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Computer simulation of a classical fluid with internal quantum states
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We present simulation results on phase transitions in a fluid system whose interactions depend

on internal quantum states:

They are “turned on” when the molecules are in the hybrid state.

Surprisingly, a simple effective temperature-dependent classical potential describes well many

features of the transition.

The relationship between the cooperative behavior of
macroscopic systems and the internal states of the com-
ponent molecules is a subject of considerable theoretical
and practical importance.!~* While the former can in
many cases be treated classically, the latter are inherently
quantum mechanical. This makes the study of such sys-
tems, particularly by computer simulation, much more dif-
ficult. As a result little is yet known about their proper-
ties.

However, with the advent of more powerful computers,
there is now promise of real progress, Ref. 1. To date the
investigations have been restricted mainly to lattice mod-
‘els. In particular, there have been no systematic
computer-simulation studies of the effects of the internal
quantum states on phase transitions in continuum systems.
To our knowledge the only exception is the study by Hall
and Wolynes of a model of supercritical mercury? (an ex-
planation for the behavior of this element had already
been proposed®). They make the important simplifying
assumption that the mass M of the particles is so large that
the translational degrees of freedom can be treated classi-
cally. However, the long-range interaction employed in
this model limits the computation to very small systems
and to a few thermodynamic state points.

In this paper, we present for the first time simulation re-
sults on phase transitions in a system of molecules with
two internal quantum states which influence the interpar-
ticle interaction. In restricting ourselves to a simpler mod-
el than that studied by Hall and Wolynes we are able to
perform a systematic quantitative study of phase transi-
tions in fluid systems with intrinsic (annealed) disorder
and quantum behavior.

The results of our simulations are compared with those
obtained in the quantum mean-field approximation of
Stratt* and show qualitative agreement. We then intro-
duce effective one- and two-body classical potentials which
reproduce to a great extent the important quantum effects,
at least up to moderate values of the inverse temperature.
We also compare our simulation results on the classical
system to predictions obtained from the hypernetted-chain
(HNC) approximation and find excellent agreement.

Description of the model. We consider a system of NV
particles in a d-dimensional periodic box with the follow-
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ing Hamiltonian:

H= Z 20',"+ Z U, —
x-l i=1
(1<1)

- Y J(@—r1))ofo] ,
~
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where p; is the momentum and M the mass of the parti-
cles. U(r) and J(r) are short-range functions; o* and o*
are the usual Pauli spin- 3 matrices. We think of the par-
ticles as two-state molecules with an internal Hamiltonian
— wpo*/2, interacting via a pair potential, depending on
their internal state. The interaction term will tend to lift
particles out of their internal ground state corresponding
to o*=1 into a hybrid state, i.e., the eigenstates of oZ.
Fixing the positions of the particles on a one-dimensional
lattice makes this a well-known, exactly solvable model
much studied in the literature.>~7 However, little is known
about the fluid systems considered here.

The classical-quantum partition function of the system
has the following form (we set A=1):

Z=——fdr1 .drndpy. . .dpn Trepinsexp(—BH) .

Following Suzuki,® we use the Trotter formula to write Z
as

= lim WN'fdrl drzvexp[ B Z Ulr; — rz)]
(l<j)
xY expl—pVp(isH1 ,
{s}
where
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Ap and Kp are defined as
Ap=1[% sinh(Bwo/P)]1? |
Kp= ﬁ Inlcoth(Bwo/2P)] ,

and A is the thermal wavelength. Vp is the Hamiltonian of
an Ising-like classical system of P layers.

The properties of the system can now be obtained as
thermal averages over the distribution

exp[—ﬂEU(r,- —r;) —,ﬂVp({s})] .

The possibility of using computers to evaluate these aver-
ages relies on the demonstration by Suzuki and co-
workers” that a reasonably small value of P can be enough
to approximate the P — oo limit.

Results. We have performed simulations of a three-
dimensional system of hard spheres with diameter R and
with a spin-dependent interaction J(r) of the square-well
form, extending to a distance R +A:J (r) =Jo0(R+A—r)
[6(x) is the Heaviside function]. The interesting feature
of the model is the dramatic increase of the cooperative be-
havior of the system with increasing density, coupled to
the increasing occupation of the o?-dominated hybrid lev-
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FIG. 1. (a) Susceptibility X as a function of density p for the
system with Bwo/2=1 and BJo=0.35. The values of the other
parameters described in the text are A=0.5R, N =250, and
P =16. The position of the peak of X(p) provides an estimate of
the density of the “paramagnetic-ferromagnetic” transition. (b)
For the same system as in (a) the circles represent the energy ux
due to the one particle operator — 3 woY, of and the triangles
‘the energy u, due to the spin-spin interaction. The filled and
empty symbols refer to the quantum Monte Carlo simulations
and the equivalent classical system, respectively. The lines have
been added only as a guide.

els. At moderate values of B this leads to a second-order
phase transition, while at higher values of 8 the transition
becomes first order (compare, for instance, Ref. 8 for a
discussion). We will report details of the phase diagram in
a subsequent paper; here we discuss some of the interesting
quantum features of the system near the second-order
transition. The cooperative quantum effects are clearly
seen in Fig. 1, which shows the sharp increase of the ener-
gy associated with the one-body Hamiltonian and the simi-
lar decrease of the spin-spin energy with increasing densi-
ty. The second-order nature of the magnetic transition is
illustrated by the plot of the susceptibility X(p). The posi-
tion of the peak of X(p) can be used as a reasonable esti-
mate of the location of the transition.” Anomalies, similar
to those shown by X(p), occur for the specific heat and the
compressibility of the system. We are planning a more
systematic investigation of the properties of the system
near the transition using finite-size scaling techniques.
Preliminary investigation of larger systems confirms the
accuracy of our rough estimates on p,.

Figure 2 shows the transition densities p. as a function
of BJo for different values of Bwo/2. The interval of BJo
displayed has been restricted to the region of the phase
diagram in which we have only a second-order transition.
The dashed lines show the predictions of the mean-field
theory as discussed by Stratt.* This simple scheme seems
to reproduce quite well the qualitative features of the tran-
sition line, if not the quantitative ones. We expect the
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FIG. 2. Density of the “paramagnetic-ferromagnetic” transi-
tion as a function of 8Jo(A=0.5R) for three different values of
Bwo/2. The filled circles are the results of the simulation; the full

lines give the predictions of the HNC approximation and the
dashed curve lines that of mean field (Ref. 4 ).
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agreement to improve with increasing A as this permits the
simultaneous interaction of a larger number of molecules.
It should correspondingly become poorer as A is decreased.

Effective potentials. While the Trotter formula gives a
possibility of simulating a quantum-mechanical system it
would be useful to be able to describe our system by one
with a simple classical effective interaction. This idea,
which goes back to at least Feynman,m would allow the
application of well-known approximation techniques. We
note that the effect of the term % woY, o7 in the Hamil-
tonian is to provide a one-body contribution to the internal
energy and to reduce the effective “dipole” of the parti-
cles. Therefore we model the quantum system with the
following classical Hamiltonian:

I7=Nl//— Z J(r; —rj)i,-.?j, 5= L Seir
iJj
G <))
where y is a one-body potential which reproduces the free
energy of the independent particles and seg is chosen in
such a way to reproduce the free energy of two interacting
particles:

y=— % Incosh(Bwo/2) |
cosh(BJos&s) = % {cosh(8J )
+cosh[B(J§ + wd) *1}sech?(Bwo/2) .

This simple prescription is able to fit reasonably well the
properties of the quantum systems described above (at

least for moderate values of 8). This is apparent from Fig.
2 where the full line shows the transition density for the
equivalent classical model computed in the HNC approxi-
mation. Simulations for the equivalent classical model
confirm the HNC results.

The inclusion of many-body contributions should offer
a systematic way of improving the quantum-classical
correspondence. However, we believe the advantages of
the present scheme are its simplicity and the possibility
that it offers for obtaining quick estimates of the proper-
ties of the quantum system by exploiting the methods of
classical statistical mechanics.

In conclusion, we have demonstrated (a) the feasibility
of studying phase transitions of fluids with quantum inter-
nal degrees of freedom, (b) the possibility of approximat-
ing quantum effects by a classical Hamiltonian (at least in
our system), (c) the semiquantitative agreement of the ef-
fective classical simulation results with those given by the
HNC approximation, and (d) the qualitative validity of
the quantum mean-field approximation.
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