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The statistical behavior of a system coupled to a reservoir at temperature T is discussed, with the
assumption that the interactions are impulsive. Kinetic equations are written for the classical distribution
function and quantum density operator. The class of operators admitted leads to a proper description
of the irreversible behavior of the system, but the construction of the collision operator for a given Hamil-
tonian of system and reservoir is not treated. Application is made to the quantum theory of dielectric
relaxation, with the further assumption that the position coordinates of the system are unchanged by col-
lisions. An explicit solution is found for the behavior in an external alternating field, of a two-dimensional
dipole of moment of inertia 7, subject to strong collisions with the reservoir. For low collision frequency
1/7, discrete rotational lines of width 1/7 are found, while at high collision frequencies there is a continuous
Debye spectrum with relaxation time 7*= (1/7)/(I/kT). At intermediate collision times, the absorption
and dispersion are governed by an interplay of quantum and inertial effects.

1. INTRODUCTION

N this note, we examine some aspects of the quantum
theory of a system interacting impulsively with a
reservoir. The meaning of “impulsive” is as follows: the
system evolves under the influence of its own Hamil-
tonian, except for infinitesimal time intervals when the
state is abruptly changed by interactions with the
reservoir. For the classical theory, general properties
of this model, such as the approach to equilibrium, the
free-energy production, etc., have been studied.! Here
we will be concerned with the corresponding quantum
theory and its particular application to the theory of
dielectric relaxation. The approach will be to postulate
quantum equations corresponding to given classical
models.

The problem of the quantum theory of dielectric
relaxation is to describe mathematically the transition
from the low-pressure rotational line spectrum of a
polar gas to the continuous Debye spectrum at high
pressures, or in the liquid state. The nature of this
transition will depend on the detailed interactions
between the absorbing molecule and its neighbors.
However, for the case of a dilute solution of polar
molecules in a nonpolar solvent the situation is particu-
larly simple. A classical theory of dielectric relaxation
appropriate to this case was developed.? It was argued
that the short-range character of the intermolecular
forces implies that collisions are of small duration com-
pared to resonant period, applied-field period, and time
between collisions. Since there is a limited amount of
energy available (=~k7T), we may use models in which
the dipolar coordinates are unchanged at collisions,
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while the velocities are changed. These models are
special cases of the general impuslive model of refer-
ence 1. ‘

In the present note, we postulate quantum theories
for both the general impulsive model, and the more
special no-position-change case. We obtain a conceptual
unification of the low- and high-pressure limits, which
may provide guidance in the design of experiments. Our
considerations are, however, schematic in that no
attempt is made to treat the Hamiltonian of system
plus reservoir by an impulsive approximation, and to
integrate over reservoir variables. This has been accom-
plished for the case where the system-reservoir inter-
action can be treated appropriately by perturbation
theory.?

2. CLASSICAL THEORY OF DIELECTRIC RELAXATION

We outline first the features of a general classical
theory of relaxation. The pattern of presentation will be
followed in the quantum theory. A general system is
described by a distribution function #(x,f), where x is
a point in the phase space (psq¢:) of the system. When
there is an impulsive interaction with a reservoir at
temperature 7', the distribution function obeys the
integrodifferential Eq. (1).

du/dt+{u,H} = f{K(x,x’)u(x’t) — K (x'x)u(x,t) ydx'

=du/dt, 1

where K (x,x’) is the probability per unit time that a
system at the point &’ jumps to the point x by collision
with the reservoir. The symmetry property

K (w,0) = L(x,2")ef2 =", @
L(x'x)=L(xx"), B=1/kT

assures detailed balancing at equilibrium. If the Hamil-

3F. Bloch, Phys. Rev. 102, 104 (1956); A. Redfield (to be
published) ; K. Tomita (to be published).

1528



QUANTUM THEORY OF DIELECTRIC RELAXATION

tonian H is time-independent, the system approaches a
canonical distribution in the course of time, and the
free energy decreases monotonically.

The derivation of Egs. (1) invokes conservation of
energy of system plus reservoir at an instantaneous col-
lision. The reservoir is assumed to be permanently in a
canonical distribution, and an assumption of micro-
scopic reversibility is made. K (x,x) is independent of
the state of the system.

In the theory of relaxation we are interested in the
case where H is time-dependent, as for example
H=H(p,9)+Eo coswi—V (g). The conservation argu-
ment leads again to (1) and (2) with H now the
instantaneous time-dependent Hamiltonian. If we
assume as in reference 2 that the position coordinates
are not changed by collisions, we have

K(x,2)=K'(2,24")6(q—¢).

The models of Frohlich and Van Vleck and Weisskopf*
involve position changes at collision, but are of the
general type (1) with H the instantaneous Hamiltonian.

The formulation and solution of equations with appro-
priate collision kernels, satisfying the above require-
ments, yields a classical theory of resonance and
relaxation. Here we have done justice to the intuitive
meaning of impulsive. We may note that the treatment
of the system-reservoir interaction by perturbation
theory yields similar equations (with the instantaneous
Hamiltonian) under certain circumstances (see reference
3). In reference 2 particular kernels were postulated.
These appear reasonable, but of course to be sure that
a kernel is physically satisfactory, it must be derived
from some definite Hamiltonian of system plus reservoir.
We do not treat this problem.

The general theory of dielectric relaxation employs
distribution functions in the full phase space (p4q:) of
the system, rather than only in the configuration space
(¢1), as is the case for the Debye theory. One obtains
inertial corrections, and also a detailed physical picture
of the transfer of energy and angular momentum from
the applied field through the system of dipoles to the
reservoir. Because of the nature of classical mechanics
a theory of line structure at low pressures requires a
quantum generalization. :

3. QUANTUM COLLISION KERNELS

The statistical properties of the system are now
described by a Hermitian density operator p of trace
unity. The expectation value of an observable G is
tr(Gp). For a system with Hamiltonian H, the equation
governing the time behavior of  is

ap 1 &p
—+-[H,p]=— 3
ot h[ 7] ot ®)

4J. H. Van Vleck and V. Weisskopf, Revs. Modern Phys. 17,
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The left-hand side is the quantum analog of the
Liouville equation, and specifies the change of p arising
from the action of the Hamiltonian. The right-hand
side treats the effects of the interaction with the reser-
voir. In a representation where the system coordinates
q are diagonal, we write

op
(1

ot
An operator Q with four continuous indices is needed
because a collision changes the general matrix element
p(q,¢',8); there are contributions from all points
(¢"”,¢"""). The collisions are instantaneous, i.e., ¢ is the
only time in the collision kernel. Following the pattern
of the classical theory, we impose the following condi-
tions on the kernel Q:

(1) Q must be such that 6p/6i=Qp is Hermitian and
tr(8p/6t)=0. Then, the normalization and Hermiticity
of p are preserved in the course of time. These require-
ments can be satisfied in a general matrix representation
by writing [in analogy to reference 1, Eq. (3.1)]

‘Z')= X (' 10W1g"?")q" pB)g")- (4)

)
§=Z,{K(s,s’lz,z’)p(z’,z)—%K(z,zls,Z’)p(z’,s’)
’ —~1K (2,3|5'8)p(&'s)}.  (S)

The operator K(s,s'|3,2’) must be Hermitian in both
sets of indices and positive-definite. Thus

>3 A(s,s)K(s',s|2,2)B(2,2) >0,
when A4 and B are positive matrices.

(2) Qpo=0, where po=ePHo/tre8Ho 3=1/kT, k is
Boltzmann’s constant, T is the reservoir temperature,
and H, is a time-independent Hamiltonian. In addition,
Q must give a proper account of the approach to this
equilibrium. The symmetry conditions on K (s,s'|2,2")
which are equivalent to those in the classical theory,
[see reference 1, Egs. (2.2) and (2.4)7], are

K(s',s]2,2)=% 2y L(s,s|2,9)efH (v,2")
+3 2y L(s,s|9,8)ePE(2)y).  (6)

These conditions can be shown to lead to a monotonic
decrease in the free energy.

The analog of the classical condition of no position
change during a collision here takes the form

(3) (q|é6p/8t|q)=0; i.e., the diagonal elements of
8p/8t in a coordinate representation vanish. Then the
expectation value of any operator F which is a function
of position alone, is unchanged by collision. Thus

)

=2q3 f(q)(qlglq)%-

5p 3p
tr(Fg -z f(q)é(q“-q)(q’ls—t
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This implies that

(991Q1¢"q"")=0 for all ¢, ¢", ¢'"". O

The approach of Karplus and Schwinger® to the
theory of microwave line shape (and dielectric relaxa-
tion) is based on the assumption

op  p 1
—=—"tpea; Pea=ePEO/tr(ePH),  (8)
ot T T

where 7 is the constant collision time. This is a quantum
analog of reference 4 where (» =J)

) ca
_ S Ja
ot T T

e"“ﬂH(t)
y Jea=——— &)

f e PHdpdq

These models satisfy (1) and (2) but not (3). For the
general theory of the response to time dependent fields,
we postulate that the instantaneous Hamiltonian is to
be used in the kernels. In all theories the presence of
the instantaneous Hamiltonian ensures that if the
value of the applied field is abruptly altered, the system
ultimately comes to the proper new equilibrium.

In the present work we are interested in quantum
kernels that yield the same results as the kernels of
reference 2 when %£—0. With the density operator
formalism, the connection between classical and
quantum kernels is usually not as transparent as for
Eqgs. (8) and (9). The reason is that we give preference
to the coordinate representation with the statement
that the position is unchanged by collisions. A closer
correspondence results when the Wigner distribution,$
Jfuw(p,q,t) is used to describe the evolution of a quantum
ensemble.

Appropriate quantum kernels are suggested by
requiring that the Wigner distribution satisfy an
integrodifferential equation with a stochastic kernel
which is the same as that obeyed by the classical dis-
tribution function. Then one expresses the Wigner
function in terms of the density matrix. There are,
however, technical points connected with conditions for
the Wigner function to represent a physical system,
and its meaning when the coordinate range is not —
to 4+ . We have used it only to suggest kernels for
the density operator appropriate for strong collisions,
Brownian motion, etc. In the following section we work
out the theory of the electrical response of a two-dimen-
sional dipole for one such kernel. The physical situation
described is a strong-collision case arising from short-
range forces between dipolar and nondipolar molecules.

Solution for Two-Dimensional Dipole

We study a particular expression for 6p/6¢ which is
closely related to the classical strong-collision model?
5 R, Karplus and J. Schwinger, Phys. Rev. 73, 1020 (1948).

6 E. P. Wigner, Phys. Rev. 40, 739 (1932); T. Takabayasi,
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in which the system has a Maxwellian velocity dis-
tribution after impact.

APPRLARELC NN
6t 71 T ) f 27— Lpeq(q,q) I Peq(q"ql) .

(10)

7 is a collision time, and pe(f) represents the equilib-
rium density operator appropriate to the instantaneous
value of the time-dependent Hamiltonian H(¢). The
term in the square bracket is symmetric so that it
maintains the Hermitian character of §p/8f in the
course of time. The classical expression for the strong
collision model was

57 flapd) 1
a0 =~ ! g (p)

(11)

T

where n(g,) is the number density and F(p) the
Maxwellian velocity distribution. The first terms of the
classical and quantum expressions are direct analogs.
In the second terms, $(g,q) is the analog of #(g).

We now examine the question of the absorption and
dispersion of radiation by a system obeying Egs. (1)
and (4). We write

H({)=Ho+V ()=Ho—uop* Eo Re e™?, (12)

where H, is the Hamiltonian of the system, V(¢) the
interaction with the electric field E, coswi. uop is the
dipole moment operator of the system. Our goal is to
compute the expectation value of the dipole moment
operator® (polarization)

M(0)=tLp(Dve], (13)

to the first power in Ey (nonsaturation region). With
p=1Peq()+D, we find to this approximation

oD i
—+—{H,,D]
at h

_Opeg D Po(q,q’)[l)(q,q) D(q',q")
a ¢ 2t Lpo(g,9)  2o(g”,q)
P():e—HO/kT/tI'(e—H"lkT).

| ao

Further investigation is most convenient in a scheme
where H, is diagonal. We introduce

and use relations of the type”
(n|Dm)=2(n9) (| DI¢) (' |m),
(16)

an|Q) (glm)=8umm; Zalgln)(n|q)=6(g—).

7P. A. M. Dirac, Quantum Mechanics (Oxford University Press,
London, 1947).
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For the two-dimensional dipole, we are interested in
the component of u,, along the direction of the field E,
(z axis). Then

(kop) 2(9,¢") =u cosgd(g—¢"),

(n]@)=(1/2m)e"s, (1] psop| m)=3u{80, mes+-8m1},
po(g'Q) =20 € FE (W () /220 20 PP Yr(9) |
= +§ e"‘ﬂEnei"(lI"‘Q)/zo’r Z e“ﬁEk’
n=—00 k
PP/, 0, (17)
E,=nk/21,
where I is the moment of inertia,
Pmo_pno
(n I Peq l m) = Pmoﬁmn_l_ ——— }Voun (t) —Tom
wmn
( apeq ) ,U'EO Pmo_ﬁno)
=[x wm)=—f ———
KXiwe ™ {8, ny1-+0m, n1}. (18)
Then one finds, " '
aDnm Dnm (P n0+_pmo)
T iwnmJl Z ch+n—m,k= Tnm-
at T 27 &
(19)
The only terms which do not vanish for long times are
Dn, ntl.
Introduce
nm= (1/7)+iwWnm+iw.
We form the sums 3, Dpgt,m:
Toiim D1+ Pt
Z Dm:l:l,m /( Z ). (20)
m m U'm;tl " k 2T0'Ic;i;1 k
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The complex polarization M(¢) is given by
_Z(Peq)nm(vop)mn‘i‘ Z_: {Dsy1,n+c.C}. (21)
We obtain the result
(P 1 —Pno) I
M(t)=— o eyl Z{(Dusswtec).
n hw,hq, n
(22)

This result is very close in form to the classical formula
of reference 2. The integration over the continuous
range of dipolar angular velocities is here replaced by a
discrete sum over the quantum number k. The fre-
quencies w1, 5= (&/87I)(2k+1) give rise to a sum
which differs only slightly from the integral when
Wrt1, k<&K1/7. Since 1/7 is independent of &, at any given
pressure this condition may be satisfied by the low-
lying rotational lines, which then have their individual
line structure destroyed. The lines of higher & values
may still be resolved.

If the collision frequency 1/7 is small compared to
w and w0, formula (14) shows the characteristic
quantum line structure, with width 1/7. This is clear
for the numerator. For the denominator only one term
in the sum is appreciable, so that the sum is small of
the order of 1 divided by the number of levels excited
at thermal equilibrium. In general the result shows the
interplay of quantum line effects, classical inertial
effects and the transition to the Debye shape at high
pressures [relaxation time 7*= (1/7) (I/kT)].

Similar results are obtained for quantum generali-
zations of the other models of reference 2. The solutions
for systems other than the two-dimensional dipole are,
however, not easy to obtain in explicit form for the
entire range of pressures.



