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We investigate a mean field approximation to the statistical mechanics of com- 
plex fields with dynamics governed by the nonlinear Schr6dinger equation. Such 
fields, whose Hamiltonian is unbounded below, may model plasmas, lasers, and 
other physical systems. Restricting ourselves to one-dimensional systems with 
periodic boundary conditions, we find in the mean field approximation a phase 
transition from a uniform regime to a regime in which the system is dominated 
by solitons. We compute explicitly, as a function of temperature and density 
(L 2 norm), the transition point at which the uniform configuration becomes 
unstable to local perturbations; static and dynamic mean field approximations 
yield the same result. 
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1. I N T R O D U C T I O N  

This p a p e r  is a con t inua t ion  of the inves t igat ion begun in ref. 1 (referred to 
below as I)  of con t inuum stat is t ical  mechanica l  models  in which the 
H a m i l t o n i a n  is not  b o u n d e d  below. The mot iva t ing  physical  systems are 
p la smas  and  lasers, which in a p p r o p r i a t e  regimes may  be mode led  by the 
non l inea r  Schr6dinger  equa t ion  ( N L S E )  in three and  two dimensions ,  
respectively.  (The Z a k h a r o v  equat ions  for the p l a sma  case are also 
discussed briefly in I.) O u r  u l t imate  goal  is a s tat is t ical  theory  of the 
exci ta t ions  of these systems; we refer the reader  to the in t roduc t ion  to I for 
more  extensive discussion.  
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Here, as in I, we restrict our detailed study to the one-dimensional 
NLSE, defined on a finite interval [0, L]  and satisfying periodic boundary 
conditions. The Hamiltonian is 

~ fo '~ l fo~[O(x)lP dx (1.1) 1-1(0) = IO'(x)t 2 dx - p  

where 0 is a complex field. The exponent p, which measures the degree of 
nonlinearity, will be assumed to satisfy p > 2. If we regard the real and 
imaginary parts of 0 as conjugate canonical variables, we find that the 
corresponding equation of motion for a time-dependent field u(x, t) 
{= [0(x)](t)} is the NLSE: 

iu,= -Uxx-[ulp-2u, x~ [0, L]  (1.2) 

Equation (1.2) is to be supplemented by boundary conditions 

u(O,t)=u(L,t), t e n  (1.3) 

and an initial condition 

u(x,O)=Oo(X), O<~x~L (1.4) 

We remark that (1.2) conserves, in addition to the Hamiltonian H itself, 
the L 2 norm (analogous to the particle number) of the field: 

N(0)  = I0(x)I 2 dx (1.5) 

In I we posed the problem of constructing the Gibbs ensemble for this 
model, formally given by 

Z 'e-~tt(r 1- [ dO(x) (1.6) 
x ~  [ 0 , L ]  

The lack of a lower bound on H implies that (1.6) is not normalizable. (As 
discussed in I, it also implies that the thermodynamic limit will not exist for 
these ensembles.) Since the L 2 norm is conserved by the dynamics, 
however, it is natural to modify the ensemble by introducing a cutoff on 
the L 2 norm of 0; thus, we define formally 

dvr PH(r 1- I dO(x) (1.7) 
x e  [ O , L ]  

where f must decrease fairly rapidly at infinity. 
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In this paper we consider ensembles defined by several different cutoff 
functions f .  We will refer to the conceptually simple choice 

f(lP~fl 2) = 6(ll~l122 - N )  (1 .8)  

as the canonical ensemble. This is also, in most cases, the physically 
preferred choice, but is technically awkward to deal with in practice. For 
this reason, the measure actually constructed in I is a modified canonical 
ensemble defined by restricting the field to an L 2 ball rather than a sphere: 

f (  I] ~b ]l 2 2) = X ~ I II~rl~ ~< N} (1 .9)  

It is easy to see from the analysis of I that the essential features of this 
modified ensemble would be unchanged if f were chosen as an 
approximate delta function restricting the field to a spherical shell N~< 
IIOII@<-,,N+6N. 

The standard grand canonical ensemble, with f (  JI ~b J[ 2 2) = exp( - fig I[ ~11 ~), 
is not normalizable. It was noted in I, however, that a modified grand 
canonical ensemble (MGCE),  with 

f(llr @) -- exp( -fl/~ II~ll 2r) (1.10) 

is normalizable for p < 6  as long as r satisfies r>~(p+2)/(6-p). Sub- 
stituting (1.10) into (1.7) yields the usual Gibbs measure under the 
imposition of the mean constraint 

< ]l~brl~r> = N  r (1.11) 

On the other hand, numerical studies for the case r = 3, described in I, 
suggest that this ensemble is concentrated on field configurations with 
either a rather high or a rather low L 2 norm and achieves (1.10) as a 
balance of these alternatives, and simple arguments suggest that this 
behavior will be more pronounced at higher values of r. The MGCE thus 
seems qualitatively quite different from the canonical or modified canonical 
ensembles. 

For  the modified canonical ensemble (1.9) we show in I that there 
exists a constant N o such that v~./ exists and is normalizable ( Z <  ~ )  
precisely in the cases p < 6 and p = 6, N < No. This result is closely related 
to the theory of (1.2) as an evolution equation. As has been shown, (1-3) for 
p < 6 the initial value problem (1.2)-(1.4) has solutions existing globally in 
time for arbitrary smooth (H 1) initial data; for p > 6  there are solutions 
which blow up in finite time for smooth initial data with arbitrarily small 
L 2 norm; for p = 6 the value No of the L 2 norm is critical: global existence 
is guaranteed for initial conditions with L 2 norm less than No. 
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One question we ask about these ensembles is the nature of typical 
field configurations. In I we noted that both numerical simulation of the 
dynamics of the (closely related) Zakharov equation and Monte Carlo 
investigation of the canonical ensemble on a lattice suggest that "typical" 
configurations at large N involve solitonlike concentrations of the field. At 
low N, on the other hand, typical configurations appear to be uniform. A 
natural question is then whether this change of behavior is smooth or 
involves some nonanalyticity, i.e., a phase transition. In I we could not 
definitely answer this question either analytically or numerically; this 
suggests that we try some approximate treatment. 

There are various ways to derive "mean field" or "spherical model" 
approximations to the ensembles discussed above; we will consider one 
dynamic and several static approaches, all of which lead to different mem- 
bers of a one-parameter family of approximations. The most satisfactory 
static derivation, from a logical point of view, is a variational argument. 
Each of the measures (1.8)-(1.10) may be obtained by minimizing the free 
energy {H)p- fl-1S(p) [where S(p) is the entropy of the measure p] over 
a class of measures satisfying a suitable constraint: measures supported on 
the LZ-sphere and the L2-ball for the canonical and modified canonical 
ensembles, respectively, and measures satisfying the mean constraint (1.11) 
for the MGCE. If we minimize instead over a restricted class, we obtain an 
approximate measure as well as an upper bound for the free energy of the 
exact ensemble. 

In practice there are difficulties with this approach. To develop a trac- 
table model we would like to work with Gaussian measures, a class which 
is inconsistent with the support constraints characterizing the canonical 
and modified canonical ensembles. Gaussian measures can be used to 
approximate the MGCE in the manner described above, but the resulting 
system is still quite complicated. This difficulty, and the qualitative differen- 
ces noted above between the MGCE and the ensemble actually studied in 
I, lead us to use the MGCE primarily for technical and conceptual pur- 
poses in this paper. Instead, we will derive an approximate model by 
minimizing the free energy over the class of Gaussian measures which 
satisfy the mean constraint (1.11) in the "grand canonical" case r =  1. 
Because the true grand canonical measure does not exist, we regard this 
procedure as yielding an approximation to the canonical or modified 
canonical ensemble. 

This approximation, which we will refer to as the mean field model, 
has an attractive and natural structure. As we will see in Section 2, it is the 
grand canonical ensemble 

Z -1 exp[-/~/~(~b)] exp(- /~#  Ilq~tl~) l-I dO(x) (1.12) 
x E  EO, L ]  
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for an "effective" quadratic Hamiltonian 

I I L  1 L 
FI((j)-~ o t~'(x)12dx-2fo V(x)<P 27/2 i~(x)12dx (1.13) 

Comparison of (1.13) with the original Hamiltonian (1.1) suggests that the 
potential V(x) should be an approximation to the square magnitude of the 
field, and this is in fact correct: for (1.12) to minimize the free energy, V 
must satisfy the condition 

V(x) = 2 ([~b(x) r 2 ) (1.14) 

for a certain constant 2 determined by the variational calculation. The 
expectation here is taken in the measure (1.12), and (1.14) may thus be 
regarded as a self-consistency condition on V. The Lagrange multiplier/x is 
of course adjusted to impose the mean constraint (1.11) in the case r =  1, 
which in view of (1.14) becomes 

fo'~ V(x) dx = 2N (1.15) 

Formulas (1.14) and (1.15) are the basic equations which determine V 
and #, and hence our static mean field model. We find in practice, however, 
that the model provides the best approximation to the true canonical and 
modified canonical ensembles if we set 2 = 1 in these equations, rather than 
using the value from the variational calculation. This difficulty arises 
because we are approximating a variational problem for measures con- 
strained by a support Condition with one for Gaussian measures con- 
strained in the mean; we have some justification for the preferred value 
2 -- 1 from low-temperature considerations but lack a complete theory from 
which this approximation emerges naturally. In general, then, we will 
regard 2 as a free parameter in our approximating model. In fact, other 
simple static approximation schemes can lead to (1.14) and (1.15) with 
different values of 2. 

We note one other relation between the various classes of measures 
considered here. Our approximating measure (1.12) has ([X~b]]~ r)  < oo for 
all r. Thus, the free energy for this measure is an upper bound for the free 
energy of an MGCE with appropriate constraint (]l~b[[~ r)  = h r. We will use 
this argument in Section 3 to establish the boundedness of the free energy 
for (1.12). 

An alternate approach to determining approximate equilibrium states 
for our system is first to approximate the dynamics, not of the fields 
themselves, but rather of their correlation functions, and then to look for 
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stationary solutions of that approximate dynamics. Exact equations of 
motion for the two-point correlation functions, which follow from the 
NLSE (1.2), involve expectations of field products of degree higher than 2; 
we make an approximation in which such expectation values are replaced 
by products of powers of the correlation functions themselves. The mean 
field ensembles arising from solutions of (1.14) and (1.15) are indeed 
stationary states for the resulting dynamics, although other stationary 
states also exist. 

In this paper, we investigate solutions of (1.14) and (1.15) analytically 
and also report some numerical results. We have the most complete picture 
of the solutions in the case p = 4. Here we can show rigorously that in a 
region of high temperature and/or small N, (1.14) and (1.15) have a unique 
solution corresponding to a uniform state, i.e., to a V(x) independent of x. 
As the temperature is lowered (for N not too small) we observe numerically 
that the system undergoes a first-order phase transition: (1.14) and (1.15) 
acquire a nonuniform, single-peaked solution which is thermodynamically 
preferred (and which does not branch continuously from the uniform 
solution). We also have considerable analytic evidence for this behavior. As 
the temperature is lowered further, the mean field configuration becomes 
more peaked; at zero temperature (if 2 is chosen properly) it is equal to the 
square of the magnitude of the ground state of the true Hamiltonian (1.1). 
In fact, zero-temperature solutions of (1.14) and (1.15) may be shown to 
correspond to solutions of the variational problem 6H(0)/60=0 with 
constraint /I 2_ ~bH2- N. 

We also investigate the stability against local perturbations of the state 
given by a uniform mean field, both thermodynamically and dynamically. 
We find that the regions of local stability in the static and dynamic senses 
coincide. At high temperature, where we have proved for p = 4 and believe 
for p < 6 that this state is absolutely thermodynamically preferred, local 
stability in the static sense will of course be satisfied, although as discussed 
in Section 3.4, local stability does not appear to imply global stability. 

We have argued in I that the true model probably does not have a 
phase transition in the sense of any nonanalytic behavior in the parameters. 
Nevertheless, there is fairly good qualitative agreement between Monte 
Carlo simulations of that model and predictions of the mean field theory. 
We discuss the comparison in Section 3.4. 

The paper is organized as follows. In Section 2 we derive (1.14) and 
(1.15) by the variational calculation discussed above and point out that 
they also arise from several simpler schemes for approximating the original 
model. These different derivations lead to different values of the constant 2. 
In Section 3 we describe our analytic results and report on numerical 
investigations; the combination of these approaches leads to a fairly 
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complete picture of the solutions of (1.14)-(l.15), particularly in the case 
p = 4 .  Section4 is devoted to a discussion of the dynamic mean field 
approximation and its consequences. 

2. F O R M U L A T I O N  OF T H E  M O D E L  

2.1. D e r i v a t i o n  f r o m  a Var ia t iona l  Pr inc ip le  

We here consider the problem, discussed in the introduction, of 
minimizing the free energy ( H ) p - f l  ~S(p) over Gaussian measures p 
which satisfy the mean constraint (1.11); we will shortly specialize to the 
case r = 1 of this constraint. As posed, however, this problem is purely 
formal, since the two terms in this free energy are both infinite for the 
measures we consider. To obtain a well-defined variational problem we 
may either carry out the minimization on a lattice and then take the con- 
tinuum limit, or work directly in the continuum but use Wiener measure as 
a reference measure. These procedures yield the same result; we will follow 
the latter. 

We begin by describing the relevant Wiener measure. Let C denote the 
set of continuous, complex-valued functions ~b on [0, L]  which satisfy 
~b(0) = ~b(L); C is the space of field configurations for our theory. The 
Wiener measure on C, formally given by 

with 

dt~B(r = Z o  le-~(~' TO)~2 I-I dqk(x) (2.1) 
x ~  [0, L]  

Prob({~bl~b(xi) eAi ,  1 <~i<~n+ 1}) 

n + 1 Yi y o  = y n  ~- 1 =p~(0,  0 ) - l ~  ]-[ p:~,-x, '(Ye, 1) dyl . . . dy ,+ ,  (2.2) 
.y ,~Ai  i = 1  

Here 0 = X o < X l  < --. < x , < x , + l  = L ,  A~,..., A,+~ are Borel subsets of C, 
dy is Lebesque measure on C, and for y, y ' ~  C, 

p~(y, y') - (fl/Zzcx) e x p ( - f l  [ y - y']2/2x) 

We remark that #8 is invariant under complex conjugation and that It~ is 
not normalizable [it is invariant under field translations ~b(x) ~ if(x) + ~bo]. 

may be defined more precisely as the measure with marginal 
distributions (4) 
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If p is a measure on C which is absolutely continuous with respect to #8, so 
that dp((~) = g(~b) dit~(~b), we define the relative entropy and free energy of 
p to be, respectively, 

S~(p) = - f c g  log g dit~ 

and 

I 1L ) F~(p)= - p r o  I~b(x)tPdx - /3 -~S~(p )  
P 

(2.3) 

The modified canonical ensemble studied in I is given [see (1.7), (1.9)] 
by 

Z - t e x p  p I~b(x)l pdx )QOlll~ll~N}@~ 

and may be regarded as the measure supported on the L2-ball which 
minimizes the relative free energy (2.3). As approximating ensembles we 
consider normalized Gaussian measures having the form 

dp A(~b ) = Z ;  le'(4'A4l/2 dit~( (b ) (2.4) 

and satisfying 

2 r  ~ -  N r ([l~bll2)oA (2.5) 

Here A is a bounded operator on L2([0, L] )  which commutes with com- 
plex conjugation and satisfies ( T - A ) > e > 0 .  For such A the operator 
R = ( T - A )  -1 has a continuous integral kernel r(x, y); PA is then the 
(normalizable) Gaussian measure for which the real and imaginary parts of 
~b, denoted ~b R and ~b ~, are independent, identically distributed random 
variables with covariance given by 

(q~(x) ~b(y) ) = 2<~R(x) ~bR(y) ) = 2/3-Ir(x, y) (2.6) 

(see, e.g., ref. 4; the continuity of r will be discussed below). We may solve 
the constrained minimization problem by introducing a Lagrange mul- 
tiplier It [differing by a factor from that of (1.12)] and seeking extremals of 
the functional 

It F(A, tt) = F(p A) - -~  ( (  II(bl[ ) - N r) (2.7) 
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From now on we will restrict our considerations to the case r = 1. To 
simplify (2.7) we note first that any complex random variable X whose real 
and imaginary parts are identically distributed independent Gaussian 
variables satisfies 

(IX, p) = F (P--2 2 )  ([X, 2) p/2 (2.8) 

and second that, for any bounded operator B on LZ[0, L],  

((r Br = 2/3 -~ Tr(BR) 

as is easily verified by approximating B operators of finite rank. Thus, if 
w e  s e t  

v(x) = (tr 2) = 2fl- lr(x, x) (2.9) 

(2.7) reduces to 

F ( A , # ) = -  F v(x)P/2dx+f i - lTr[R(A-~t )]  

+ ~ N - f 1 - 1 l o g  Z~ (2.10) 
z 

We now look for stationary points of F, and will use the following 
notation for functional derivatives: if X, Y, and Z are Banach spaces, 
U c X x Y  is open, and G : U ~ Z ,  then D x G ( x , y ) : X ~ Z  denotes the 
Fr6chet derivative of G with respect to x at the point (x, y). Since 
DARB= -RBR,  (2.10) leads to 

[DAF(A, /~)]B 

= fl- 1F v(x)~p- 2)/2 P(x, x) dx - fl- 1 Tr[RBR(A - #)] 

= -/3-1 Tr [RBR(A - / z  - W)] (2. I1) 

where f is the integral kernel of RBR and W denotes the operator of mul- 
tiplication by F((p + 2)/2)v(x) ~p-2)/2. Setting the variation (2.11) to zero, 
we finally conclude that at an extremal of F(A, I~), A is a multiplication 
operator 

A = V(x)q+~ (2.12) 

with V a continuous potential satisfying 

V(x) = 2 , (  ]r 2) = 2fl-'21r(x, x) (2.13) 
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and from (2.5) with r = 1, 

Lebowitz et  al. 

f •  V(x) dx=21N (2.14) 

Here q = ( p - 2 ) / 2  and 21=F((p+2)/2) 1/q. Note that (2.12)-(2.14) 
recapture ( 1.13 )-(1.15). 

2.2. Reformulat ion  of the Model  

For later convenience we may reformulate the model as follows. Let 
X = L ~ ( [ O , L ] ; ~ )  be the space of measurable, essentially bounded, 
real-valued functions on [0, L],  and for N e  ~ let X u ~ X be the affine sub- 
space defined by X N . ~ - ~ J / r f ~ X I ~  Vdx=2N} .  For V e X  let R(#, V)=  
( T -  vq-i~) -~ denote the resolvent of T -  V q. We will prove below (see 
Theorem 3.3) that [for g not in the spectrum s p e c ( T -  vq)] R(#, V) has 
nonnegative continuous integral kernel r(#, V)(x, y) and that if # <  
infspec(T-Vq), then r(l~, V)(x,x)>O. Now, for N > 0  and VeZN,  let 
x(V) be the unique real number which satisfies ~c(V) < inf s p e c ( T -  V u) and 
for which 

fi ~TrR(K(V), V ) - f i  -~ r(~c(V), V) (x ,x )dx=N/2  (2.15) 

Then, defining J~'fl.N" X N ~ X N by 

J~.N(V)(x) = 22fl-lr(~c(V), V)(x, x) (2.16) 

we see that solving (2.13) and (2.14), and thus determining the mean field 
at any fl, N, reduces to solving the fixed-point equation on XN: 

V=J~'N(V ) (2.17) 

We next define a generalized free energy functional on XN by 

F;~,N( V) = -~ V(x) q v(x) dx - - -  
P 

+ ~ f f )  N - f l - l l o g 2 v  

v(x) ~/~ dx 

(2.18) 

where 
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Note that (1) the free energy F(A,I~) reduces to P<(V) when (2.12) is 
inserted in (2.10) and/~ is replaced by to(V), and (2) (2.17) is the condition 
for an extremal of /~% Thus, the construction of a solution to our mean 
field model corresponds to minimizing pal over XN. In particular, if more 
than one solution of (2.17) exists, we choose the solution with minimum 
free energy P~I(V). 

2.3. A l ternate  Mean Field Models  

As mentioned in the introduction, there are alternate derivations of 
mean field models which yield (1.14) and (1.15), or equivalently (2.17), 
with different values of the constant 2. We may, for example, simply replace 
the true Hamiltonian H of (1.1) by an approximate quadratic Hamiltonian 
and form the grand canonical ensemble, leading to (1.12)-(1.13);/~ is again 
to be adjusted so that (1.15) holds. A natural prescription for the 
approximating Hamiltonian is to choose the potential V(x) so that the 
potential energy density in / t  is equal in mean to the nonlinear term in 
the original Hamiltonian (1.1): 

<V(x)q f~b(x)j2 ) =-2 (]qt(x)lp) (2.19) 
P 

where, as usual, expectations are computed with the approximating 
measure. Using (2.8) and (2.9), we may rewrite (2.19) as 

V(x) = 22(  ]q~(x)] 2 )  = 2)o2fl l r (y ,  V)(x, x) (2.20) 

where .~2=F(p/2) l/q, recovering (1.14) or equivalently the fixed-point 
equation 

V= J~.N(V) (2.21) 

with 2 = 22. 
Alternatively, we may ask that our approximate theory reproduce the 

correct behavior for the ensemble in the limit of zero temperature. In that 
limit the canonical measure (1.7)-(1.8) will be concentrated on the lowest 
energy solution ~o of the variational problem: 

6 
_ _  12  _ _ ~ ; , _  ~ 2 6~ [ H - #  limb [2]~=~0 Iq~01 ~b0-#~bo = 0  (2.22) 

while the approximate measure (1.12) will be concentrated on the lowest 
energy eigenfunction ~l of H, which satisfies 

--~; -- vqO1 - - ~ 1  = 0 (2.23) 
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For these measures to agree as closely as possible we must have 
V= t~b112 = (ll~blll2)~=~. Thus, we are led back to (2.21), with 2 = 4 3 =  1. 

As discussed in the introduction, the existence of these alternative 
models leads us to regard 2 in (2.21) as a free constant in our theory. In 
this context there are two possibilities for choosing among multiple 
solutions of (2.21). On the one hand, (2.21) is the condition for an extremal 
of the generalized free energy P~(V), and it is mathematically natural 
simply to reformulate our problem as that of minimizing this quantity. 
Physically, however, it is the solution which minimizes the true free energy 
f'Xl(V) which should be preferred. There seems little difference in the 
practical conclusions of these two approaches. 

Remark 2. I. Even with the choice 2 = 1 the canonical and mean 
field ensembles are quite different at low temperature: the canonical ensem- 
ble will have small fluctuations around the ground state discussed above, 
but the mean field model, which is Gaussian with mean zero and 
macroscopic variance, will have large fluctuations at all temperatures, (This 
is discussed further in Section 3.4.) As an alternate approximation we could 
consider a Gaussian ensemble with nonzero mean, that is, we could replace 
(2.4) by 

dP,4,o(~) = Z A  le/3(~-~''A(~ 0))/2 dg~(O) 

and then minimize the free energy with respect to A and ~. We would 
expect this to yield a better approximation than the model we actually 
study, but it is less tractable analytically. 

3. PROPERTIES OF THE M O D E L  

In this section we describe in detail our knowledge of the mean field 
model, that is, of the problem of finding solutions of the fixed-point 
equation (2.21). Here we give a brief summary of our results. It is 
convenient to organize these into categories according to the values of the 
parameters fl and N: 

1. General results. We show that the behavior of the Gaussian free 
energy P ' (V)  is consistent with the behavior of the true free energy found 
in I: PX(V) is bounded below for p < 6  and is unbounded for p > 6 .  We 
also have partial results for p =  6. Finally, we show that mean field 
configurations are always smooth. 

2. High temperature and the uniform field configuration. A uniform 
mean field is always a solution of (2.21); for  the special case p = 4 we can 
show that this is the unique solution at high temperature or at low values 
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of N. We also discuss the local stability of this solution against small 
perturbations and determine exactly the curve in the /~-N phase plane on 
which this stability is lost, as well as the nature of the bifurcation at this 
curve. 

3. Low-temperature solitions. Zero-temperature solutions of (2.21) 
may be analyzed completely and shown to correspond to solutions of the 
time-independent NLSE 

- ~ " ( x )  - ~ q ~ p -  l ( x )  - ~ ( x )  = 0 

Here again, as in Section 2.3, we see that the choice 2 = 1 yields the best 
correspondence between the mean field and exact models. All solutions at 
low temperature lie on smooth curves passing through the zero- 
temperature solutions. 

4. Transition region. Numerical investigations of the transition 
between high- and low-temperature regimes indicate that the loss of 
stability of the uniform mean field is via a first-order transition to a single- 
peaked field configuration, which changes smoothly to the configuration 
corresponding to the ground state of the NLSE as the temperature is 
lowered to zero. 

Before describing our results in more detail, we must introduce 
some notation. For any W s X  we write the eigenvalues of T - W  
as {c%(W)}~= oo, numbering them to correspond with cok(0)- 
co k = ( 2rck/L )2: 

~Oo( W) ~< col( w) ~< co l(w)~<--- 

The eigenfunctions (normalized in L 2) will be denoted 0k(W), with 
Ok(0)(x) =-Oh(x)= L 1/2e2~ikx/L. In this notation, the resolvent R(#, W)=  
( T -  W - g )  ~ has integral kernel 

r(#, W)(x,  y ) =  ~ ~k(vq) (x )  Ok(vq)(Y) (3.1) 
k-  - ~  co~( vq) - # 

and the basic equations (2.21) and (2.15) of the mean field theory become 

V(x)=22/t  - t  ~ I~(vq)(x)12 
k= ~ co-~V-~----K-(--V) (3.2) 

and 

1 _ fiN 

k= oo ~ 2 
(3.3) 
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3.1. General Results 

We first ask whether the free energy F;~(V) is bounded below o n  X N- 

Recall from I that the free energy for the true model in the modified 
canonical ensemble is bounded below ifp < 6 or i fp  = 6 and N >  No, and is 

not bounded below if p > 6 or p = 6 and N > No, where N o = rr , f i / 2 .  We 
have a similar but less complete result for the mean field model: 

Theorem 3.1. The Gaussian free energy defined on XN, /~(V): 
(a) is bounded below if p < 6; (b) is not bounded below if p > 6 or if p = 6 
and N > No/),. 

We suspect that F~ is in fact bounded below for p = 6, N < No~it, but 
do not have a proof. Note that we again have the closest correspondence 
between the mean field and exact models if we choose it = 1. 

Proof. (a) For  the lower bound we give a thermodynamic argument. 
We discuss in detail only the true free energy P)~; any other value of 2 may 
be treated by observing tha t / ' x  is the true free energy for a Hamiltonian in 
which the coefficient p-1  of []~b[l p is replaced by ()~/)~l)qp -1. 

Let gN denote the modified grand canonical ensemble defined by 

d~ N =- 2 - 1  exp [ - fl(H~ + # II 0 [I ~') ] d#,  

and the constraint (1.11). Here we choose r to be a fixed integer satisfying 
r ~> (p + 2 ) / ( 6 - p )  and suppress the dependence of the measure on ft. We 
know from I that the partition function Z is finite, and we may compute 

F(~N)= ( a , ) g t e q - f l - l ( . - f l H / - f l #  ll~tl~')~-fl ~ l o g 2  

= _ # N  r _ f l  - 1 log 2 (3.4) 

Note also that 2 < oe implies # > 0, so that 

ON 
- - -  r#N r- ~ < 0 (3.5) 

Now let p be any measure satisfying (1.11), with density (relative 
to #~) given by Z 7 1 e x p ( - f i H , ) ,  where Z p = S e x p ( - f l H p )  d#t3. From 
Jensen's inequality, 

2 = f  e x p [ - f i ( H , + #  1l~ll2r)] d# e 

= Zp(exp [  - fl(H: + # I1~112r- Hp)>p 

/> Zp exp[ - f l ( ( H , ) p  + #N r - ( H p ) : ) ]  
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With (3.4), this yields a lower bound for the free energy of p: 

F(p) = ( H ,  )p + ( H p ) p  - f l - '  log Zp i> F(~,v) (3.6) 

Finally, if ,5 is the measure associated with a mean field V, so that 

d~5=2 1 exp{/~[(~b, vq(~)+K(V)I[~bl[2]} a/~ 

then by Wick's theorem 

([l~bl[2"~p ~<r! (][~b[[2)~ = r! N r 

Thus, if 29= (r!)l/rN, (3.5) and (3.6) imply 

Pa~(V) = F05) ~> F(~) 

(b) We now turn to the case p >~ 6 of the theorem, where our proof is 
based directly on the definition 

P;~(V) = g V(x)  q v(x) dx - - -  v(x) p/2 dx + N -  fl l log Zv  
P 

We first note that the inequality ta + (1 - t )b >~ a~b ~ ' (0 ~< t ~< 1), applied 
with a = (~.v) p/2, b = V p/2, and t = 2/p, yields 

~"t(V)<~)~fo V ( x ) p / 2 d x q - ~ - ) N - f l  ~log~" v (3.7) 

We will define a sequence of potentials V, such that l ira,_ ~o PZ(V,)= -oo.  
For these potentials, the significant terms on the right-hand side of (3,7) 
are the first two, each being of order [1 v lip/2 The last term is of lower --nil p/2" 
order and we relegate its treatment to Appendix A, where we show that for 
some constant B, 

riot log 2v~> B([r virp/2~(p 2~/(p+2~ (3.8) --tl p/2 ) 

In defining V,, we find it convenient to work on the interval 
E-L~2 ,  L /2]  rather than on [0, L]. A key role will be played by the 
standard interpolation inequality on N, 

f l i p p i n g  p y'c' 2,~(P-2)/2 df 2,N(P+2)/2 (3.9) 

We note that C6 = (2/re) 2 and that, for p = 6, equality in (3.9) is obtained 

822/54/'1-2-3 
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for f ( x ) =  fo(X)-= x/2 sech 1/2 x. If we scale this function by defining g , (x )= 
nfo(n2x) lt_z/2,L/2j, then for e > 0 and n sufficiently large, 

/Jg.jj6>~ (1-8)/74 1 foil6 ~6 

IIg'llZ <~ n 4 II f6112,~ 

}lg,,ll~ ~< II fo{I 2 

so that 

I lg , , l [6~>( l  , s )C6 , :z 
- IIg,,lt2 I Ig ,  l[ 4 

Let M.--]lg.]]~ and define V~(x)=)oNM;[lg](x); then V. eXu .  We 
estimate the lowest eigenvalue of T - V g  by a variational calculation: 
taking (b.(x) =- M~ U2g.(x) yields 

co0(vg) ~< (r ( T -  vg) ~.) 

[ m n 3 ( ] - - ~ )  C 6 ]  -1  ltg.]l 6 - ( ~ . ,  v q ~ . )  

-- [(2N) 3 (1 - ~) C6J -1 [[ V.t[~ - (2N) -~ II V.]l ./2 p/2 

Since ~c(V,)~<Coo(Vq), (3.7) and (3.8) give 

F (V.).~. -(J.p)-' IJV.,}IP/2+ [2)~3N2(1 g) C6] 1 [IV.H~ p/2 

- -  B (  Iz  p /Z] (p - -2 ) / (p+2)  
- -  p/2 ] (3.10) 

Because II V[]p/2 scales for large n as n (p-2), (3.10) shows that --n II p/2 
lira. ~ ~ P~(V.) = - oo for p > 6 or p = 6, 2N > (3/C6) 1/2, as claimed. II 

We now turn to the question of smoothness of minimizing potentials, 
and introduce function spaces X (~), where X(~ L], and, for 
k > 0, X (k) is the space of functions f on [0, L]  such that f ~  C ~k- 1) f~k- ~) 
is absolutely continuous, and f(k) c X. (All derivatives respect the periodic 
boundary conditions.) Resolvents for potentials lying in X (k) are smooth in 
the direction corresponding to translation of the system: 

I . emma  3.2. Suppose that W ~ X  ~k), that ~ r  W), and that 
r(l~, W)(x, y) denotes the integral kernel of the resolvent R(#, W). Then for 
any j, O4j<~k,  

(0~ + ~y)J r(t~, W)(x, y) (3.11) 

is continuous, and its first partial derivatives exist almost everywhere and 
are essentially bounded. 
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ProoL We abbreviate the resolvent R(#, 0) by R(#) and note that its 
kernel may be computed explicitly: 

r(#)(x, y)= 

c o s h e ( L / 2 - x + y )  if x>~y 
2c~ sinh c~L/2 

c o s h e ( L / 2 - y + x )  if y>~x 
2c~ sinh c~L/2 

(3.12) 

where c d = - # ;  r(#) clearly is translation invariant and has essentially 
bounded first partial derivatives. For # sufficiently large and negative we 
may express the kernel of R(#, W) by a Neumann series: 

f(#, W)(x, y)= ~ f''" f r(#)(X, Z1)W(Z1) r(#)(Zl, z2) 
k=o 
x W(z2)... r(p)(z,, y) dzl.., dzk (3.13) 

We proceed by induction on j. For j =  0 the conclusions of the lemma 
follow immediately from (3.13). For j > 0  we use 8~r(#)(~,~)= 
-8,r(#)(~,  ~/) and repeated integration by parts to obtain a representation 
of (3.11 as a sum of terms of the form 

f " '' f F(#)(X, Z1) w(mt)(Z1) F(#)(Z1, Z2) W (rn2)...F(#)(Zn, y) dz1 . . .dz k 

where Z ms = j. Again, the conclusions of the lemma follow immediately. 
Finally, we analytically continue to other points of the resolvent set by 
repeated use of 

r(#', W)(x,y)= ~ (#'-#)k f ...f r(#, W)(x, zl)... 
k=O 
x r(#, W)(zn, y) dzl.., dzk (3.14) 

We now argue as above but from (3.14) rather than (3.13); we no longer 
have translation invariance, but may write 

a~r(~, W)(~, ~) = [(a~ + a.) - a. ]  r(#, w)(~./7) 

and use the differentiability properties of r(#, W) already established to 
verify the same properties for r(#', W). | 

Smoothness of minimizing potentials is a direct consequence: 

Theorem 3.3. Any solution V~X~, of (2.21) is C a. 



34 Lebowi tz  et  aL 

Proof. The lemma and the definition (2.16) of J imply immediately 
that, if V~ XN n X (k), then J(V) ~ XN n X (k+ 1). Hence, any fixed point of J 
lies in N2~ X(k}= C~176 L]. 

3.2. High Temperature and the Uniform Solution 

We now turn to the description of the model in the high-temperature 
regime, where uniform field configurations are expected. As noted above, 
the uniform potential in XN, 

Vo(x) = 2N/L 

is always a solution of (2.21). We remark that from (3.12), 

coth(~L/2) 
r(/~)(x, x ) =  2~ (3.15) 

so that the normalization condition (2.15) implies 

K(Vo) = _72 _ vq 

with 7 the unique positive solution of 

L coth(TL/2) /~N 

27 2 
(3.16) 

But 

I I X-' 
2fiN 

Basic estimates that we need are given in the following result. 

k e m m a  3.4. (a) Suppose that /~e~  and V ~ X  satisfy 
II Fill Hr(#)ll ~ ~ 0 < 1. Then the kernel r(~t, V q) satisfies 

IIr(~t, vq)llo~<<.(1-O) I Ilr(~)ll~ 

(b) For any V 1, V2eXjv, I~:(V1)-~c(V2)I ~ l i v e -  V~tloo. 

(c) For any V~XN with V(x)~>0, x(V)~<K(Vo)+ Vq. 

ProoL (a) We simply estimate all terms in the expansion (3.13). 

(b) By the min-max principle, 

lo~(v~)-~(vq)l <~ II vg- v~ll~ 
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so that 

~c(v,)- ~c(v2) 
~ E~o~(vg) - ~( vl )] E~(vg)  - K( v2)] 

co~(v~) - ~ ( v ~ )  
[c,J~(vg- ~(vl)3 Eo~(v~)- ~(v2)] 

from which the result follows. 

(c) Since V>>,O, COk(Vq)<cOk. If O)o(Vq)<~c(Vo)+ V q, the result is 
immediate; otherwise, 

k k 

= f i N / 2  

= Z E~o,(vq) - ~ ( v ) ]  -1 
k 

so that ~c(V) ~< ~c(Vo) + Vg. | 

We now show that, in the case p = 4, the uniform field V= Vo is the 
unique solution of (2.21) at high temperature or small N (the region given 
in the following theorem is presumably not optimal). Since by Theorem 3.1 
the free energy _F;(V) is hounded below, it has unique minimum at Vo in 
this region. 

T h e o r e m  3.5. Suppose that p = 4 (q = 1). If f i N  2 < 2L/32, then the 
uniform potential Vo is the unique solution to (2.21) in XN. 

Proof. From (3.12) and (3.16), 

[Xr(~c(Vo), Vo)lJ~ = []r(tc(Vo) + Vo)dl~ =flN/2L (3.17) 

Now suppose that V~ XN satisfies J~.N(V)= V; in particular, V(x)>>, 0 and 
hence H VH1 = N. The operator identity 

R(,~(V), V) - R(~c(Vo), Vo) 

= R(~c(V), v )Ev -  Vo+~.(V)-~c(Vo)] R(K(Vo), I/o) 

together with (3.17) and the estimates of Lemma 3.4, yields 

I[ V -  Volloo = [IJfl, N ( V ) -  Vol]oo 

<~ 22fl- lL tlr(~c(V), V)II 

x i l v -  Vo+~C(v)-K(Vo)ll~ tlr(~(Vo), Vo)ll~ 

<~ (2flN2/L)(1 _ 2flN~/2L)-1 IJ V -  Vol I 

Since f iN2< 2L/32, we must have V= V o. | 
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For p > 4; or in regimes of fl and N where multiple solutions of the 
fixed-point equation (2.21) exist, we have not been able to find all solutions 
or determine (analytically) the solution which minimizes the potential 
energy. We can always determine, however, whether or not Vo is a stable 
fixed point of J: as described in the next theorem, Vo is stable for small N 
Or, for higher values of N, above an N-dependent transition temperature. 
This is relevant because the stability of Vo as a fixed point corresponds to 
its being a local minimum of the corresponding potential energy F ~ (in par- 
ticular, of the true free energy for 2 = 21). Moreover, we can determine by a 
local analysis the nature of the bifurcation which occurs when stability is 
lost, and thus obtain information about other solutions of (2.21). 

Theorem 3.6. (a) Vo is a stable fixed point of J;~ if and only if 
fl < tic, where 

I L co th f (N)  
t ic=tic(N)= 2Nf(X)  if N >  N~ (3.18) 

oo if N ~ N 1 

with N1 = (L/2)(2n2/qL2) ~/q and 

f ( N )  = ~ [2qLa()oN/L ) q - 4n 2 ] ~/2 

(b) Fix N > N ~ .  Then there exist 6, e > 0  such that: 

(i) For flc+5>fl>~flc the only solution of (2.21) in the ball 
l iV-  V0ll+ <~ is V=Vo. 

(ii) For f l c > f l > [ t c - 5  the only solutions of (2.21) in the ball 
II V -  V0ll < e are Vo and a family of unstable solutions { V(~'Y)I y E [0, L)} 
differing by translations: V (~' Y)(x) = V(~'~ + y). Moreover, 

lim (tic-/~)1/2 [t V - -  V0] I oo 

exists and is nonzero. 

The bifurcation described in (b) of the theorem, sometimes called a 
"pitchfork of revolution, ''(s) is obtained by rotating the pitchfork of Fig. 1 
around its axis; solid and dashed curves in this figure represent stable and 
unstable solutions, respectively, of (2.21). We remark that there are other 
bifurcations from V= Vo, at higher values of fl, which we have not 
investigated in detail. 

Proof. (a) V0 is stable if the spectrum of DJ;~(Vo) is contained in 
the unit disk. To find this spectrum, we differentiate [ T - V q - • ( V ) ]  
R(•(V), V) = L yielding 

DR(to(V), V) W = R(~(V), V) { q V q - - 1  W -~- [-DK(V) W] } R(~(V), V) 
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Fig. 1. Cross section of pitchfork bifurcation of the uniform solution of the mean field 
equation (2.21). 

where W~Xo, so that, from (2.16), 

[DJ(V)W](x )=2 ,Z~  -I  [r(~c(V), V)(x, y)]2 

• {qV(y) q- '  W(y)+[D~c(V)W]}dy (3.19) 

Now set V=  V o in (3.19), note that R(~c(Vo), V o ) = R ( - y 2 ) ,  where 7 is 
given by (3.16), and integrate over x. Using DJ(V) (W)6X  o and the fact 
that, from (3.12), ~ [rOc(Vo), Vo)(X, y)]2dx is independent o f y  and non- 
zero, we see that D~c(V0)= 0, and hence DJ has kernel 

DJ(Vo)(X ' y) = 2q2fl-lV~_l[r(K(Vo), Vo)(X, y)]Z 

Explicit calculation from (3.12) shows that for, k :~ 0, ~_+k is an eigenvector 
of DJ(Vo) with eigenvalue given by 

qVg) 1 
Pk= 2 72+ (k~/L) 2 (3.20) 

and since the span of these ~'k is dense in X0, this exhausts the spectrum. 
The boundary of the stability region is determined by setting p l =  1; 
solving this equation for 7 and substituting the result into (3.16) yields 

L 2 coth f (N)  /~= 
2Nf(N) 
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Noting that Pk is increasing as a function of fl and N leads to the stability 
region/3 < fl~,. 

(b) We study the bifurcation at the critical curve/3 = tic, N >  N1, by 
the standard Liapunov-Schmidt reduction, adapted to respect the sym- 
metries in the problem (we follow closely the procedure of ref. 5). We hold 
p, 2, and N fixed, and for convenience replace J/~,N by the map J~: I1o --' J(0 
given by 

)~(W)= J~.~v(Vo + W ) -  V~ (3.21) 

J~ has 0 as a fixed point and satisfies D J (0 )=  DJ(Vo). From the above 
discussion we know that the eigenspace of D J(0) corresponding to the 
eigenvalue p~ is the two-dimensional subspace Y1 of Xo spanned by 
cos(2rcx/L) and sin(2~x/L); we let Y2 be the complementary subspace 
spanned by the remaining (nonconstant) Fourier modes, let El, E2 be the 
corresponding projections, and for W e X  o write W~=-EiW, i=  1, 2. Then 
(2.21) becomes 

W 1 = E 1Jfl(W) (3.22a) 

W2 = E23~(W) (3.22b) 

In a neighborhood of tic the map I - D  J(0) is invertible on I12 and hence 
(3.22b) may be solved for W2 as Wz= H~(W~), so that (2.21) reduces to a 
fixed-point equation on the two-dimensional space Yl: 

m 1 = E 1 J f l ( W  1 -.[- m f l ( m l )  ) (3.23) 

We may reduce the complexity of the problem further by utilizing the 
covariance of Jr under the group 0(2) of translations and reflections in the 
variable x; in particular, we write Sa: Xo--, Xo for the reflection given by 
Sa W(X)= W(a-x).  By a translation we may assume that the fixed point 
we seek has W~ = w cos(2nx/L), i.e., W1 invariant under So; then H~(W~) 
must also be SL invariant, since otherwise SI~H~(WI) would be a second 
solution to (3.22b). Thus, we may replace each Yi throughout the above 
argument by ys= {We YiI W=SLW}, reducing (3.23) to a one-dimen- 
sional fixed-point problem 

w -= j~(w) (3.24) 

and simplifying the calculation of H e. [This is the problem we would have 
encountered by applying the Liapunov-Schmidt procedure to the original 
problem (3.21) posed for the space X~ of SL-invariant potentials.] The set 
of solutions of (2.21) consists of all translates of solutions found by this 
procedure. 
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Equation (3.24) must have the form 

(ti --  tic') W ~- CW 3 "~ h.o.t. = 0 (3.25) 

since the reduced problem is still covariant under SL/2, and this implies 
that there is no term in (3.25) proportional to w 2. A direct computation, 
sketched in Appendix B, shows that c >  0. Standard theory then implies 
that (3.24) has a pitchfork bifurcation, with the trivial solution w = 0 for all 
ti and with two additional solutions w+ ~ + [ ( t c - t ) / c ]  1/2 for t i<tic- 
Translates of these solutions form the solution set described in the 
theorem. | 

3.3. L o w - T e m p e r a t u r e  Solut ions 

We now turn to the low-temperature regime (fl = oe), where a com- 
plete analysis of the model is possible. Here we use T =  ti 1 as a parameter, 
and hence investigate the map K ~ : ( O ,  o o ) X X N - - - ~ X  N defined by 
K~(:r, V) - J~-,.N(V). 

Theorem 3.7. KN extends to a smooth map K~: U-+XN, where 
U c ~ x XN is an open neighborhood of [0, ~ )  x X N. Moreover: 

(i) Each solution V(x) of the fixed-point problem 

V= KXu(0, V) (3.26) 

is of the form V(x)= 2 ]~b(x)] 2, where ~b(x)is a nonvanishing solution of the 
time-independent NLSE: for some # E R, 

-~b"(x) - 2 q ]~b(x)[ p 2 ~b(x) - #~b(x) = 0 (3.27) 

(ii) For each solution V(x) of the zero-temperature problem there is 
a smooth curve of solutions V(T, x) of (3.26) with V(0, x) = V(x). 

Proof. We calculate KN(T, V) for V e X  u and T ~ 0 .  Then ~c(V) is 
determined from (3.3): 

[ok( V q) - ~c( V)] 1 = N/2T  
k 

with ~c(V) < COo(vq). For small T this yields 

~c( V) = COo(vq) - (2T/N) h(T) 

with h(T) analytic at T = 0  and h (0 )=  1. Then, from (3.1), 

K( T, V)(x) = 2N [Oo( Vq)(x)[ 2 + TK( T, V)(x) 
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with /(  analytic in T at T =  0. This proves the first statement of the 
theorem; in particular, 

K(0, V)=AN ]Oo(Vq)l 2 (3.28) 

Now if V satisfies (3.26), we define O(x)=N1/2Oo(Vq)(x); then 
V = 2  I~bl 2 and (3.27) is simply the eigenvalue equation for 0o(V). This 
verifies (i). Part (ii) will follow from the implicit function theorem once we 
verify that DvK(O, V) does not have 1 as an eigenvalue. But DvK(O, V) 
may be calculated from (3.28) and standard first-order perturbation theory 
via 

Dv~o(Vq)(w) = ~ (~lk(Vq)' W~Io(Vq)) 
~ o  ~oo(W)-~ (W)  O~(W) 

which leads to 

[ ] DvX(O, V)(x, y)= 2 l_&( V) - &( V)  c.c. 
k~0  

where )~k= Ok(V q) Oo(Vq). Thus DvK(O, V) is negative semidefinite. | 

We remark that, for ~b(x) real, (3.27) is the equation of a classical 
particle moving in a potential 

~q 
__ (~p ._]_ # ~2 

Nonvanishing, nonconstant real solutions of (3.27) on [0, L]  arise for 
# < 0 and correspond to oscillations of this classical particle, with negative 
energy, in one well of the resulting double-well potential. The oscillations 
must have period L/m for some integer m >/1, leading to solutions ~b(x) 
with m maxima in the interval [0, L]. The single-peaked solution qio(X ) 
(corresponding to m = 1) varies with N to form a continuous family of 
"solitons" of different peak heights and widths; the threshold 
(almost uniform) soliton has L 2 norm N~ (see Theorem 3.6). 

3.4. Transition Region 

To interpolate between the low- and high-temperature regimes we 
have investigated stable fixed points of (2.17) numerically, by iteratively 
applying J~,N t o  various initial potentials. We will discuss here only the 
case p = 4. 

At very low temperature there is  only one stable fixed point (up to 
translation), whose nature depends on the value of N relative to N~. For 
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N < N 1  it is the uniform solution Vo; this is consistent with the local 
stability result of Theorem 3.6 and with the fact, noted above, that N1 is 
the threshold for the existence of nonuniform solutions of (3.27). For 
N>NI the stable fixed point corresponds, via V=2]~bol 2 as in 
Theorem 3.7, to the single-peaked soliton solution ~b o of (3.27). 

To describe the situation at higher temperatures we imagine that N is 
kept fixed, satisfing N >  N1, and that /3 is decreased from ~ .  As this is 
done we continue to observe a unique stable solution, which is again 
solitonlike and which varies continuously with/~, the height decreasing as/3 
is decreased. At/3c, the uniform solution becomes stable as well; at a lower 
value tic the solitonlike solution, still with a positive height, abruptly 
vanishes. Below tic only the uniform solution is stable. This behavior is 
consistent with the nature of the bifurcation at /~c as described in 
Theorem 3.6; apparently, the unstable paraboloid of nonuniform solutions 
described there, opening toward small values of/3, curves back at tic to 
form the stable branch of solutions which persist to /~ = ~ .  A qualitative 
picture of the solution set is obtained by rotating the curve of Fig. 2 around 
the V = Vo axis. 

V o 

J 

] I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/ 
/ 

/ 
i 

/ 

Fig. 2. Qualitative global picture of solutions of the mean field equation (2.21). The uniform 
solution loses global stability at ilL. 
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In the region flc</?</~c there are two locally stable solutions of 
(2.21); we may compute their free energies to see which is ther- 
modynamically preferred. The exact answer depends, but not very sen- 
sitively, on the value of 2 and on which free energy we use (see discussion 
at the end of Section 2). For 2 = 1 and with the true free energy ~;.1, for 
example, we find that the nonuniform solution is preferred whenever it 
exists; the model thus has a first-order phase transition at/~c. (Use of the 
generalized free energy P~ produces a first-order transition at a value of / /  
between/~c and/~c.) 

Finally, we compare the predictions of the mean field model with the 
results of Monte Carlo studies of the canonical ensemble, described in I. 
Specifically, for certain observables Q(ql), we will compare the mean field 
expectation value ( Q )  with the corresponding expectation ( Q ) c  in the 
canonical ensemble, calculated as a time average in the Monte Carlo 
simulation. 

Remark 3.8. Two obvious differences in the ensembles--in trans- 
lation invariance and in low-temperature fluctuations--make it clear that 
{Q>c will be well approximated by {Q)  at best only for appropriately 
chosen Q. We illustrate the point with two examples: 

(a) It would seem natural to compare (Iq~(x)]2)~. with < l ~ ( X ) ]  2 > ~--- 

2 1V(x). Unfortunately, translation invariance of the canonical measure 
implies that the former quantity is identically equal to N, while the 
mean-field ensemble breaks translation invariance at low temperature. 

(b) In I we took <M2(~b))c as a measure of the nonuniformity of 
typical field configurations in the canonical ensemble, where 

Mr=N r I2 I~b(x)12r dx 

How do (Mr)~ and <Mr) compare? At low temperatures the typical field 
configuration in the canonical ensemble will be, up to small fluctuations, 
the ground state, that is, the unique (except for translation and overall 
change of phase) single-peaked soliton solution qto(X ) of the classical 
equation (3.27), so that (again at low temperatures) 

< M r >  c , ~  N r 11~0112r = X - r  H V1 [1~ (3.29) 

(Here we indicate the parameter dependence of the mean field potential by 
writing V~.) In the mean field ensemble, on the other hand, the field ~b(x) is 
Gaussian, with mean 0 and variance 2 -1 V(x), so that fluctuations persist 
at all temperatures. In particular, (2.8) implies 

(Mr>~F(r+I)(N2) r ), r II V~Hr (3.30) 
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For  fixed )o, (3.29) and (3.30) can agree for at most one value of r. The 
natural choice 2 = 1 leads to the (trivial) agreement at r = 1. 

In I we proposed to avoid the problem of translation invariance and 
to extract a typical field profile by computing the quantity F ( x ) =  
< I~(x)l 2 )c ,  where ~ is the translate of ~b for which the maximum magnitude 
occurs at a fixed point, say L/2. Although we cannot compute the 
corresponding expectation in the mean field model exactly, we can com- 
pare F(x) directly with 2-~V(x).  (As compared with the computat ion of 
( M 2 )  and ( M 2 )  c as described above we are here taking the expectation 
before squaring the field amplitude, thus avoiding the disparity due to 
low-temperature fluctuations.) It is easy to see, as above, that these quan- 
tities will agree well at low temperatures with the choice 2 = 1, which we 
make from now on. Comparisons at various temperatures are presented in 
Figs. 3-5. In Fig. 3 we plot the quantities N 2 [JFH~ and N -2 ]lVH2 2 for 
N = 40 and N =  80 at a range of temperatures. The coincidence at low tem- 
perature is built into our choice of observables, but the good agreement 
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Fig. 4. Comparison of the square magnitude of the field F(x) from Monte Carlo simulations 
with the mean field prediction V(x), at N= 80. 

near the phase transition in the mean field model indicates that our 
approximation captures the properties of the true model surprisingly well. 
The disagreement at high temperatures is an artifact of our choice of the 
quantity F(x); the fluctuations present at high temperature and the 
centering involved in the definition of F produce a profile for F with a 
narrow spike at L/2, increasing the L 2 n o r m  relative to the mean N. In 
Figs. 4 and 5 we compare, for N = 80 and N = 40 respectively, normalized 
profiles N-1F and N-~V at low temperature and at a temperature just 
below the mean field phase transition; again, the good agreement in the lat- 
ter case is a signal of the quality of our approximation. The peak enhan- 
cement due to centering, discussed above, can be seen in the elevation of 
F(L/2) in the higher-temperature data in these figures. 

4. D Y N A M I C A L  C O N S I D E R A T I O N S  

In this section we define an approximate dynamics for the correlation 
functions of fields of our theory. This dynamics has as stationary solution 
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Comparison of the square magnitude of the field F(x) from Monte Carlo simulations 
with the mean field prediction V(x), at N =  40. 

the mean field approximation for the Gibbs measures developed in earlier 
sections. Using this dynamics enables us to compute approximate values 
for the correlation functions in the mean-field ensembles at unequal times. 
It also permits us to investigate the dynamical stability of the mean field 
ensemble with uniform field, finding a stability region which coincides with 
the region of thermodynamic stability found in Theorem 3.6. 

As in Section 1, we let u(x, t) denote a time-dependent field, i.e., a 
solution of the NLSE (1.2), and we write G(xl, tl, x2, t2) for the product 
tg(Xl, t l )  U*(X2, t2). By (1.2), G satisfies 

iOt~ G(Xl, tl, x2, t2) 

= -O~G(x l , t l ,Xz ,  t2)- fG(x~,t l ,  xi, tl)l p 2G(Xl,tl,X2, t2) (4.1) 

as well as a similar equation for c3,2G. Let us suppose now that at time t = O  
the fields are distributed according to some ensemble p; we want then to 
study the evolution of the two-point correlation function C(Xl, tl, x2, t2)= 
(G(x~, tl, X2, t2))p. Taking the expectation of (4.1), we obtain an equation 
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for C, which, however, depends on the higher moments of the field. We 
close this equation by making the approximation 

(16(Xl, t , , x , ,  t~)l '~ ~a(x~, tl,x~, t2))p 

" ~ q ( G ( X l , / 1 ,  x l , / 1 ) ) p  p-2  (G(Xl, fl, x2, t~))p (4.2) 

which leads to 

iO,l C(xl, tl, x2, /2) 

= - 0 ~  C(xl, tl, x2, t2) -  2qCq(x~, tl, Xl, tl) C(xl,  tl, x2~ t2) (4.3) 

The product approximation (4.2) may be regarded as a dynamical mean 
field approximation. As in earlier sections, we regard 2 as a free parameter; 
note that, from (2.8), (4.2) becomes exact for 2 = 21 if we take xl = x2 and 
t~ = t2, and assume that the ensemble at time t 1 is Gaussian. 

To derive the results of our previous approach from this dynamical 
model, we obtain an evolution equation for the equal time covariance 
C(Xl, x2; t)= C(xl, t, x2, t) by adding to (4.3) the corresponding equation 
for iOt~C, yielding 

i~, C = I(C) (4.4) 

with 

I(C)(xl, x2) = - ( a 2 1 -  a22) C(x I , x2) 

- )~q[Cq(Xl, Xl) - Cq(x2,  x2) ~] C(xl ,  x2) 

Equation (4.4) may be regarded as defining an evolution for Gaussian 
ensembles, a Gaussian measure being determined by its covariance. FWe 
note that the linearized equation of motion obtained from (4.4) is identical 
in form to the random phase approximation. ~7)] It is now easy to verify 
that the measure 

dp v(~) ~--~ Z v  1 exp{/~[(~b, vqO) + ~:(V) [[~bl[ ~] } d/~(~b) 

is invariant under this dynamics; that is, the covariance Cv(xl,  x2; t)= 
(~b(Xl) ~b*(Xz))pv satisfies I(Cv)= 0, whenever V is a solution of the mean 
field fixed-point equation (2.21), which here becomes 

V(x) = ; ~ v ( x ,  x) 

We may thus think of the mean field measure p v as an equilibrium state 
for our approximate dynamics. Other invariant states exist, however; in 
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particular, any translation-invariant covariance C(xl, x2) = C(Xl-X2) is 
stationary (including Cv0, the covariance corresponding to the uniform 
mean field). 

With this in mind it is natural to compute the unequal time 
correlation function in a stationary mean field measure p v, 

C'~(Xl ,  x2,  t ) =  ( G ( x l ,  t +  t2, x2,  t2) F pv 

from (4.3) by replacing the equal time covariance Cq(xl,tl,Xl,tl) 
occurring there with its stationary value ~,-1V(Xl). Using the notation 
introduced in the introduction to Section 3 for the eigenvalues and eigen- 
functions of T -  V q, we can readily solve (4.3) to give 

C'v(xl,x2, t)=2f1-1 ~ t~k(vq)(x)Ok(vq)(y)exp[icok(Vq)t] (4 .5 )  

= o0 co~(V q) - 

We remark that by subtracting from (4.3) the corresponding equation for 
iQ,2C we obtain a more symmetric evolution equation for C'v: 

iO, C'v(Xl, x2, t) = -2~,1/'~2xi + (~21) C v ( X l ,  x2 ' l) 

-- l [  Vq(Xl)  -~ vq(x2)]  Ctv (x l ,  x2,  t) 

We now turn to the question of the dynamical stability of the mean 
field equilibrium ensembles. Suppose again that V is a solution of (2.21) 
with corresponding Gaussian ensemble p v; to investigate the stability of p v 
under our dynamics we must calculate the spectrum of the linearization 
DI(Cv) of I at Cv. We carry out this computation for the covariance 6"0 
corresponding to the mean field V= Vo. As we will see, the spectrum is 
invariant under complex conjugation, so that stability will correspond to 
the existence of the real spectrum only. 

Because C0(x, x) = 2-1Vo is independent of x, we have 

= 0 2 [DI(Co)A](xl,x2) - (021-  x2) A(xx, x2) 

- q2Vg-l[A(xl ,  x l ) -  A(x2, x2)] C0(x~, x2) (4.6) 

Since A is L-periodic in xl and x2, it may be written as A,(x, z)+A2(x, z), 
where x = (x~ + x2)/2, z = xl - x 2 ,  A1 is L/2-periodic in x and L-periodic in 
z, and A2 is L/2-antiperiodic in x and L-antiperiodic in z. Correspondingly, 
we seek eigenfunctions of DI(Co) of the form 

A(x, z) = e2~ikx/LH(z) (4.7) 

where either k is even and H is L-periodic or k is odd and H is L- 
antiperiodic. Note that for k = 0 any function (4.7) satisfies DI(~o)A = 0, 

822/54/1-2-4 
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so that all eigenvalues in this case are zero; we thus assume k ~ 0 in what 
follows. Of course, a perturbation hC = Co + A, for A of the form (4.7) with 
k = 0, would preserve the normalization f f  C(x, x) = N only if H(0) = 0. 

From (2.6) and (3.12) we have 

Co(x1, x 2 ) -  C ( z ) -  cosh ? ( L / 2 - z )  (4.8) 
f17 sinh 7L/2 

where O<.Gz<~L and 7 is given by (3.16) (note that C is extended by 
periodicity to other values of z and is not differentiable at z = 0 and z = L). 
Substitution of (4.7) and (4.8) into (4.6) leads to an equation for the eigen- 
value t/: 

- (4rcik/L) H'(z) - 2i sin(nkz/L) q2Vg @(z) H(O) = tlH(z) (4.9) 

Setting q = (4rck) -1 Lt/, we may solve (4.9) to obtain 

H(z)=H(O)Ie'~176162 (4.10) 

Imposing periodicity H ( L ) =  ( - 1 )  k H(0) then leads to the eigenvalue 
conditions 

q2 V g- I D - i[(~2 _1_ ( 7ck/L )2 _ 0 2 )  cosh(yL/2) cos( OL/2 ) 

+ 270 sinh(TL/2) sin(OL/2)] - 27fi sinh(?L/2) cos(qL/2) = 0 (4.11a) 

for k odd, and 

q2Vq-1D-1[(72 + Ozk/L) 2 - q 2) cosh(yL/2) sin(qL/2) 

- 270 sinh(TL/2) cos(qL/2)] - 2yfi sinh(TL/2 ) sin(OL/2) = 0 (4.11b) 

for k even. Here 

D = D(0) = E(y 2 + (Tck/L) 2 - -  02) 2 qt_ 47202 ] 

It is convenient to rewrite (4.11) in the form 

)'s ) if k is odd 
Pk(O) = [ - 0  cot(0L/2) if k is even 

(4.12) 

where Pk(0) is the fourth-order polynomial defined by 

Pk(O) = flD(O)(q2Vg-1)-1 _ (27) ' [72 + (rck/L) 2 - 02] coth(,/L/2) 
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We should be aware, however, that in the transition from (4.11) to (4.12) 
we have introduced four spurious roots [the solutions of D(O)= 0] and 
have lost the root ~ = 0 in the case k even. We may find the real or purely 
imaginary solutions of (4.12) simply by graphing both sides as functions of 
r~ or ir~, respectively; we describe the results of this analysis separately for 
odd and even k. 

When k is odd, (4.12) has real roots ;lj and 0 _ j  = --Oj, j = 2 ,  3 ..... 
which satisfy (2j-3)rc/L<Oj<(2j-1)g/L. For P~(0)>0 there are two 
additional real roots ~1 and ~ 1 = - ~  with 0 <  ~1 ( g/L; these become 
pure imaginary for Pk(0) < 0. Since from (3.16), 7 -I  coth(TL/2 ) = ~N/L 
and hence 

pk(o)=fl(q2V~ 1)-~ [72 +(gk/L)2][V2 +(gk/L)2_qV~/2] (4.13) 

the stability region for the modes with wave number k is given by 

~,2 + (gk/L)2 > qVg/2 (4.14) 

This is in precise agreement with the condition pk> 1 [see (3.20)] derived 
in the proof of Theorem 3.6 for the local thermodynamic stability of the 
uniform mean field ensemble against perturbations of wave number k. 
From (4.14) it is clear that the stability regions increase with k and hence 
that the k = 1 condition provides the actual stability boundary. We remark 
that, in the limit L--* o% (4.14) coincides with the stability condition for 
the so-called broadband modulational instability of plasma physicsJ 8) 

When k is even, a similar analysis of (4.12) finds roots Oj for 
j +  1, _+2 .... and gives Pk(0)> - 1  as the condition for reality of ~+~ and 
hence for dynamic stability against perturbations of wave number k. 
(Recall that ~o = 0 is also an eigenvalue.) This condition is weaker than the 
condition pk> 1 [equivalently, Pk(0 )>0]  for thermodynamic stability 
against these perturbations; we do not have an explanation for this 
difference. However, since for each even wave number k the region of 
thermodynamic stability is contained in that of dynamic stability, and in 
turn contains the k = 1 stability region, it is again (4.14) for k = 1 which 
gives the true region of dynamical stability. Thus we have the following 
result. 

T h e o r e m  4.1. The covariance Cv0 is linearly stable under the 
dynamics (4.4) if/3 < tic., where Elc is as defined in Theorem 3.6. 

Proof. To complete the proof, we sketch the verification that the 
computation above has determined the complete spectrum of DI(Cvo). If 
we regard this operator as acting on L2([0, L] • [0, L]  ), then the subspace 
of functions of the form (4.7) is invariant, and it suffices to determine the 
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spectrum of the operator Ik [essentially the restriction of DI(Cvo) to the 
subspace], 

(IkH)(z) = -(4~ik/L) H ' ( z ) -  F(z) H(O) (4.15) 

which occurs in (4.9). But the second term in (4.15) is a relatively 
degenerate (actually rank-one) perturbation of the first, so that the 
spectrum of I~ is completely determined by a Weinstein-Aronszajn (WA) 
determinant/6) In fact, this WA determinant is given by the left-hand side 
of (4.11a) divided by cos(OL/2) for k odd, and by the left-hand side of 
(4.11b) divided by sin(OL/2) for k even. The conclusion then follows 
immediately from the treatment in ref. 6. 

APPENDIX  A 

Our goal is to prove an estimate, valid for any positive potential 
Ve X, that is needed in the proof of Theorem 3.1: 

-/3 X log2v~<B(1 +Q(p-2)/(p+2)) (A.1) 

Here Q = II VH pP~22; we will write x for x(V) and (Sk for chk(vq). Now in finite 
dimension we could use the identity 

f~,, e x p [ -  (z, Az)/2] d"z = ( 2 g )  n/2 (det A)-t/2 

to write the partition function as the ratio of determinants of T and 
( T -  V q -~c); the corresponding equation in infinite dimension is 

- l o g 2 v = l o g ( 2 ~ / 3 ) + l o g ( ~ - ~ c ) +  ~ log ~ % - ~  (A.2) 
k~0  (Dk 

(the zero modes get special treatment because ~o 0 = 0). In fact, however, 
(A.2) is rigorously correct; see, e.g., ref. 4, Theorem 3.11. 

We next obtain bounds on the eigenvalues c~ by variational 
calculations. The min-max theorem, together with the positivity of V q, 
leads immediately to 

~ ~< ~k (A.3) 

To derive lower bounds we will need the form of the interpolation 
inequality (3.9) that is valid on the interval [0, L]: for any e > 0 there is a 
constant Ks > 0 such that 

I l f l l f~(Cp+e)  Iif'11(2 p 2~/2 ilfll~p+2)/2+X~ Ilfll~ (A.4) 
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Then for any ~b e L 2 we have, by H61der's inequality and (A.4), 

(0, vqq ~) <~ Q(p- 2)/p rloii2p 

~ Q(p- 2)/p[(cp § c)2/p i{~,llr 2),~,~lq~l12r + Kf/~ 11~112] 

and hence, if 11~112 = 1, 

((~, ( T -  vq)O)>~((~, T(~)-d(q~, T~) ' / -e  (A.5) 

with y = q/p, d= (Cp + e) 2/p QIp-2)/p, and e=K2/pQ (p 2)/p. We extract two 
consequences from (A.5). First, minimizing the right-hand side over 
possible values of (~b, T~b) leads to 

COo>>. - (1-y)7Y/~162 -C(1  § (A.6) 

(Here and below C represents a generic constant.) Second, let k0 be the 
integer part of (L/2rt){[2(d+e)]P/(P+2)+ 1} and take [k[>k0,  so that 
co~>l  and c%>[2(d+e)]  I/~1 ~). Then, since any subspace , / / { c L  2 of 
dimension 2k (for k positive) or 2 [k] + 1 (for k negative) contains a vector 
~b~ of norm one with (~b~u, T~b..~)/> cok, 

05~ = inf sup (0, ( T -  vq)~b) 

(r = 1 

~> c% - dco~ - e 

~ > c % [ 1 - ( d + e )  co}~ -1]  

> co~/2 (A.7) 

Now, from (3.3) and (A.7), 

fiN <. 2ko + 1 ~> 1 
+ oSk_ ~c 2 c~ Ikl k0 

<2ko+.  l + C I~c[--1/2 
( D O - - K  

which implies (e.g., by separate consideration of ~c ~> 1 and ~c ~ 1 ) 

(5 o --  ~c <~ C(ko + 1 ) <~ C( 1 + Q ( P -  2)/(p q- 2)) (A.8) 

From (A.6) and (A.8) we have 
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Thus, from (A.2) and (A.3), 

-~-llogZv<<.C{l+logQ+~log[l+Ck 2(1 + Q2(p 2)/(P + 2))] 1 
k > 0  

Equation (3.7) now follows from 

log(1 + Ak 2) 
k>~l 

+ ~ log(1 A k  -2) 
k2~A k2>A 

~ < / ~ l o g A - 2 1 o g k ! + ~ l o g ( l + A  ~k2)+ ~ l o g ( l + A k  2) 
1 ~ '+I  

<~ CA 1/2 

where/~ denotes the integer part of A~/2, and in the last step we have used 
log(1 + x) ~< x and Stirling's formula. 

APPENDIX B 

In this Appendix we compute the constant c appearing in (3.25) and 
show that it is positive. Without the introduction of further notation we 
regard ,7 as a map on X~, the space of even potentials. If g(w, ~ ) =  
j B ( w ) -  w, then (3.24) becomes 

0 = g(w, fl) = g~w(O, flc)(fl - tic) w + (1/6) g ...... (0, fl~) w 3 + h.o.t. 

and we will show that g/~,o and g,,ww are both positive at (0, tic). We 
introduce the notation DkJ~(W)(W1,... ,  Wk) for the kth derivative of 3a at 
W as a k-linear form on X~, and define ~bk(x)= cos(2rckx/L) and M = 
D J e t ( 0 ) -  L For convenience we will make use of formulas for the partial 
derivatives of g tabulated by Golubitsky and Schaeffer [ref. 5, (1.3.23)]; 
with ~(W, f l ) = J ~ ( W ) -  W, /)0~'~--~1, and v * = 2 L  l~b 1 these become 

g~w(O,/~c) = 2L-l(~b 1 , ~aDJr ) (B. la) 

gwww( 0,/~c) = 2 L -  ~(~bl, D33(~b1, ~bl, r  3DZJ(~bl, M-1E~ DZJ(ff I , ~b 1 ))) 

(B.lb) 

Here and in the balance of this Appendix, unless specified otherwise, all 
derivatives of a; are evaluated at f l=flc ,  W = 0 .  We remark that (B.la) is 
already simplified from the form in ref. 5, using J ~ ( 0 ) -  0. 
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Next, recall that 

J~(W)= 22fl-15P[ T - ( V o  + w)q-x(Vo + W)] -1 

where ;T, acting on an operator, yields the restriction of its kernel to the 
diagonal. The derivatives of J (we record only the diagonal elements for 
simplicity) are then 

D](W) = 22fl-'5a[RA~ R] 

D2J( W, W) = 22fl 15P[RA2R + 2R(AI R) 2] 

D3j(W, W, W)=22fl-~J[RA3R + 3RA~RAzR + 3RA2RAIR +6R(A~R) 3] 

with 

R= R(-72)= IT-  Vo- ~C(Vo)] 

A,~=n'b,,W'+Dnlc(W, .... W), b,,=(~) V~-" 

Now in fact we calculated DJ in the proof of part (a) of Theorem 3.6, 
finding 

DJ~(O ) Ok = Pk(fi) (~k 

[see (3.20)]. From (B.la), then, 

g ~ w ( o , / L )  = (ep , /~ /~)~  = ~ > o 

( s . 2 )  

It remains to check the sign of gwww(flc, 0). Note that, from (B.2), M is 
given by m~bk = [Pk(fl~.)- 1 ] ~k. 

Higher derivatives of J could be evaluated by the method used to 
derive (B.2), but calculations with the explicit kernel (3.12) are quite 
complicated. Instead, we return to the formula (3.1): 

r(x, y)= 
(~k(x) OK(Y) 

k= oo 09k+72 (B.3) 

by means of which the various terms in (B.lb) are readily computed. From 
(B.3) it follows by induction that 

[R~jlR' '" R~jnR](X , Y) 

~k(x) ~* + Z7 ,,d,(Y) 
= 2 - "  ~ ~ ( & + v ) ( &  +v)...(;~k o . + v )  

a l , . . . , O ' n =  + 1  k =  - -oo  @ a l J l  +~laiJi 
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from which 

[-RCj, R...  RCjoR](x, x) 

= L - 1 2  (n 1) E 

o'2,..., O- n = q- i 

where 

Lebowitz et  al.  

Sn (Jl, jl + o2J2,..., jl + ~'~ ff iJi) ~h + Z{~j~ 
2 

1 
S,(11,12,...,l,)= ~ (B.4) 

(~O~ + v ) ( ~  +,l + V)(O~k +,2 + V)"'(O~k +,~ V) 

Using this notation, for example, we may recalculate 

D3r = 2 2 ( L L  ) i bl Sl(k) ~ 

which agrees with (B.2). 
Similarly, recalling that Dx = 0 and using CjCk = 2 t(r + ~bj_k), we 

find 

O 2 j ( ~ / ,  ~k) = 2 ~ ( f l L )  1 {b2[g2(j, j + k) ~bj+ k(x) + S2(j, j -  k) (gj k(x)] 

+ bz[S,(j+ k) Oy+k(X)+ $1( j -  k) Cj_k(x)] 

+ &(0) o2~(~j, r (B.5) 

Applying S~ DkJ( WI,..., Wk)(x) dx = 0 leads to 

DzK(r r = --6jk(b2 + b2S2(j, 0) S~(0) 1) (B.6) 

Equations (B.5) and (B.6) determine the second term in (B.lb); in par- 
ticular, 

M-IE*2D2j(r 01) = 22(flL) * [b282(1, 2) + bzS~(2)] [P2(fl~) - 1 ] r 

(B.7) 

and, since $2(1, - 1) = $2(1,2) = 82(2  , 1), 

2L 1(r D2j((bl,~bz))=2)~(#L)-I [b~$2(2, 1)+b281(1)]  (B.8) 

Thus, the value of the second term in (B.lb) is 

(22/#L) 2 [1 - P2(flc)] -1 i-b2 $2(1,2) + b281(2)] [b282(1, 2) + bzS,(]  )] 

(B.9) 

The first term in (B.lb) is calculated similarly; (B.6) is needed, as well as 
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the relation D3tc(q~l, r r =0 (which follows from the SL/2 symmetry). 
We find a contribution to (B.lb) which is the sum of 

32(ilL) -~ [3b3S~(1)+4blb232(1, 2)+ b333(1, 2, 1)] (B.10) 

and 

32(/3L)-' b~[-S3(1, 2, 1)+33(1,0, 1)-232(0,  1) 2 $1(0) ']  (B.11) 

It remains only to show that the sum of (B.9)-(B.11) is positive. 
Observing that bl >0, we first show that (B.11) is positive. We write 

a~ = (co k + 72) - 1; then, from (B.4), 

l ) S l ( 0 ) = l z  2 2 2  $3(1, O, 4j, ka)ak(ak+, +a~+, +a2_l  (B.12) 

$3(1,2, 1) $1(0)=1 Z 4~,ka)ak(2a~+la~2 2 1 +2@+1aj-1) (B.13) 

and 

2 1 
$2(0,1) = - ~  4a~(2ak+laj+, + 2ak+laj_l + 2ak_,aj+l + 2ak_la j 1) 

j ,k 
(B.14) 

Combining (B.12) (B.14) shows that 

[s3(1, o, 1)+ s3(1, 2, 1)] s l ( o ) -  232(0, 1) 2 

_ !  2 2 2 4j, k a)ak(ak+ 1 + aK_ 1 -- aj+ 1 -- aj_ 1) 2 

which completes the verification. 
To show that (B.9) plus (B.10) is positive we evaluate explicitly the S~ 

which appear, for example, by the residue calculus. Setting d~ = 0) 2 + 472 
and d2=co2 + @  2, and using (3.16), we find 

S l ( j )=  f iNdf  ~, j =  1, 2 

$2(1,2) = 3flN(dl dz) - ~ 

33(1, 2, 1)=flW(d]d2) -1 [10+ (7/09,) 2] + L2og~(8y2dl)-1 csch2(TL/2) 

>~ lOflW(d21d2) 

From p~(fl~) = 1 we have 2qV~ =dl .  Then (B.9) is 

Vo2(12d2)-l(q+2)[(4q-1)+(q+2(y/O)l)2)]>~Vo2(12d2) ' ( q + 2 ) ( 4 q -  1) 
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and (B.10) is bounded below by 

3 Vo-2(4d2) ~ [(q - 1 )(q - 2) d 2 + 6(q - 1) d 1 -1- 5d 1 ] 

The sum of these two equations, 

Vo 2(12d2) - ~ (40q 2 - 47q + 61 ) ~2 + (13q2 + 34q + 9) 72 ] 

is positive for all q and 7, which completes the proof. 
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