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We have investigated the thermodynamic properties of a binary mixture of hard spheres (with special
reference to the existence of a phase transition) by using the recently obtained exact solution of the gen-
eralized equations of Percus and Yevick for the radial distribution functions of such a mixture. The dis-
tribution function obtained from the equations of Percus and Yevick is only an approximation and so
yields two different pressures, p° and p?, when used, respectively, in the compressibility equation of Ornstein
and Zernike and in the equation of state obtained from the virial theorem. Comparisons with machine
calculations show that p¢ is slightly above and p? slightly below the true pressure but that both are close
to it. Our results show that the volume change on mixing at constant pressure is negative at all densities
and compositions within the fluid phase when it is calculated from ¢, but that it becomes positive at high
densities when calculated from p». In neither case is there a separation into two fluid phases. These results
are compared briefly with those obtained from other theories of mixtures,

L. INTRODUCTION

HE statistical mechanical theory of fluid mixtures

is at present in a far poorer state than the corre-
sponding theory for single-component fluids. This is
not surprising since their properties are much more
varied and the labor involved in obtaining them from
first principles is correspondingly much larger. Thus
even the conceptually simplest case of a binary mixture
of hard spheres has three independent parameters, (as
compared to one parameter for the one-component
case). It was therefore very surprising, and pleasing,
that one could obtain an exact, explicit, and simple
solution of the generalized Percus-Yevick equation for
this “simple” system.! Even more surprising perhaps
was the fact that the equation of state obtained from
this solution is in very good agreement with “experi-
ment,” i.e., the result of machine computations. It has
therefore seemed worthwhile to investigate in detail
the implications of this theoretical result with special
reference to the question of phase separation. The
results of this investigation are presented here.

II. THERMODYNAMIC POTENTIALS

We consider a system consisting of #m components
with number densities p;, 1=1, «++, m. The particles
interact via pair potentials ¢;;(r) and the structure of
the fluid is determined by the radial distribution func-
tions g;;(r), where 7 is the distance between a particle
of Species ¢ and a particle of Species j. The direct
correlation functions C;;(r) are defined in a manner
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analogous to that in a one-component fluid,!

[&4(r) 1= Cu(r)+ o[ [galr—3) = 11Cu()dy,

Cij(7)=Cj,'(1’). (21)

It can be shown, either through a generalization of
the Ornstein-Zernike fluctuation theory? or from the
definition of the direct correlation function as a varia-
tional derivative,! that

Pif@j(")df: Bij_ﬁpiw ,  (22)
dp;

where u; is the chemical potential of the ith species

and B is the reciprocal temperature, 8= (k7)1 (We

generally do not indicate explicitly the temperature

dependence of the functions we consider.) Using

thermodynamic relations we obtain from (2.2),

0
1—;szczj(f)dr=ipf )

where p is the pressure. The left side of (2.2) and (2.3)
can be expressed directly in terms of the g; by using
(2.1). The pressure can also be obtained from the
radial distribution functions via the virial theorem.

(2.3)

Bp= ZPF%WZP:‘P:‘/ oy (r)gi(r)dr.  (24)
iJ [}

For exact gi;(r), (2.4) and (2.3) will yield the same
equations of state. This will, however, not be true in
general when one uses a g;;(r) obtained from an approxi-
mate theory as we are doing in this paper. We shall
then denote the pressure and other thermodynamic
quantities obtained from (2.2) and (2.3) with a super-

2 F. J. Pearson and G. S. Rushbrooke, Proc. Roy. Soc. (Edin-
burgh)” A64, 305 (1957).
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script ¢ (for compressibility) and those from (2.4) by
a superscript » (for virial). There is reason to believe
that the compressibility relations will generally be
“more correct’” than those obtained from the virial
theorem.?

The generalization of the Percus-Yevick equation
for the radial distribution function to mixtures is
straightforward.! It can be expressed in the form

gii(7) {exp[—Bpi;(r) J—1} = exp[—Be:;(r) JCi;(r).
(2.5)

Thus, as in the case of a single-component fluid, the
P-Y (Percus-Yevick) approximation for a mixture
states that the range of C;(r) is equal to the range of
¢:;(r). In particular for a fluid of hard spheres,

0, r<< RijE (R,JrR])/Z
expl —Bei;(r) J=

1, r> Rij, (2())

where R; is the diameter of a particle of the ith species.
Equations (2.5) and (2.6) state that C;;(7) vanishes for
r> (R4 R;)/2 and g;;(r) vanishes for r< (R;+R;)/2.
The approximation is, of course, in the first statement,
the latter being rigorously true.

Equations (2.1), (2.5), and (2.6) now form a closed
set of equations for the C’s and g’s which have been
solved exactly.! The C;;(r) are given explicitly* as
simple polynomials in r, (r<R;;) and explicit expres-
sions are obtained for the Laplace transforms of the g;;.
Substituting these expressions into (2.2) and (2.3)
yields

pifi*
L_c= 1 P
Pu n[(2# &T)3

2

(1—-§)°

]+ In(1—§)+- BP‘R 3

_|_

(3 Y—6£Y+§X2—§$X2+3£2Y}

_I_.

(3X—6EX+38X]  (2.7)

R;
(1-¢§)®
and

Bpe= ([ > p I 1+E+8]
— (18/) 2_nim;(Ri— Ry)’[2Ry+ RiR;(X) ]} (1~ ),

i<J

(2.8)

E=2 miR3, X=2miR2 V=2 mnRi

The virial pressure is also obtained explicitly irom
the solution of the P-Y equation since for the case of
a mixture of hard spheres (2.4) assumes the form

Bp°= ZPi'i‘%WZ:PinRiﬁgij (Rij),
(2

where

=1,
Ni=6mPi,

(2.9)

3 See the end of this section.
4 Reference 1, Egs. (37)—(38).
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where g;;(R;;) is the contact value of the radial distri-
bution function, for which the P-Y equation gives,!

gi(Rij)) =[Rigii(Re) +Rigij(R;) J/2Ry,  (2.10)
gi(R)={(1-5+iRX} (1-5) (2.11)

This yields
Bp*=PBp°— (18/m)EX3 (1) % (2.12)

From (2.8) and (2.12) we can obtain explicitly the
P-Y expression for the Helmholtz free energy of a mix-

ture of hard spheres as a function of T, V, Ny, «++, Ny,
We find,
pA= V[me.f—ﬂ], (2.13)
18 X3((1
BAr=pA+—V— {((1 2;))+£ Hn(1- s)} (2.14)

These functions then determine all the thermo-
dynamic properties of this system. In particular the
chemical potential of the ith species obtained from A®
is given by

3REXY( [ (1—36)

: 13[0—5)2
RX[(1—9)+(1-28)?
el (-ge

We note here an important advantage (in self con-
sistency) of u’s derived from the compressibility rela-
tions over those derived from the virial theorem (and
hence also of the equations of state). The chemical
potential u; consists physically of two parts®:

wi= pi W, (2.16)

where ;= In[ p#*/ (2rm;kT) ]is the ideal gas (kinetic)
Pﬂl‘t of Mi and Wi(ply Tty Pyttt Pmy Rl) °T %y Ri; "ty
R, is the work of putting in a particle of Species 7 of di-
ameter R;into the fluid.> Now if we set one of densities,
e.g., pm €qual to zero, then

Wm,(Rm) =Wm(p1; te

pit =t +£7 In1 —5)]

—I— 1(1 E)]} (2.15)

) pm:o; er ey RM)

is the work of putting in a single particle into an (m—1)
component fluids of hard spheres of diameters
Ry, +++, Ryn1 and densities p1, ** ¢, pn. Now if R, is
made very large then it is clear that

W,/ (Rp) =41p’ (Rn/2)3+0(R,3),

where 0(R,?) are terms which do not increase as fast
as R,? (surface terms)®6 and p’ is the pressure of the
(m—1) component fluid. This is indeed the case for

(2.17)

5 See, e.g., H. Reiss, H. L. Frisch, and J. L. Lebowitz, J. Chem.
Phys. 31, 369 (1959): [Eq. (2.7) can also be derived by a gen-
eralization of the R.F.L. theory, cf. Ref. 6].

6 J. L. Lebowitz, E. Praestgaard, and E. Helfand, Bull. Am.
Phys. Soc. 9, 278 (1964).
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the W’s computed from the u¢ as can be seen directly
from (2.7}, but not for those computed from u”.

III. RELIABILITY OF THE P-Y APPROXIMATION

It is seen from (2.8) and (2.12) that the difference
between p° and p* is of fourth order in the density.
Comparison with exact values of the virial coefficients
shows indeed that p? and $° are exact up to the fourth
order in the densities.

For the case of a one-component fluid, which may be
obtained by setting all the R/s equal to R, (or by

setting ps=p3="+++=pn=0), we find
Bpr=p(1+E+8)/(1-8)%, (3.1)
(18/m) pf*
V== Bt — ——— 3.2
B =i s (32)

This equation of state (3.1) was obtained initially by
Reiss, Frisch, and Lebowitz,® on the basis of an en-
tirely different approximation and later by Wertheim®
and Thiele? from the solution of the P-Y equation for
a one-component hard-sphere fluid. The higher virial
coefficients computed from (3.1) and (3.2) are in good
agreement with the exact coefficients,®'® being, respec-
tively, slightly above and slightly below the exact ones.
Indeed comparison with the machine computations of
Alder and Wainright!! show that $° and p° closely bound
the actual pressure over the whole range of “fluid”
densities, £ <0.4. (It should be noted however that p°
and p? do not go to infinity at close packing, = irVi=
0.7403, but only at £=1.)

An interesting feature of the pressures p° and 27,
(2.8) and (2.12), is that when the diameter of one of
the components say R, is equal to zero, i.e., species
one consists of point particles, then

Bp=Bp"+Lon/ (1) ],

where p’ is the pressure when species one Is absent,
i.e., pn=0. It is easy to show that the dependence on
pm in (3.3) is exact.

We have also made comparisons with the Monte
Carlo computations of Smith and Lee™ for a binary
mixture in which R;=%R,, the agreement is good.
There is also very good agreement with the recent
molecular dynamic computations of Alder' for Ri=3Rs,
pr=ps, £<0.4. Here, too, p° and p® bound the exact
results.

Summarizing then, we believe that the solutions of
the P-Y equation are a good approximation to the

(3.3)

TA. G. McLellan and B. J. Alder, J. Chem. Phys. 24, 115

1956).
( 8 M) Wertheim, Phys. Rev. Letters 8, 321 (1963).

9 £, Thiele, J. Chem. Phys. 39, 474 (1963).

1. H. Ree and W. G. Hoover, J. Chem. Phys. 40, 939
(1964) ; S. Katsura and Y. Abe, ibid. 39, 2068 (1963).

11 B, Alder and T. Wainright, J. Chem. Phys. 33, 1439 (1960).

2 E. B. Smith and K. R. Lea, Nature 186, 714 (1960).

13 B, Alder, “Studies in Molecular Dynamics I11; A Mixture of
Hard Spheres” (to be published).
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exact result (within 49;-59%,) for all ratios of Ri/R,
and for ¢ <0.4, i.e., the range of “fluid”’ densities.

IV. STABILITY CONDITIONS

For a mixture of hard spheres the specific heat at
constant volume is equal to 3R, [cf. (2.13); (2.14)].
Hence, the condition of thermodynamic stability re-
duces simply to the requirement that the matrix M,
whose elements are

Auipr, ***\pm)

Mi].(M)_——_-
dp;
& [A(T, V, Ny, -+ Ny
:apipj[ 14 }Em'j’ (1)

be positive definite.* This is equivalent to the require-
ment that all the principal minors of the matrix M®™
be positive. It can be verified from (2.7), that when
the uf are used in (3.1), then all the diagonal elements
of M™ are positive (the off-diagonal elements vanish
in the case of an ideal-gas mixture, R;=0 for all 7, but
are otherwise also positive). Furthermore, for the case
m=2,

I M@ | = [unr®uas®— (12) %]
= (Bpip2) [1+2£/(1-£)*>0. (4.2)

Thus, the compressibility relations obtained from the
P-Y equation yield no phase transition for a single
component or binary mixture of hard spheres. Interest-
ingly enough the determinant of M®, which is just
M;®, is of the same form as (4.1),
2
‘Mn(l):a_'u: (Bp) —1(1—+2_$_)_. .
dp (1—¢)*
We believe that the same form will hold for the deter-
minant of all the M, and that the P-Y equation will
always show (using the compressibility relations) no
phase transition for a mixture of hard spheres.

We can also calculate | M® | from the virial free
energy A? by differentiation of the additional terms
in u” on the right hand of (2.15). This leads to a posi-
tive form if (Ri/R;) =0, namely

| M@ | = (Bp102)(1456+98—38) / (1—£)%; Ri=0,
(4.3)

which is smaller and increases more slowly than | M® |
and is again of the same form as MV obtained from
the virial equation of state. We have found no simple
similar result if (Ry/Rs)#0, but (M®) has been cal-
culated numerically for (R;/R.)=1%, 1, 4, & and for

(4.3)

o1/ (p1+p2) =2=0.1,0.2, «++, 0.9
and

(7:R#)=0.1,0.2, -+, 1.0.

U H, Callen, Thermodynamics (John Wiley & Sons, Inc., New
York, 1960), Appendix G.
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TaBLE I. Volume changes on mixing at constant pressure, temperature, and total number of particles.»

pus/RT x Compressibility Virial pvs/kT % Compressibility Virial
V.E/Nv V.E/N
/Nox ok 7=0.5
r=0 8 V1/Nos=0.44983 Vi/Now=0.44064
1 Vi/Nos=1.0 Vi/Noe=1.0 Va/Nvx=1.94359 Va/Nuvs=1.82682
Vo/Nox=3.5987 Va/Nox=3.5251 0.1 —0.00053 +0.00038
0.1 ~0.0433 ~0.0405 o 000205 10 0015
0.3 —0.1239 —0.1157 ' 0 :
0.7 0.00215 +0.00158
0.7 —0.2154 —~0.2012 : : :
0.9 —0.1280 —0.1200
20 Vi/Nox=0.313838
2 Vi/Nox=0.5 Vi/Nox=0.5 Vao/Now=1.524046
0.1 —0.0245 —0.0224 0.3 +0.000929
0.3 —0.0714 —0.0651 0.5 +0.001322
0.5 —0.1127 —0.1025 0.7 +0.001379
0.7 —0.1380 —0.1251 0.9 +0.000776
0.9 —0.0964 —0.0879
30 V1/Nvx=0.277355
4 V1/Nvx=0.25 V2/Nox=0.25 Va/Nos=1.429272
Vo Now=2.2863 Vo/ Now=2.1785 o1 +0.000274
0.1 —0.0133 —0.0119 0.3 +0.000738
0.3 —0.0393 —0.0351 0.5 +0.001042
0.5 —0.0634 —0.0563 0.7 +0.001071
0.7 —0.0818 —0.0721 0.9 +0.000585
0.9 —0.0682 —0.0595
r=0.9

Vi/Nos=0.125
Va/Nvs=1.9436

V1/Nox=0.125
Va/Nuos=1.8268

V1/Nve=3.000674
Va/Nvs=3.598675

V1/Nox=2.954300
Vo/Nvx=3.525102

Vo/ Nys=2.28633

Vao/Nue=2.17852

Va/Nvw=1.943592

0.1 —0.0071 —0.0061
0.3 —0.0210 —0.0183 0.1 —0.000201 —0.000064
0.5 —0.0343 —0.0297 0.3 —0.000482 —0.000154
0.7 ~0.0457 —0.0393 0.5 —0.000591 —0.000190
0.9 —0.0445 —0.0373 0.7 —0.000512 —0.000165
0.9 —0.000226 —0.000072
r=0.5
Vi/Noe=1.43784 Vy/Now=1.43595 2 Vi/Nve=2.272268  V1/Nos=2.210512
Va/Nonm3. 59867 Va/Noem3. 53510 Va/Noe=2.798128 Va/Now=2.705001
0.1 —0.000081 +0.000019
9.1 —0.00r8 .00 0.3 —0.000194 40.000046
05 00288 —0.0203 0.5 —0.000238 +0.000057
07 0 0286 Z0.0203 0.7 —0.000207 +0.000049
00 —0.0129 0,008 0.9 —0.000091 +0.000022
Vi/Nys=0.90422 Vi/Nve=0.90039 4 V1/Nox=1.817596 Vi/Nov»=1.743382
Va/Nve=2.79813 Va/Nvx=2.70500 Va/Nus=2.286327 Va/Nv+=2.178516
. —0.0033 —0.00 0.1 —0.000031 4-0.000036
3; _8803()2 _0,0();3; 0.3 —0.000076 +0.000085
0.5 —0.01270 —0.00562 0.5 —0.000093 -+0.000104
0.7 —0.01295 —0.00579 0.7 —0.000081 +-0.000090
0.9 —0.00699 —0.00320 0.9 —0.000036 +0.000040
V1/Nos=0.61509 Vi/Nve=0.60865 8 Vi/Nva=1.519164 Vi/Nos=1.436492

V2/Nos=1.826818

0.1 —0.00135 0.00000 0.1 —0.000012 +-0.000028
0.3 —0.00367 -+0.00001 0.3 —0.000029 —+0.000068
0.5 —0.00521 +0.00001 0.5 —0.000036 +0.000083
0.7 —0.00540 -+0.00002 0.7 —0.000031 +0.000072
0.9 —0.00299 +0.00001 0.9 —0.000014 . -+0.000032
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TaBLE I (Continued)
r=0.9 r=0.9
pox/kT % Compressibility Virial pur/kT 0 Compressibility Virial

20 Vi/Nvx=1.1756415 Vi/Nvs=1.0945656
Vo/Nvx=1.5240463 Va/Nuve=1.4292723

0.1 -+0.0000134 30 0.1 +0.0000079

0.3 +0.0000318 0.3 +0.0000184

0.5 +0.0000387 0.5 +0.0000220

0.7 +-0.0000332 0.7 -+0.0000186

0.9 +0.0000145 0.9 —+0.0000079

& g4 is the volume of one molecule of Species 2, that is, [(7/6)NR23]; «1, the mole fraction of Species 1; r=R1/Rs; V1 and V2 are the volumes of the pure fluids.

It was found to be positive under all conditions. The
determinant | M® | may also be expressed in terms of
the Gibbs free energy of the binary mixture
G=Ng(p, », T), where N is total number of particles,
£ is the pressure, and « is the mole fraction of Species 1.
Utilizing straightforward thermodynamic reasoning
gives,

g (p,x, T) _ [dP (p, %) ]_1p2 | M® | p=Dp; (4.4)
da? dp ’ ’

where the differentiation of g is carried out at constant
$. Combining (2.8), (4.1}, and (4.4) now yields

Bd2g°(1>°, x)

dx?

L [142£7P 5
=~ P EmE e rra-g . Y
where
J=3x(1—2x) (r— 1) 2r+142(?—1) (r4+1) ]

X[14=x(r*—1)173, (4.6)

K=3x(1—x) (r— D)¥[14a(—-1) J[1+2(r*-1) 173,

(4.7)

r=Ri/Rs, (4.8)
and the explicit dependence of £ on «x is given by

g=gmpRi[1+x(rP—1) ] (4.9)

The superscript ¢ in (4.5) again indicates that the com-
pressibility functions were used throughout.

V. EXCESS VOLUME

The excess thermodynamic properties of a binary
mixture of hard spheres are most conveniently expressed
in terms of the excess volume

x;=pi/ (m+p2), (5.1)

when V, V% and V are the volumes of the mix.ture
of Pure Component 1 and Pure Component 2.a.t a given
p and 7. There is no energy change on mixing hard

VE=V—x,V°P—x VS,

spheres and so the excess Gibbs free energy is given at
once by
4
6=~ [veap. (5.2)
0
The excess volume is negative in the dilute gas, its
]imit at zero pressure being

VE= (1/%1x3) (2B1a— By— By,)
= (1/x1x2) (Rl_R2>2(R1+R2) (7rN/2), (53)

where B is a second virial coefficient. The excess volume
at nonzero pressure is found by solving (2.8) or (2.12)
for v at given values of (Ry/R;), x, and £ These solu-
tions were found by iteration on a computer and the
derived values of V¥ are shown in Table I.

The excess volumes are negative under all conditions
if the compressibility equation is used. Hence, from
(5.2), G® is also negative and phase separation does
not occur as already seen in (4.1).

If the virial equation is used then VZ is always
negative if (Ri/R;)=0, but becomes positive at very
high pressures if the size ratio is not zero. However,
graphical integration of (5.2) shows that GF is still
everywhere negative, and so confirms the conclusion
of the last section that phase separation does not occur.
The positive values of V¥ calculated from p° decrease
with increasing pressure (at sufficiently high pressures)
more rapidly than (p7'). Hence, from (5.2), GF is
bounded and cannot become an infinitely large positive
quantity. We conclude from a comparison of the results
from p° and p” that V¥ is negative at all low and mod-
erate pressures. It is almost zero at very high pressures
but then its sign is still uncertain. However, GF ‘is
almost certainly negative at all pressures and phase
separation never occurs.

VI. COMPARISON WITH OTHER THEORIES

The theoretical treatments with which our results
can be most readily compared is that of Buchowski and
Bellemans.” These authors consider the case of a binary
mixture of hard spheres in which the diameters differ

% H. Buchowski and A. Bellemans, Bull. Acad. Polon. Sci.,
Ser. Sci. Chim. 9, 17 (1961),
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by a small amount A, Rs=1, Ry=r=1+4\. They then
utilize some results of Brown!® to obtain a very inter-
esting exact expression for the excess Gibbs free energy
g% to order A2 This expression involves both the thermo-
dynamic properties of the reference system, i.e., Pure
Species 2, and also the three-particle correlation func-
tion g; of the reference system. The value of g3 is needed
only when the three spheres are in contact, g3(1, 1, 2).
They then use the Reiss, Frisch, Lebowitz® expressions
for the thermodynamic properties of the reference
system (which, as mentioned in section three, are the
same as the P-Y compressibility results for a one-com-
ponent system) and approximate gz(1, 1, z) either by
g2(1) or by the superposition approximation. The first
of these approximations to gs yields a positive g# for
p20.5, which increases rapidly and predicts a phase
separation at p=1.1 for A=0.1, x=0.5. The super-
position approximation was carried through by
Buchowski and Bellemans only at p=0.77 where it gave
a very small positive g%.

Utilizing (4.5) we obtain for the “compressibility”
excess Gibbs free energy and excess volume to order A%

BGE_ o by gyl ime]
v fer el (6
VcE__ o 2%#[4—%—%7;-;)][1_%7,'0]4

v x(1—2)\ Atim)? , (6.2)

which as expected is negative for all values of p. A virial
expansion of (6.1) yields

BGE=—Nx(1—x)N[7mp— 35720+ 0.656(3mp)3~++ <+ ].
(6.3)

The exact result for the coefficient of (4mp)® given by
Buchowski and Bellemans is 0.535. Thus our expression
underestimates gf. We believe, however, that within
the range of “fluid” densities p $0.8 our results are
quite good and that gf for hard spheres is a small
negative or positive number at p~0.8. This would be
in approximate agreement with the result, obtained by
Buchowski and Bellemans from the superposition
approximation which according to Alder!'” is a good
approximation at these densities. For higher densities
there is a fluid—solid transition*® and the use of the
Reiss, Frisch, Lebowitz theory for the reference system
is not valid. Machine computations for small X are now

8 W. B. Brown, Proc. Roy. Soc. (London) A240, 561 (1957).
17 B, Alder, Phys. Rev. Letters 12, 317 (1964); see also J. S.
Rowlinson, Mol. Phys. 6, 517 (1963).
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being carried out by A. Rotenberg at New York
University.

Other theories of mixtures are less useful for mixtures
of hard spheres. The theory of random mixtures (or
“one-fluid” theory) and its extensions to nonrandom
mixtures'8 (“two-fluid” and “three-fluid”’ theories) in-
troduce singularities into the thermodynamic properties
if the molecules are hard spheres.’® Their use requires
the calculation of the change of energy when, if any
arbitrary configuration, a molecule of Species a is
changed to one of Species 8. If @ and 8 are hard spheres
of different radii, then these changes can be infinite.
Even the qualitative conclusions of these theories are
not comparable with the results of this paper. Each of
these theories predicts a positive contribution to the
Gibbs free energy from differences in size for molecules
whose potentials are of the Lennard-Jones (#, m) type.
This contribution is dominated by a term of the form,!¢

G¥/xe= —a(denm) UL (Ri— R2) /Ry (6.4)

for a binary mixture, when U is the configuration energy
of Component 1. The coefficient « varies from theory
to theory, but is of the order of unity. This contribution
to GF is large and positive since U<0 and #, m>6.
Experimental work!® confirms the existence of a con-
tribution to G# of this kind but with small values of
a~0.1. Clearly the results obtained in this paper for
mixtures of hard spheres are not comparable with (6.4).
We conclude that the structure of a fluid mixture of
hard spheres is different from that of either pure com-
ponent. The structure is such that % is generally less
than zero, and GF always less than zero. In mixtures of
(n, m) fluids it is the attractive forces that impose a
similar structure on both the mixture and the pure
components, and so lead to positive contributions G¥,
HZ, and v% that arise from the “overlapping” in the
mixtures of repulsive free fields in such structures. Our
results, therefore, do little to help improve the accuracy
of theories of mixtures of real molecules. These con-
clusions are similar to those arrived at by Adler.®®
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