A comparison of perturbative schemes and integral equation theories
with computer simulations for fluids at high pressures
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We test some refined perturbation and integral equations theories for predicting the equilibrium
properties of spherical fluids, with nonstandard interactions at high densities and temperatures.

The perturbation theories are fast and convenient to use and give good results for the
thermodynamic properties, but not for the structure. The integral equations require more
computer time, but yield thermodynamics and structure that are in very good agreement with
simulations. In fact there appears to be no need for computer simulations of classical systems of
particles interacting with spherical potentials in the fluid regime—at least away from transitions.

I. INTRODUCTION

The properties of equilibrium classical fluids, interact-
ing via spherical potentials close to the triple point can be
predicted to a high degree of accuracy with perturbation
theories developed in the 1960’s and early 1970’s."™* The
standard integral equation theories while useful, tend to be
less accurate.® In this paper we investigate the extension of
these techniques to the high density part of the fluid phase
diagram.

A central idea in all perturbation theories' is to divide
the intermolecular potential ¢ () into a stiff reference poten-
tial ¢,(7) and a soft perturbation ¢,(r):

B(r) =do(r) +¢:1(r) .

The difference between the various theories lies essentially in
their choice of the reference potential ¢,(7). However most
of them approximate the reference system with a hard sphere
(HS) fluid, whose diameter D is chosen “appropriately.” At
higher pressures these standard perturbation theories have
some serious shortcomings. The HS diameter becomes so
large that the HS fluid is far into the metastable region and it
is impossible to obtain a physically reasonable form for its
radial distribution function which is needed in the perturba-
tion scheme.

Recent refinements have extended the useful range of
fluid perturbation theories, at least for the “‘standard spheri-
cal potentials.” In this paper we test two such refined
schemes: Ross’ semiempirical variational theory® and an ex-
tension of the WCA theory by Kang, Lee, Ree, and Ree
(KLRR)’ for some nonstandard spherical potentials. We
also test two refined integral equation theories: the reference
hypernettted chain (RHNC) theory®'° and the recently
proposed hybrid integral equation of Zerah and Hansen.!!
Our aim is to obtain information about the accuracy and
efficiency of the theories, as compared to computer simula-
tion results, for potentials not considered in developing the
approximations. These are the Aziz potential frequently
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used for helium'? and various sphericalized (median) po-
tentials for molecular fluids."*-**

We find the perturbation schemes to be highly conven-
ient and as accurate as simulations for calculating the ther-
modynamic properties. However the structural predictions
of simple extensions of both Ross and KLRR are poor. The
integral equations on the other hand, while rather more de-
manding than the perturbation schemes in terms of the com-
puter time they require, give excellent results for structural
as well as thermodynamic properties. We therefore conclude
that, aside from transitions and critical point behavior there
is no longer any need for simulations of one component
spherical fluids. This holds ipso facto, for nonspherical fluids
which can be represented well by effective spherical poten-
tials and for mixtures which can be described by one-fluid
approximations.

In Sec. II we give a brief outline of the Ross and KLRR
theories and point out a convenient simplification in the ap-
plication of the former.

{l. ROSS AND KLRR PROCEDURES

As mentioned in the Introduction, standard perturba-
tion theories suffer from the fact that at high densities the HS
reference fluid tends to be unrealistically dense. It is there-
fore replaced in the Ross theory by the softer inverse-12th
power fluid. The convenient scaling properties of the HS
fluid are retained by employing it as the reference fluid for
the inverse-12 fluid. In order to obtain free energies that
agree with simulations it is necessary to add an empirical
function of the HS packing fraction to the variational equa-
tion. This accurate free energy then serves as input to a vari-
ational theory for the general potential ¢ (7). Specifically the
Ross theory sets

A= min[Ao + 270N f goy (/D7)
D
><¢(r)r2dr+F(17)NkT] , )
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where F(n) = — (*/2 + 7> +9/2), n=(n/6) pD* is
the HS packing fraction expressed in terms of the HS diame-
ter D, and A, is the Carnahan-Starling free energy of the HS
reference system. gpy (7/D,n) is the HS Percus-Yevick
(PY) radial distribution function. When the minimization is
carried out with respect to the parameter D we obtain a hard
sphere reference fluid with diameter D *. Thus

Agess = Ao(7%) + 2pr[ goy (X7*)
1

X $(xD *)D **x? dx + F(*)NkT, (2)

where 7* = 7 pD **/6. The use of the Percus-Yevick (PY)
radial distribution function is particularly convenient as
there s a simple, easily programmable, algorithm available'®
(slight improvements can be obtained by using tables of the
inverse-12 radial distribution function, but it is doubtful that
the small improvement is worth the sacrifice of the simpli-
city). We note that for state independent potentials the ex-
cess internal energy per particle, U,, , and the compressibili-
ty factor BP/ p (B = 1/kT and P is the pressure) are given
by the usual quadrature expressions without the need to nu-
merically differentiate the free energy, i.e.,

BU.. = lwn*f gpy (X, 7*)x*¢(xD *)dx , 3)
1

BP/p=1— 4B17*J 8oy (X, 7*)x*D*¢'(xD*)dx . (4)
1

This route is convenient computationally since if one wants
U and P at just one p,T point it is necessary to perform only
one minimization rather than the three to five required for
an accurate numerical derivative. Equations (3) and (4) are
the usual energy and virial expressions. They would be exact
if the true g(r) for the fluid rather than gpy (x,7*) were
used. It is a remarkable fact that a value of D * can be found,
so that Eqgs. (1) and (2) are excellent approximations for
dense and very dense simple classical fluids.

The KLRR perturbation theory divides the pair poten-
tial ¢(r) into a reference potential ¢,(7) and a perturbation
potential ¢, (r) specified in a particular form:

_[#n —F(r), r<i

¢o(’)'—[0’ rod, (3
_[F(n, r<d

$,(r) = 3(r), r>A. (6)

Both A and F(r) are arbitrary. For the choice A = r* and
F(r) = ¢(r*), where r* is the intermolecular separation at
the minimum of ¢ (r), the scheme reduces to the WCA the-
ory.* KLRR define

A = min(ag.,r*) , @))]
where a;,. is the fcc lattice distance, 2'/%p~'/* and introduce

various schemes for specifying F(r). In what follows we use
the F(r) corresponding to scheme 1 of Ref. 7, i.e.,

F(r)y=¢A) —¢'(A)(A—-n). (8)
For the calculation of thermodynamic quantities both the
Ross and KLRR schemes are easy to program and are fast in

execution time. More recently KLRR!” introduced a still
different method of decomposing the potential.

lll. THERMODYNAMIC PROPERTIES
A. Aziz potential

A comparison of these theories with simulation has been
carried out for the Aziz potential'%:

#(r) =€ed*(R),
¢*(R) = Bexp( —aR)

—{C/R®+ Cy/R®+ C,o/R'}f(R),

_ [expl — (D/R~1)*], R<D
re={"p 9)

R=r/r,,r, =29673A, B=0.5448504%X10° a=
13.353 384, C,=1.3732412, C;=0.4253785, Cyy=
0.178 100, D = 1.24 1314, ¢/k = 10.8 K. All thermodynam-
ic quantities are expressed in terms of the *He Lennard-
Jones parameters, €,/k = 10.22 K and o, = 2.556 A.'?

The molecular dynamics (MD) simulations are per-
formed in the isobaric-isoenthalpic ensemble according to
the method proposed by Andersen.'® In this scheme the sys-
tem volume is allowed to fluctuate in response to the imbal-
ance between the system pressure and the (constant) exter-
nal pressure. The conserved quantity is no longer the total
internal energy but rather the enthalpy (to order 1/N). Our
simulations are performed for systems of 250 and 432 parti-
cles interacting via the Aziz potential. Starting from the last
configuration of a previous fluid run, the system is allowed to
equilibrate for 2000 time steps of 1.2 fs. This is followed by a
production period of 4000 time steps during which the ther-
modynamic and structural properties are calculated. Long
range corrections to the energy, which for a cutoff of 2.50,
are less than 1% of the total energy, are included in our
results. A complete description of the simulations is given in
Ref. 19.

Table 1 is a list of the state points for which simulation
data is available together with the hard sphere diameters
used in the integral and perturbation theories. Table I com-
pares the thermodynamic predictions of these theories with
MD and Monte Carlo (MC) simulations. We make two ob-
servations about this data. It appears that state 4 is metasta-
ble and consequently the agreement between simulation and
theory is not as good as the other state points. Also thereis a

TABLE I. Simulations performed with the Aziz potential and the values of
the HS diameter obtained with the Ross, KLRR, and RHNC theories at
these state points. P* = Poy /o, p* = po”, T* = kT /¢,

dyus/o

State  Simulation pP* p* T* Ross KLRR RHNC

MD 432 1800 2.327 39.13 0.7192 0.7449
MD 432 1800 2.337 37.09 0.7213 0.7461
MD 432 1800 2.343 36.00 0.7224 0.7469 0.7384
MD 432 1800 2.370 38.24 0.7173 0.7422
MD 250 1540 2.248 34.17 0.7300 0.7555
MD 250 1300 2.169 28.39 0.7430 0.7680
MC 108 1200 2.098 320 0.7410 0.7684 0.7575
MC 108 1300 2.149 32.0 0.7383 0.7649
MC 108 1400 2.198 32.0 0.7356 0.7613
MC 108 1500 2.243 32.0 0.7332 0.7582 0.7495

O OO NNW AWM~

—
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TABLE II. A comparison of the thermodynamic properties of the Ross, KLRR, RHNC, and HMSA theories
with simulation for the Aziz potential. The figures in parentheses are the HMSA values.

BP/p BH/N BA/N
State Ross KLRR RHNC Sim. Ross KLRR RHNC Sim. Ross KLRR RHNC
1 19.9 20.0 19.8 26.6 26.7 26.6 8.77 8.64
2 20.9 21.0 20.8 27.9 279 27.8 9.14 9.01
3 21.5 21.6 213 213 28.6 28.7 28.3 28.3 9.36 9.23 9.17
4 21.1 211 19.9 28.2 26.7 26.4 9.25 9.12
5 20.3 20.3 20.1 26.9 26.9 26.6 8.81 8.69
6 21.4 21.3 21.1 28.1 28.1 27.8 9.07 8.95
7 18.0 17.9 17.8 17.9 24.0 23.8 23.7 23.8 7.87 1.75 7.71
(17.7) (23.6)
8 19.1 18.9 18.9 25.3 25.1 25.0 8.30 8.18
9 20.1 20.0 20.0 26.7 26.5 26.6 8.72 8.59
10 21.2 21.2 20.9 20.9 28.0 28.1 27.7 27.8 9.11 8.99 8.93

discrepancy of about 1.5% between the Ross and KLRR
excess free energies. However because the difference is
roughly constant this is consistent with the smaller differ-
ences between the other thermodynamic properties (which
are derivatives of the free energy). Otherwise the agreement
is equally good for both approximations. The present results
and those of KLRR’ show that their technique, as well as
Ross’, works very well for dense fluids of LY and other poten-
tials. We conclude that both schemes are excellent tools in
calculating thermodynamic quantities to within an accuracy
of a few percent for dense classical fluids with smooth poten-
tials.

B. Median potentials

We have also investigated how well these approxima-
tions work for potentials resulting from the sphericalization
of the angular dependent intermolecular interactions in sim-
ple molecular fluids, such as those of homonuclear diatomic
molecules. Ross’ procedure has been applied to the median
and split median sphericalized potential for such fluids with
satisfactory results,'* although not as good as those for fluids
of molecules interacting via central forces.

Here we compare the two procedures for the N, median
potential which is well approximated by the exponential-6
form

¢(r) =e{6exp[a(l —r/r,)] —a(r,/r)}/ (a —6)
(10)

withe/k = 75K, 7,, = 4.251 A, and a = 13.474." Table I1I
compares the Ross and KLRR theories with Monte Carlo
simulations.'* In this case the Ross procedure is superior. It

appears that the KLRR method is sensitive to the value of
the derivative of the potential at the breakpoint and for stiff
potentials with any numerical uncertainty the Ross proce-
dure may be the best choice. Recall that Eq. (10) is only an
approximation to the actual median potential. Attempts to
apply the KLRR procedure to the numerical CO, median
potential employed in Ref. 13 [this potential is even steeper
than Eq. (9)] lead to the same problem.

IV. STRUCTURE

In the WCA theory a reasonably accurate description of
the fluid structure may be obtained from the high tempera-
ture approximation for g(r), i.e.,

8o(r) =exp[ — Bdo(r) lyus (r/Dyy) , (11)
where ¢,(7) is the reference fluid potential. We have tested
this approximation for the KLRR theory with ¢,(r) given
by Eq. (5). The value of D used in Eq. (11) is calculated for
each ( p,T) point from

fdr[gﬂs (r/D) —go(r/D)] =0. (12)

Figure 1 shows that the agreement with simulation is reason-
ably good, though far from quantitative. There is no simple
application of Eq. (11) within the framework of the Ross
theory that gives a physically acceptable form of g,(7).

Another approach to the structure is as follows. For a
given value of the packing fraction, we can determine the
inverse 12 reference potential ¢,,(r) = €(o/r)'2 The free
energy of this fluid is

TABLE III. A comparison of the Ross and KLRR procedures applied to an analytic representation of the

median potential for N, with Monte Carlo simulations.

dys/Tm U, /€ BP/p
p(gem™3) T(K) Réss KLRR Ross KLRR MC Ross KLRR MC
1.9 977 0.6735 0.6914 80.5 81.1 79.9 279 27.7 28.2
2.1 2972 0.6161 0.6413 158.0 160.7 160.7 15.6 15.4 15.8
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FIG. 1. The high temperature approximation, Eq. (11), compared with
Monte Carlo results for the state point 7* = 32.0, p* = 2.098. Also shown
is the HS radial distribution function with the Ross value of the HS diame-
ter.

Ala) = min[Ao("l) + F(q)NkT

a27?
(677)°
where a = pa®(e/kT)"/*. By performing the minimization
at different values of a one obtains 7(a). This tabulation
gives a for a given value of 77. Finally the inverse 12 reference
potential parameters are related to a as

o'’ =a*kT/p*. (14)

The structure of the reference fluid is calculated with the
high temperature approximation, Eq. (11), with ¢,(r) re-

+ on g(x,m)x~ x|, (13)
1

3.0
201
~ L
o
1.0
1 1 1 1 1
0.0 1.0 2.0 3.0
r/o

FIG. 2. A comparison of the radial distribution functions for the state point
T*=32,p*=2243

placed with ¢,,(7). Figure 1 compares this radial distribu-
tion function with the Monte Carlo results for the Aziz po-
tential. Again in this case the agreement is far from
quantitative and we conclude that these simple approaches
to the fluid structure are of little value.

V. INTEGRAL EQUATIONS

In the integral equation theory of fluids the direct corre-
lation function ¢(7) plays a central role. It is defined in terms
of the total correlation function 4 (r) = g(r) — 1by the Orn-
stein-Zernike equation

h(r) =c(r) +ph(r)*c(r) . (15)

Here p is the number density and * denotes a convolution. A
formally exact closure relation is

c(r) =h(r) —loglg(r)]1 —Bé(r) + B(r), (16)

where B(r) is the sum of elementary or “bridge” graphs. If
one knew this function then Egs. (15) and (16) would pro-
vide an exact description of a fluid interacting with pair po-
tential ¢(7). Alas B(r) is not known for any ¢ and to proceed
we are forced to make approximations. The HNC prescrip-
tion is to set B(r) = 0. This closure is well suited for long
range, and, in particular, Coulomb potentials. However in
our application simple HNC is not able to give quantitative
predictions for the structure or thermodynamics. See Fig. 2.
The HNC compressibility factors for the state points 7 and
10 are 19.4 and 22.7, respectively. The corresponding excess
internal energies are 4.97 and 6.01.

In recent years attempts have been made to extend the
useful range of the standard integral equation theories like
PY and HNC. One particularly successful approach based
on the ansatz of the “universality of the bridge functions,” °
is the reference hypernettted chain (RHNC) theory devel-
oped by Lado and others.>'® They noted that if g(r) is

3.0
20
T |
o
10
0.0 1 1 1 i 1
1.0 2.0 30
r/o

FIG. 3. A comparison of the radial distribution functions for the state point

T+ = 32, p* = 2.098.
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“known” from simulations or some approximate theory for
any potential ¢ then from Eqgs. (15) and (16) we also know
B(r) for that ¢(r). Their technique consists of modeling the
bridge function by the (approximate) HS value, and taking a
HS diameter that minimizes the free energy. We follow this
route, using the Verlet-Weis—-Grundke-Henderson parame-
trization of the HS g(r). All calculations were performed
using a fast Fourier transform algorithm with 1024 points

and a grid size of 0.010,.
J

expl f (P [A(r) —c(r) —

2191

The HMSA integral equation of Zerah and Hansen'' is
an attempt to improve upon the proposal of Rogers and
Young (RY).? Both schemes achieve thermodynamic con-
sistency (i.e., between the virial and compressibility equa-
tions of state) by interpolating between two simpler integral
equations: HNC and PY in the case of RY and HNC and the
mean spherical approximation (MSA) in the case of ZH.
The MSA is judged to be the more appropriate choice for
systems with attractive interactions. The ZH closure is

g(r) =exp[ —B¢o(r)][1 + f

where ¢, (7) and @, (r) are the repulsive and attractive com-
ponents of the pair potential and f(r) is the “switching
function,” having the properties

limf(r) =0 and lim f(r)=1,
r—0

r—»oo

but otherwise arbitrary. Following Zerah and Hansen we
take f(r) = 1 — exp( — ar). Consistency between the vir-
ial and compressibility routes to the isothermal compress-
ibility is achieved by varying the parameter . This proce-
dure for solving the HMSA equation is rather time
consuming and we have limited our calculations to one point
(T* =320, p* = 2.098). In this case we find ao, = 0.94.
By using a slightly larger value of @, 2o, = 1, the HMSA can
be made to agree with RHNC but with loss of the consisten-
¢y condition.

Figures 2 and 3 compare the integral equation theories
with the molecular dynamics results. We note that there is a
small dip in the RHNC function at about twice the HS diam-
eter. The origin of this artifact, as explained in the paper of
Lado et al.,' is due to analytic deficiencies in the HS B(r).

B¢1(r)]}—1],

(17)

However, apart from this the agreement for both the RHNC
and HMSA theories is excellent.

With a view to developing a simple melting criterion we
have calculated the structure factor S(k) from the RHNC
and HMSA g(r)’s and directly from the MC g(r). The pro-
cedure used to extrapolate the MC g(r) consists of solving

g(") =gMC(r)’
c(r) =explh(r) —c(r)] —h(r) +c(r) — 1,

r<2.280,,
r> 2.2800 ,
(18)

together with the Ornstein-Zernike relation, Eq. (15). The
iteration procedure for solving these equations is quite un-
stable and we have been able to obtain a solution only for the
state T* = 32, P* = 1200. Nevertheless, as Fig. 4 shows, the
agreement between S yc (k), Sgpunc (), and S yvsa (k) for
this point is very good and we assume that Sgyne (k) is a
good representation of the true function for a range of pres-
sures and temperatures. For thestate P * = 1500, T* = 32.0,
which is close to the freezing line, the maximum in
S runc (k) is 2.88. This appears to agree well with the Han-

3.0

FIG. 4. A comparison of the structure
factors for the state point 7'* =32,
p* =2.098.
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sen-Verlet criteria,”! i.e., that freezing occurs when the
height of the first maximum in the structure factor reaches a
value of ~2.85.

V1. CONCLUSIONS

We have applied the Ross and KLRR approximations
to the problem of predicting the thermodynamic and struc-
tural properties of fluids at high pressures and temperatures.
Both schemes give very good results for the thermodynamics
but their structural predictions are poor. The more sophisti-
cated RHNC and HMSA theories give excellent results for
the structure as well as thermodynamic properties.

Our main conclusion, based on this work and that car-
ried out previously for standard potentials,®’ is that it is no
longer necessary to use simulation as a method for calculat-
ing the equilibrium properties of classical fluids, away from
transitions, interacting via pairwise spherical potentials. If
one’s interest is restricted to the thermodynamic properties
then it is sufficient to use the Ross or KLRR schemes (witha
slight preference for the former). The RHNC and HMSA
integral equations provide a complete description. Two un-
resolved problems are to understand why these methods
work as well as they do and how to extend them to molecular
fluids and mixtures.
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