{Min } s^{-1}\sum_{i < j \le a} 2\varphi(\mathbf{x}_i - \mathbf{x}_j)]/\kappa T$ [so that $u \ge 1$, with equality for nonnegative $\varphi(\mathbf{r})$], $B = \int |e^{-\varphi(\mathbf{r})}/\kappa T - 1| d^3 \mathbf{r}$, and $\varphi(\mathbf{r})$ is the binary interaction potential; the irreducible Mayer cluster integrals have the related upper bounds $\beta_k \leq [(u+1)B/0.28952]^k/k[u=1]$, when $\varphi(r) \geq 0$. For potentials with hard cores the maximum density is an upper bound on $\Re(V)$, though possibly not on \Re ; an example shows how both $\mathfrak{R}(V)$ and \mathfrak{R} can be less than the maximum density, even if there is no phase transition. A theorem is proved, analogous to Yang and Lee's theorem on uniform convergence in the complex z plane, defining a class of domains in the complex ρ plane within which the operations $V \to \infty$ and $d/d\rho$ commute. This theorem is used to show that $\lim_{V\to\infty} \Re(V) \leq \Re$, and that there is no phase transition for $0 \le \rho < 0.28952/(u+1)B$.

1. INTRODUCTION

RECENTLY several authors¹⁻³ have obtained upper and lower bounds for the radius of convergence R(V) of the Mayer fugacity expansions.⁴

$$\mathbf{U}^{-1} \log \Xi(z, V) \equiv p(z, V)/\kappa T = \sum_{\ell} b_{\ell}(V)z^{\ell}, \quad (1.1)$$

$$\rho(z, V) = (z/\kappa T) dp(z, V)/dz = \sum_{\ell} \ell b_{\ell}(V) z^{\ell}. \quad (1.2)$$

Here $\Xi(z, V)$ and $\rho(z, V)$ are the grand partition function and the mean number density at fugacity z and temperature T for a system of particles with two-body interactions, confined to a spatial region V whose volume is v. Boltzmann's constant is denoted by κ . The coefficients $b_{\ell}(V)$ are the finite-volume Mayer⁴ cluster integrals. The s-particle distribution

† Present address: Imperial College, London, England.

¹ J. Groeneveld, Phys. Letters 3, 50 (1962).

tute for Advanced Study, Princeton, 1963); Ann. Phys. (N. Y.) 25, 109 (1963).

O. Penrose, J. Math. Phys. 1312 (1963).

Mayer describes his theory in Handbuch der Physik (Springer-Verlag, Berlin, 1958), Vol. 12.

functions $n_*(\mathbf{x}_1 \cdots \mathbf{x}_* \mid z, V)$ can also be expanded as power series in z, with radius of convergence at least R(V).

The thermodynamic pressure and density are given¹⁻³ for small z by

$$p(z) \equiv \lim_{V \to \infty} p(z, V) = \kappa T \sum_{\ell} b_{\ell} z^{\ell},$$
 (1.3)

$$\rho(z) \equiv \lim_{V \to \infty} \rho(z, V) = \sum_{\ell} \ell b z^{\ell}, \qquad (1.4)$$

where

$$b_{\ell} \equiv \lim_{V \to 0} b_{\ell}(V) \qquad (\ell = 1, 2, \cdots).$$
 (1.5)

Moreover, the common radius of convergence Rof these two series satisfies³

$$R \ge \liminf_{V \to \infty} R(V), \tag{1.6}$$

since any point z = a with $|a| < \lim \inf_{v \to \infty} R(V)$ must be a regular point of p(z). This follows from Yang and Lee's theory.5

841

^{*} Supported by the Air Force Office of Scientific Research under Grant 62-64.

² D. Ruelle, Correlation Functions of Classical Gases (Insti-

⁵ C. N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952). The theory is generalized to a wider class of potentials by D. Ruelle, Helv. Phys. Acta 36, 183 (1963).

The purpose of this paper is to make a similar study of the radii of convergence $\Re(V)$ and \Re of the finite- and infinite-volume density expansions obtained by eliminating z from (1.1) and (1.2), and from (1.3) and (1.4). These expansions may be written

$$p(z, V) = P(\rho(z, V), V) \equiv \kappa T \rho(z, V)$$

$$\times \left[1 - \sum_{k} \frac{k}{k+1} \beta_{k}(V) \rho(z, V)^{k}\right], \quad (1.7)$$

$$p(z) = P(\rho(z)) \equiv \kappa T \rho(z)$$

$$\times \left[1 - \sum_{k} \frac{k}{k+1} \beta_k \rho(z)^k\right]. \tag{1.8}$$

The $\beta_k(V)$'s can be expressed in terms of the $b\ell(V)$'s by algebraic relations, such as $\beta_1(V) = 2b_2(V)$, $\beta_2(V) = 3b_3(V) - 6b_2(V)^2$, etc., which do not involve V explicitly. It follows by (1.5) that

$$\beta_k = \lim_{V \to \infty} \beta_k(V). \tag{1.9}$$

The β_k 's are the irreducible Mayer cluster integrals⁴ and (1.8) is the virial expansion. We shall study $\Re(V)$ by a method based on Lagrange's theorem for the expansion of one function of z in powers of another. This method incidentally yields upper bounds on the absolute values of the β_t 's and $\beta_t(V)$'s. We shall study \Re by means of a generalization to the complex ρ -plane of Yang and Lee's results⁵ on uniform convergence in the z plane.

Our lower bounds on $\mathfrak{R}(V)$ and \mathfrak{R} apply to systems of particles whose positions $\mathbf{x}_1, \mathbf{x}_2, \cdots$ are either continuously variable or confined to a lattice. Their interaction stems from a two-body interaction potential $\varphi(r)$ for which there exists a constant Φ such that

$$\sum_{i < j \le s} \varphi(\mathbf{x}_i - \mathbf{x}_j) \ge -s\Phi \text{ for all } s, \mathbf{x}_1 \cdots \mathbf{x}_s. \quad (1.10)$$

The circumstances under which (1.10) is satisfied have been discussed by Ruelle^{2,6} and Penrose.³ We shall also make the convergence assumption

$$B \equiv \int_{\text{all space}} \left| e^{-\varphi(\mathbf{r})/\kappa T} - 1 \right| d'\mathbf{r} < \infty, \qquad (1.11)$$

where ν is the number of space dimensions (= 1, 2, or 3). In discussing the upper bounds on $\Re(V)$ and \Re , we shall further assume that the potential has a hard core, i.e., that a positive constant a exists such that

$$\varphi(\mathbf{r}) = +\infty \quad \text{if} \quad r < a, \tag{1.12}$$

but this assumption is unnecessary in the other parts of the discussion.

2. LAGRANGE'S THEOREM

Lagrange's theorem, adapted to the expansion of p(z, V) in powers of $\rho(z, V)$ may be stated thus: let the function $z/\rho(z, V)$ be analytic within and on a closed contour C surrounding the origin of the z plane, and let ρ be a complex number satisfying

$$|\rho| < \mu \equiv \min_{z \text{ on } C} |\rho(z, V)|. \tag{2.1}$$

Then the equation $\rho(z, V) = \rho$ is satisfied by just one value of z inside C, which we denote by $z(\rho, V)$; further, if the function p(z, V) is analytic within and on C, it has the convergent expansion

$$P(\rho, V) \equiv p(z(\rho, V), V) = \sum_{n=1}^{\infty} c_n \rho^n, \qquad (2.2)$$

where

$$c_{n} \equiv \frac{1}{2\pi i} \oint_{C'} \frac{dp(z, V)}{dz} \frac{dz}{n \{\rho(z, V)\}^{n}}$$

$$= \frac{1}{n!} \frac{d^{n-1}}{dz^{n-1}} \left[\frac{dp(z, V)}{dz} \left\{ \frac{z}{\rho(z, V)} \right\}^{n} \right]_{z=0}. \tag{2.3}$$

The path of integration is any contour C' surrounding z=0 such that $|\rho(z,V)| \leq \mu$ for all z on C'. The uniqueness of $z(\rho,V)$ follows from Rouché's theorem, which shows that the functions z/ρ and $z/\rho - z/\rho(z,V)$ have the same number (one) of zeros inside C. The formula for c_n is obtained by expanding in powers of ρ on both sides of the following equation derived from Cauchy's residue theorem:

$$P(\rho, V)$$

$$= \frac{1}{2\pi i} \oint_{C'} p(z, V) \frac{d\rho(z, V)}{dz} \frac{dz}{\rho(z, V) - \rho}, \qquad (2.4)$$

and then integrating the resulting formula for c_n by parts. By virtue of the relation (1.2) between $\rho(z, V)$ and p(z, V), and the definition (1.7) of the $\beta_k(V)$, Eq. (2.3) for $n = 2, 3, \cdots$ is equivalent to

$$-k\beta_k(V) = \frac{1}{2\pi i} \oint \frac{dz}{z\{\rho(z,V)\}^k}$$
 (2.5)

for $k = 1, 2, \cdots$. This formula is used in Sec. 3 to estimate the $\beta_k(V)$'s.

3. LOWER BOUNDS ON $\Re(V)$ AND \Re

According to Lagrange's theorem, the series (2.2) converges if $|\rho|$ is less than the lower bound μ of $|\rho(z, V)|$ on the contour C; that is,

$$\Re(V) \ge \mu \equiv \min_{z \text{ on } C} |\rho(z, V)|. \tag{3.1}$$

⁷ E. T. Whittaker and G. N. Watson, Modern Analysis (Cambridge University Press, New York, 1927), Sec. 7.32.
 ⁸ E. T. Copson, Theory of Functions of a Complex Variable (Oxford University Press, London, 1935), Sec. 6.21.

⁶ D. Ruelle, Ref. 5.

A suitable lower bound on $|\rho(z, V)|$ can be found from Penrose's generalization³ of Groeneveld's estimates¹ of the $b_{\ell}(V)$'s

$$|\ell b_{\ell}(V)| \le u^{\ell-2} [\ell B]^{\ell-1} / \ell! \quad (\ell = 2, 3, \dots),$$
 (3.2)

where

$$u \equiv e^{2\Phi/\kappa T} \ge 1,\tag{3.3}$$

and Φ and B are defined in (1.10) and (1.11). These estimates imply^{1,3} that $R(V) \geq 1/euB$. In the rest of the section we ensure the convergence of (1.1) and (1.2) by requiring

$$|z| < 1/euB. \tag{3.4}$$

Since $b_1 = 1$ the series (1.1) now gives the inequality $|\rho(z, V) - z|$

$$= \left| \sum_{i=2}^{\infty} \ell b_i z^i \right| \le \frac{1}{u^2 B} \sum_{i=2}^{\infty} \ell^{i-1} (uB |z|)^i / \ell!$$

$$= w/u^2 B - |z|/u, \tag{3.5}$$

where w is defined by

$$we^{-w} = uB |z|, \quad 0 \le w < 1.$$
 (3.6)

Since the function we^{-w} increases monotonically from 0 to e^{-1} in the range $0 \le w < 1$, the condition (3.4) guarantees that w exists and is unique. In deriving the last line of (3.5) we used Euler's expansion for w in powers of we^{-w} :

$$w = \sum \ell'^{-1} (we^{-w})^{\ell} / \ell!. \tag{3.7}$$

From (3.5) and (3.6) we obtain a lower bound on $|\rho(z, V)|$,

$$|\rho(z, V)| \ge (1 + 1/u) |z| - w/u^2 B$$

= $\{(u + 1)e^{-w} - 1\}w/u^2 B$. (3.8)

As the contour C in (3.1), we may choose any circle |z| = const < 1/euB. By (3.6) the equation of this circle may be written w = const, and the corresponding value of μ is $\geq \{(u+1)e^{-w}-1\}w/u^2B$. Since (3.1) holds whatever value of w in the range $0 \leq w < 1$ is used to define C, we must have

$$\Re(V) \ge \max_{0 \le w < 1} \{(u+1)e^{-w} - 1\}w/u^2B.$$
 (3.9)

To obtain a convenient estimate of $\Re(V)$, we use the identity

$$\{(u+1)e^{-w}-1\}w/u^{2}B$$

$$= \left[v-v^{2}g\left(\frac{vu}{1+u}\right)\right]/(u+1)B, \quad (3.10)$$

where $v \equiv w(1+u)/u$ and $g(w) \equiv (1-e^{-w})/w$. Since $u/(1+u) \ge \frac{1}{2}$ by (3.3) and g(w) decreases monotonically, the right side of (3.10) is at least $[v-v^2g(\frac{1}{2}v)]/(u+1)B$. Hence (3.9) implies

$$\Re(V) \ge \max_{\mathbf{v}} [v - v^2 g(\frac{1}{2}v)]/(u+1)B$$

= 0.28952/(u+1)B. (3.11)

The maximum is attained when v = 0.62984. If we had not replaced g(vu/(1+u)) by $g(\frac{1}{2}v)$ the numerator in (3.11) would have been replaced by a function of u increasing monotonically from 0.28952 when u = 1 (nonnegative potentials) to $e^{-1} = 0.36788$ as $u \to \infty$.

These methods also yield upper bounds on the $\beta_k(V)$'s. Taking the contour in (2.5) to be a circle |z| = const, we obtain the estimate

$$k |\beta_{k}(V)| \leq \frac{1}{2\pi} \oint_{C} d |z| \max_{z \text{ on } C} \left| \frac{1}{z \{ \rho(z, V) \}^{k}} \right|$$

$$= \left[\min_{z \text{ on } C} |\rho(z, V)| \right]^{-k}.$$
 (3.12)

Choosing the radius of the circle, as before, to maximize the quantity in square brackets, we find that

$$k |\beta_k(V)| \le [\max_{w} \{(u+1)e^{-w} - 1\}w/u^2B]^{-k}$$

$$\le \left\lceil \frac{(u+1)B}{0.28952} \right\rceil^k \qquad (k=1, 2, \dots). \tag{3.13}$$

Combined with (1.5) this gives upper bounds on the irreducible Mayer cluster integrals

$$k |\beta_k| \le [(u+1)B/(0.28952)]^k.$$
 (3.14)

This set of inequalities implies, by (1.8) and Cauchy's kth-root convergence test, that

$$\mathfrak{R} = \liminf_{k \to \infty} \left| \frac{k}{k+1} \beta_k \right|^{-1/k}$$

$$\geq 0.28952/(u+1)B, \qquad (3.15)$$

so that \Re and $\Re(V)$ have the same lower bound. The result (3.15) can also be obtained by applying to the function $\rho(z)$ the same arguments which when applied to $\rho(z, V)$ led to (3.11); or by using (6.1).

4. UPPER BOUND ON R(V)

One way of finding an upper bound on $\Re(V)$ is to locate singularities of the analytic continuation of the function $P(\rho, V)$ defined for small ρ in Sec. 2. This analytic continuation is easiest for the physically possible values of ρ .

The physically possible values of z are the real

G. Pólya and G. Szegö, Aufgaben und Lehrsätze der Analysis (Springer-Verlag, Berlin, 1925), Vol. I, Part III, Chap. 5, No. 209.

positive values. The theory of fluctuations shows that $d\rho(z, V)/dz = [\langle N^2 \rangle - \langle N \rangle^2]/zV$ is positive for positive z. Therefore, as z increases from 0 to ∞ , $\rho(z, V)$ increases monotonically from 0 to some limiting value $\rho_M(V)$, (which may be $+\infty$) and $p(z, V) = \kappa T \int_0^z \rho(z, V) dz/z$ increases monotonically from 0 to ∞ . Thus the physically possible values of ρ are $0 < \rho < \rho_M(V)$. For hard-core potentials $\rho_{\mathcal{M}}(V)$ is given by

$$\rho_M(V) = M(V)/\mathbb{U}, \tag{4.1}$$

where M(V) is the largest number of nonintersecting spheres of diameter a whose centers can be fitted into the region V. For potentials without hard cores, $\rho_{M}(V)$ is $+\infty$.

Since $\rho(z, V)$ increases monotonically for $0 < z < \infty$, its inverse function $z(\rho, V)$ —although many-valued has a branch $Z(\rho, V)$, which increases monotonically from 0 to ∞ as ρ increases from 0 to $\rho_M(V)$. For the physically possible values of ρ we may therefore define $P(\rho, V)$ by

$$P(\rho, V) \equiv p(Z(\rho, V), V) \quad (0 < \rho < \rho_M). \tag{4.2}$$

This function increases monotonically from 0 to ∞ , and is therefore singular at $\rho = \rho_M(V)$. Moreover, the two definitions (2.2) and (4.2) are equivalent when $0 < \rho < 0.28952/(u + 1)B$. It follows that the series (2.2) must diverge when $\rho = \rho_M(V)$, so that

$$\mathfrak{R}(V) \le \rho_M(V). \tag{4.3}$$

Unfortunately this upper bound provides information only for hard-core potentials.

Taking the limit $V \to \infty$ we obtain 10

$$\lim_{V\to\infty} \mathfrak{R}(V) \leq \rho_M \equiv \lim_{V\to\infty} \rho_M(V). \tag{4.4}$$

To obtain an upper bound on R we may try using the same argument for $\rho(z)$ and $z(\rho)$ instead of $\rho(z, V)$ and $z(\rho, V)$. Provided that the system has no phase transition [so that $\rho(z)$ is analytic at every point on the positive z axis, and provided that

$$d\rho(z)/dz > 0$$
 for all $z > 0$, (4.5)

the same argument goes through, giving

$$\Re \le \rho_M \equiv \lim_{V \to \infty} \rho_M(V) \tag{4.6}$$

if there is no phase transition. However, if there is a phase transition, R may perhaps be larger than ρ_{M} . The approximate equation of state found by Reiss, Frisch, and Lebowitz¹¹ for the hard-sphere fluid illustrates this possibility since its only singularity is a triple pole at $\rho = 6\rho_M/\pi\sqrt{2} = 1.3505\rho_M$ which suggests that $\mathfrak{R} \cong 1.3505 \rho_M > \rho_M$.

5. YANG-LEE THEORY FOR THE @ PLANE

In this section we generalize Yang and Lee's theory of uniform convergence in the z plane by proving a corresponding theorem for the ρ plane. This theorem indicates, for example, the circumstances under which the operations $\lim_{\nu\to\infty}$ and $d/d\rho$ are interchangeable.

Theorem. Let $\rho_1 < \rho < \rho_2$ be a segment of the real ρ axis, with $0 \leq \rho_1$ and $\rho_2 < \rho_M$. Let \mathfrak{D} be any bounded simply connected region in the ρ plane, whose intersection with the line segment $0 < \rho < \rho_M$ is the set $\rho_1 < \rho < \rho_2$, and into which analytic continuation of the functions $P(\rho, V)$ defined by (4.2) yields a single-valued regular function for all sufficiently large V. Then the sequence of functions $P(\rho, V)$ converges uniformly on any region bounded by a contour inside D.

Proof: The proof depends on Vitali's theorem¹² which states that, if D is a region and $f(\rho, V)$ is a sequence of analytic functions which are

- (i) regular in D,
- (ii) uniformly bounded in D,
- (iii) convergent, as $V \to \infty$, on a set of points having a limit point in D.

then the sequence $f(\rho, V)$ converges uniformly in any region bounded by a contour inside D. We shall apply Vitali's theorem to the sequence

$$f(\rho, V) \equiv \rho/Z(\rho, V), \tag{5.1}$$

where $Z(\rho, V)$ is the analytic continuation, into \mathfrak{D} , of the function $Z(\rho, V)$ defined for $0 < \rho < \rho_M$ in Sec. 4. We start the sequence (5.1) with V sufficiently large to make the analytic continuation of $P(\rho, V)$ into \mathfrak{D} possible for all larger V. According to the definitions (1.1) and (1.7), the functions $f(\rho, V)$ and $P(\rho, V)$ are related by the differential equation

$$\frac{1}{\kappa T}\frac{dP(\rho, V)}{d\rho} = 1 - \rho \frac{d[\log f(\rho, V)]}{d\rho}.$$
 (5.2)

¹⁰ If the limits in (4.4) do not exist, the inequality is true for both the largest and the smallest limit points of $\mathfrak{R}(V)$ and $\rho_M(V)$.

The H. Reiss, H. L. Frisch and J. L. Lebowitz [J. Chem. Phys. 31, 369 (1959)] find that $\rho/\rho\kappa T \simeq (1 + \alpha + \alpha^2)/(1 - \alpha)^3$ where $\alpha = \sqrt{2\pi\rho/6\rho_M}$. The same equation of state also follows from the Percus-Yevick equation: see M. Wertheim, Phys. Rev. Letters 8, 321 (1963); E. Thiele, J. Chem. Phys. 39, 474 (1963).

E. C. Titchmarsh, The Theory of Functions (Oxford University Press, London, 1939), 2nd ed., p. 168.

Since $P(\rho, V)$ is regular and $\mathfrak D$ is simply connected, it follows that $\log f(\rho, V)$ is regular and single-valued in $\mathfrak D$; therefore, the analytic continuation used in the definition (5.1) leads to no ambiguities, and moreover $f(\rho, V)$ satisfies the condition (i) of Vilati's theorem.

To deal with the condition (ii), consider first the part of \mathfrak{D} where $Z(\rho, V) \geq 1/euB$. Clearly $f(\rho, V)$ is bounded in this part, since the denominator of (5.1) is bounded away from zero and the numerator is bounded because \mathfrak{D} is a bounded region of the ρ plane. For the other part of \mathfrak{D} , where $Z(\rho, V) < 1/euB$, we write z for $Z(\rho, V)$ and use (3.5) to show that

$$|\rho(z, V)| \le w/u^2B + (1 - 1/u)|z| \le w/uB,$$
 (5.3)

$$|f(\rho, V)| = \left|\frac{\rho(z, V)}{z}\right| \le w/|z| uB = e^{w} \le e. \tag{5.4}$$

Thus $f(\rho, V)$ is bounded in both parts of \mathfrak{D} , and (ii) is satisfied.

To show that the sequence defined in (5.1) satisfies condition (iii) it is sufficient to show that, as $V \to \infty$, $Z(\rho, V)$ converges to a limit at almost all points on the segment $\rho_1 < \rho < \rho_2$, since then any subsegment $\rho_1' \le \rho < \rho_2'$, where $\rho_1 < \rho_1' < \rho_2' < \rho_2$, lies within $\mathfrak D$ and contains at least one limit point of the points where $Z(\rho, V)$ converges.

We shall begin by proving the corresponding convergence property for the function $\rho(z, V)$ of which $Z(\rho, V)$ is the inverse. The proof depends on the fact, proved in Sec. 4, that $\rho(z, V)$ is an increasing function of z for real positive z; this fact implies that, for any positive z,

$$\rho(z, -h, V) \le \rho(z, V) \le \rho(z, h, V),$$
 (5.5)

where h is a positive number less than z, and

$$\rho(z, \pm h, V)$$

$$\equiv h^{-1} \int_0^k \rho(z \pm t, V) dt/t \tag{5.6}$$

$$= [p(z \pm h, V) - p(z, V)]/(\pm h_{\kappa}T) \qquad (5.7)$$

by (1.2). It is known from Yang and Lee's theory⁵ that

$$p(z) \equiv \lim_{V \to \infty} p(z, V) \tag{5.8}$$

exists for all positive z; therefore taking the limit $V \to \infty$ in (5.5) gives

$$\rho(z, -h) \leq \liminf_{V \to \infty} \rho(z, V)$$

$$\leq \limsup_{V \to \infty} (\rho(z, V) \leq \rho(z, +h)),$$
 (5.9)

where

$$\rho(z, \pm h) \equiv [p(z \pm h) - p(z)]/(\pm h \kappa T).$$
 (5.10)

Taking the limit $h \to 0$ in (5.9) we find that $\lim_{V\to\infty} \rho(z, V)$ exists, and is equal to $(z/\kappa T) dp(z)/dz$, for all positive values of z where dp(z)/dz exists. But p(z), being a nondecreasing function, is differentiable for almost all z; therefore

$$\rho(z) \equiv \lim_{V \to \infty} \rho(z, V) \tag{5.11}$$

exists for almost all positive values of z.

Since the $\rho(z, V)$'s are increasing functions, the limit function $\rho(z)$ is nondecreasing. Its inverse function $z(\rho)$ is therefore uniquely defined for all values of ρ satisfying $0 < \rho < \rho_M$, apart from a set of exceptional values of ρ for which the equation $\rho = \rho(z)$ has more than one solution. Each exceptional value corresponds to a segment of the real z axis on which $\rho(z)$ is constant. Since these segments of the z axis are countable, the exceptional values of ρ form a set of zero measure.

To show that $\lim Z(\rho, V)$ exists, let ρ_0 be any nonexceptional value of ρ , let $z_0 \equiv Z(\rho_0)$, and let ϵ be a small positive number such that $\rho(z_0 - \epsilon)$ and $\rho(z_0 + \epsilon)$ exist. Since $\rho(z)$ is monotonic and ρ_0 is nonexceptional, we have $\rho(z_0 - \epsilon) < \rho_0 < \rho(z_0 + \epsilon)$, and hence by (5.11) the inequality

$$\rho(z_0 - \epsilon, V) < \rho_0 < \rho(z_0 + \epsilon, V) \qquad (5.12)$$

holds for all sufficiently large V. Applying the non-decreasing function $Z(\rho, V)$ to (5.12) we find

$$z_0 - \epsilon \le Z(\rho_0, V) \le z_0 + \epsilon. \tag{5.13}$$

Since ϵ can be made arbitrarily small, it follows that

$$\lim_{V \to \infty} Z(\rho_0, V) = z_0 = Z(\rho_0)$$
 (5.14)

for almost all values of ρ_0 in the range $0 < \rho < \rho_M$. Consequently, condition (iii) of Vitali's theorem is satisfied.

Vitali's theorem now tells us that the sequence $f(\rho, V)$ converges uniformly in any region bounded by a contour inside \mathfrak{D} ; its limiting function $f(\rho)$ is therefore regular inside \mathfrak{D} . To prove our theorem that the same is true of the sequence $P(\rho, V)$ we consider two cases separately. Suppose first that $f(\rho)$ has a zero inside \mathfrak{D} , say at $\rho = \alpha$. The value of α cannot be zero, since if the point $\rho = 0$ is within \mathfrak{D} then the conditions of the theorem imply

¹⁸ Ref. 7, Sec. 2.21, p. 12.

¹⁴ Ref. 12, Sec. 11.42.

¹⁵ Either as the solution of $\rho = \rho(z)$ or, if this has no solution, by means of a Dedekind section of the real z axis.

that the segment of the nonnegative real axis inside \mathfrak{D} is $0 \leq \rho < \rho_2$, so that by continuity $f(0) = \lim_{\rho \to 0^+} \rho/Z(\rho, V) = \lim_{z \to 0^-} \rho(z, V)/z = 1 \neq 0$. By Hurwitz's theorem, ¹⁸ all the $f(\rho, V)$'s for large enough V must also have zeros at points near $\rho = \alpha \neq 0$ inside \mathfrak{D} . Hence, by (5.2), all the $P(\rho, V)$'s for large enough V have logarithmic singularities at these points. This contradicts the condition that the $P(\rho, V)$'s must be single-valued within \mathfrak{D} for large enough V, and thus rules out this first case where $f(\rho)$ has a zero inside \mathfrak{D} .

In the remaining case the function $f(\rho)$, having no zeros inside \mathfrak{D} , must be bounded away from zero inside any contour within \mathfrak{D} ; consequently all the $f(\rho, V)$'s are also bounded away from zero inside the contour for large enough V. It follows that the sequence $\log f(\rho, V)$ converges uniformly within the contour, and so also do^{17} the sequences $d(\log f(\rho, V))/d\rho$ and [by (5.2)] $dP(\rho, V)/d\rho$. Evaluating $P(\rho, V)$ by integration of its derivative along a path inside \mathfrak{D} with one end fixed on the positive real axis, we conclude that the sequence $P(\rho, V)$ does converge uniformly within the contour. Q.E.D.

6. RELATION BETWEEN \Re AND $\lim \Re(V)$

The theorem of Sec. 5 leads at once to a result analogous to (1.6). Let δ be any small positive number. Then the disk $|\rho| < \liminf_{V \to \infty} \Re(V) - \delta$ satisfies the conditions required of the region \mathfrak{D} , since the power series (2.2) whose radius of convergence exceeds the radius of \mathfrak{D} for all sufficiently large V, provides the analytic continuation of $P(\rho, V)$ from the real axis into \mathfrak{D} . The theorem then implies that $P(\rho)$, being the limit of a uniformly convergent sequence of analytic functions, is itself analytic inside the contour $|\rho| = \liminf_{V \to \infty} \Re(V) - 2\delta$. Therefore the power-series expansion (1.8) for $P(\rho)$ converges if $|\rho| \leq \liminf_{V \to \infty} \Re(V) - 2\delta$. Since δ can be made arbitrarily small, it follows that

$$\liminf_{V \to \infty} \mathfrak{R}(V) \le \mathfrak{R}.$$
(6.1)

7. OTHER DENSITY EXPANSIONS

Besides the pressure, other quantities have useful expansions in powers of ρ . We can relate their radii of convergence to \Re and $\Re(V)$.

Foremost among these expansions is that of the fugacity z. Since the analytic functions $P(\rho, V)$ and $Z(\rho, V)$ are both regular near $\rho = 0$, it follows from the differential equation (5.2) that their singularities in the ρ plane (appropriately cut) coincide,

and hence that the series expansion of $Z(\rho, V)$ has radius of convergence $\Re(V)$. Similarly, the series expansion of $Z(\rho) \equiv \lim_{V\to\infty} Z(\rho, V)$ has radius of convergence \Re .

The density expansions for the s-particle distribution functions $n_s(\mathbf{x}_1, \dots, \mathbf{x}_s)$ are also important. To study their convergence, consider the disk $|\rho| < \Re(V)$ and its image D in the z plane under the mapping $z = Z(\rho, V)$. Since the function $\rho(z, V)$ is single-valued, it is regular within D; therefore $\Xi(z, V)$ has no zeros in D, so that $n_s(\mathbf{x}_1, \dots, \mathbf{x}_s)$ is a regular function of z within z. It follows that z is a regular function of z within z is a regular function z is a regular function of z within z is a regular f

8. DISCUSSION

The information we have obtained about $\Re(V)$ and \Re can be summarized in the formulas

$$0.28952/(u+1)B \le \Re(V) \le \rho_M(V), \qquad (8.1)$$

$$\liminf_{V \to \infty} \Re(V) \le \Re, \tag{8.2}$$

which come from (3.11), (4.3), and (6.1). The quantities u, B, and $\rho_M(V)$ are defined in (3.3), (1.11), and (4.1).

The simplest illustration of these formulas is provided by a system of hard rods in one dimension. Its equation of state is

$$P/\kappa T = \rho/(1-a\rho) = \rho + a\rho^2 + \cdots, \qquad (8.3)$$

where a is the length of each rod. The value of \Re is therefore 1/a. The value of $\liminf_{V\to\infty} \Re(V)$ is harder to calculate, but (8.1) and (8.2) provide the rather wide bounds

$$0.07238 \le a \liminf_{V \to \infty} \Re(V) \le 1 \tag{8.4}$$

since u = 1, B = 2a, and $\rho_M = 1/a$.

The main physical conclusion to be drawn from our results is that there can be no phase transition for densities less¹⁸ than 0.28952/(u + 1)B, since the series (1.7) converges for these densities and is equal (by the theorem of Sec. 5) to the thermodynamic pressure, which is therefore an analytic

¹⁶ Ref. 12, Sec. 3.45.

¹⁷ Ref. 8, Secs. 5.13 and 5.12.

¹⁸ D. Ruelle, Ref. 2, shows that for nonnegative potentials there can be no phase transition for densities less than 1/3.8B = 0.26/B. Using an inequality due to E. Lieb [J. Math. Phys. 4, 671 (1963)], this number can be slightly increased to 1/(1 + e)B = 0.27/B. For general hard-core potentials the corresponding number is $1/u[(1 + e)B_+ + eB_-]$, where B_+ and B_- are the contributions of the positive and negative parts of $\varphi(r)$ to the integral (1.1) [see O. Penrose, J. Math. Phys. 4, 1488 (1963), Eq. (8.3)]. For more general potentials, however, the bound 0.28952/(u + 1)B given in the text is the best available.

function of ρ . Moreover, if $\lim \inf \Re(V)$ is known, it provides a better lower bound on the density at a phase transition. This follows from the arguments of Secs. 5 and 6.

On the other hand, our results do not prove that R is a lower bound on the density at a phase transition. For quantum systems, Fuchs¹⁹ has shown that \Re can actually exceed the value of ρ at a phase transition (for an ideal B-E gas). For classical systems the question remains open, although the example mentioned at the end of Sec. 4 suggests that here too, R can exceed the value of p at a phase transition.20

Although the value of ρ at the first phase transition cannot be less than $\lim \inf \Re(V)$, it can be greater than both $\lim \inf \Re(V)$ and \Re . This can be shown by considering a one-dimensional system of interacting hard rods with the interaction potential

$$\varphi(r) = \begin{cases} +\infty & (|r| < a), \\ \kappa T \ln 2 & (a \le |r| < 2a), \\ 0 & (2a \le |r|). \end{cases}$$
 (8.5)

For this potential, fugacity and pressure are related by²¹

W. H. J. Fuchs, J. Ratl. Mech. Anal. 4, 647 (1955).
M. Kac, G. E. Uhlenbeck and P. C. Hemmer, J. Math. Phys. 4, 216 (1963), consider a one-dimensional system with

$$\varphi(r) \, = \left\{ \begin{array}{ll} \infty & |r| \, < \, a \\ -2\alpha \gamma e^{-\gamma r}, & |r| \, > \, a, \end{array} \right.$$

and find that this system has a phase transition in the limit $\gamma \to 0$, which can be obtained from Maxwell's equal area

$$p_0(\rho) = \kappa T \left[\frac{\rho}{1 - \rho a} - \alpha \rho^2 \right] = \kappa T \rho \left[1 - \sum_k \frac{k}{k+1} \beta_k{}^0 \rho^k \right],$$

where $\beta_k{}^0 = \lim_{\gamma \to 0} \beta_k(\gamma)$, and $\beta_k(\gamma) = \lim_{V \to \infty} \beta_k(\gamma, V)$. Thus $\mathfrak{R}^0 = a^{-1}$, the radius of convergence of the above series exceeds the value of ρ at the phase transition.

²¹ H. Takahasi, Proc. Phys. Soc. Japan 24, 60 (1942); F. Gursey, Proc. Cambridge Phil. Soc. 46, 182 (1950).

$$\frac{1}{Z} = \int_0^\infty e^{-\left\{rp + \varphi(r)\right\}/\kappa T} dr$$

$$= \frac{\kappa T}{p} e^{-3ap/2\kappa T} \cosh\left(ap/2\kappa T\right), \qquad (8.6)$$

so that

$$\frac{1}{\rho \kappa T} = \frac{d(\ln z)}{dp} = \frac{1}{p} + \frac{3a}{2\kappa T} - \frac{a}{2\kappa T} \tanh \frac{ap}{2\kappa T}.$$
 (8.7)

As p moves in its Argand plane from the origin along the positive imaginary axis, the value of $1/\rho - \frac{3}{2}a$ moves along its imaginary axis from $-i \infty$ to a value -(1.1322)ia, achieved when $p = 2ix\kappa T/a$ where x = 0.7393 is the real solution of $x = \cos x$, and then retreats again to $-i\infty$. Hence the image point of ρ starts at the origin of its Argand plane. moves along a circular arc whose furthest point from the origin is its other end at 1/(1.5000 - 1.1322i)a, and returns to the origin. Therefore the function $P(\rho)$ has a branch point at 1/(1.5000 - 1.1322i)a, and \Re is at most 1/|1.5000 - 1.1322i| $a = \frac{1}{2}(0.5321)$, which is less than $\rho_M = 1/a$. Thus, for this system, unlike the simple hard-rod system, both R and $\lim \inf \Re(V)$ are less than ρ_M , despite the fact that there is no phase transition for $0 < \rho < \rho_M$. Therefore, the actual values of \Re and $\lim \inf_{V\to\infty} \Re(V)$ have, in general, no physical significance since they may be determined by singularities off the real positive p axis. 22

ACKNOWLEDGMENTS

We are indebted to B. Epstein and H. E. Rauch for useful advice.

²² The nearest singularity of $P(\rho)$ is off the real positive ρ axis if and only if an infinite number of virial coefficients are negative. This example therefore supplements Wertheim's proof that the virial coefficients need not all be positive even if $\varphi(r)$ is nonnegative. [Wertheim considers the case $\varphi(r) \propto r^{-n}$; forthcoming paper.]