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The use of the angular median potential as a temperature-independent spherical reference system
for approximating molecular fluids is tested for its predictions of thermodynamics. Calculations
have been carried out for a wide range of homonuclear diatomics with continuous atom-atom
potentials believed to be representative of the full range of simulation data available for such
systems. The results for the pressure are surprisingly good both in the detonation regime and
around the triple point. In the latter case, however, the internal energies for highly elongated
molecules with attractive potential wells are considerably too positive. Comparison with other
perturbation theories indicates that the median reference system gives better pressures but poorer
energies than RAM, and that in many cases, especially for purely repulsive potentials, it gives

results of comparable accuracy to those obtained with nonspherical reference systems.

I. INTRODUCTION

In a recent paper’ Lebowitz and Percus proposed that
the thermodynamic properties of a fluid of symmetric mole-
cules interacting through an angle dependent potential v(R,
Q,, ©,) be approximated by those of a fluid with a spherical
potential w(R) equal to the angular median of v. Here
R = |R] is the distance between the centers of symmetry of
two molecules while 2, and 2, define the orientations of the
molecules relative to R. w(R ) may be defined by the relation’

jdnlfdnz sgn[vR, 0, 2,) — wR)] =0 (1)

or, since it is well known that the median minimizes the sum
of absolute deviations, we may state that the potential w(R )is
that W (R ) which minimizes

J-dﬂ, fdnzlv(x, Q, Q) — WR).

This prescription was shown' to work extremely well for a
dense fluid of hard dumbbells with moderate elongations.

The suggestion for this type of sphericalization was
based upon the work of Shaw ez al.2 who found, for site-site
models of nitrogen, spherical reference potentials closely re-
lated to the median which work extremely well at very high
temperatures and pressures and also quite well near the tri-
ple point. Gray and Joslin® subsequently found the median
potential to be rather good for predicting second virial coeffi-
cients of diatomic Lennard-Jones molecules more elongated
than “nitrogen.”

As in Refs. 2 and 3, we restrict attention in the present
note to symmetric (nonpolar) diatomic molecules interacting
through continuous site-site potentials. (Hard-core systems
are described in a separate paper.)* We make a systematic
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examination of the usefulness of the median idea in predict-
ing liquid thermodynamic properties for several different
site-site interactions and for various elongations. The results
are assessed against simulation data representative of the full
range available (both in terms of nonsphericity and of ther-
modynamic states) and are also compared with other theo-
retical approaches.

In order to fix notation, we now define the interaction
potentials considered here. Denoting the intramolecular
site-site distance by /in all cases, the orientational vectors £,
may be taken along the molecular axes so that

2 2
VR, ;) = z Z Prap)

a=1f=1

=S YR+, + 4O, (2)

Here t{r) is the site-site potential and the first summation is
over all pairs of atoms in the two molecules which corre-
sponds, in the second summation, to all possible +, —
pairs in the argument. We shall consider four different
choices of ¥(r):

The diatomic exponential-six (E6) molecule is given by

Ye(r) = i—6 [6 exp{a(l — rL)] —a(r—:'—)6] (3)

m

and the diatomic Lennard-Jones {LJ) molecule by
Yus(r) = 4€l(o/n)? — (0/7)°). 4)

In both of these, € represents the depth of the attractive well
the minimum of which occurs at r=r,, for ¥:(r) and at
r=2Y%g for i, (r).

The two remaining choices of ¥(r) are both purely repul-
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sive. Choosing the repulsive part of the Lennard-Jones po-

tential
_ Yuy(r) + €,
Yrl(r)= {0, r 26y {5)

gives the RLJ molecule, and with the inverse 12th power
potential

¥plr) =€l /N (6)

we shall denote the resulting molecule by P. Notice that ¢/,
¥y, and ¢ all contain intrinsic length scales, whereas ¥,
has none. We are therefore free to choose the arbitrary scal-
ing length in ¢, to be / with the resulting advantage that all
properties of P molecules for arbitrary thermodynamic
states and elongations may be obtained by simple scaling
from the properties for a single elongation. Thus, in the pres-
ent approximation, a single median potential is sufficient for
all P molecules, whereas a different median potential is nec-
essary at each value of / for the other three interaction poten-
tials considered.

The remainder of this paper is organized as follows: In
Sec. IT we give a brief description of computational details
for finding the median potential and thermodynamic prop-
erties. After presentation and discussion of the numerical
results in Sec. III, our conclusions are summarized in Sec.
IvV.

r< 21/60.

Il. NUMERICAL CALCULATIONS
A. The median potential

For linear molecules we may take for the orientational
vectors Q, = (6, ¢,), { = 1,2, where 6, and ¢, are the usual
polar coordinates. To calculate the angular median for sym-
metric linear molecules, it suffices to consider the three-di-
mensional angular region & defined by

— 1<u, <1, 0<u,<l, 0<¢<n/2,

where u; = cos 6, and ¢ = ¢, — ¢,. The four site-site dis-
tances may be expressed in terms of R, /, u,, 4, and

0,-Q, = cos 6, cos &, + sin g, sin &, cos ¢.

We partition & into cells of equal size (Ay,, Ap,, A¢)
and, for a fixed centers separation R, evaluate v(R, g;) at
points g;, one in each cell. g; is picked using a pseudo-ran-
dom uniform distribution (in each coordinate) over the jth
cell.

We select a range v,<v<uy, of potential values {wide
enough to include the median value) and divide it into M
“bins”

B, v, <oy, {(I<m<M),

wherev,, = v, + (m/M Yv,, — vg). In addition we define the
two overflow bins

Byv<uv,
and
By i 0> 0.

For each cell j we add 7' Ay, Ay, A¢ to the bin B,,
(0O<Km<M + 1) such that v(R, ¢;) € B,,. When this has been
done for all the cells, the quantity £, in thebin B, represents
(within statistical error) the fraction of the volume of & for

which v(R, u,, i,, #) € B,,. Then the median potential w(R )
satisfies

U,, — 1 <w<vn

for n such that
sn—1<%<sn7 Sn= 2 fm
m=0
and we linearly interpolate to obtain the estimate

wzvn_1+(%—sn——l)(vn_vn—l)‘ (7)

Ja
After a crude search for w (during which [v,, v,,] may
have to be raised or lowered accordingly as f,,, , >1 or
Jo> 1), an approximate median potential, say w*, is found. To

obtain our final value for w, we then set
Uo =095 w*, v, =105 w*, M=200,
Ap,=A4u, =4, Ad=m/24,

and take the mean from five separate realizations of the pseu-
do-random distribution. This repetition also allows an esti-
mation of the statistical error which, except where w(R ) falls
steeply through zero, is never greater than 1%. Other than at
centers separations where (R, ., i, ¢ ) can be steeply re-
pulsive, the statistical error is usually considerably less than
1%.

For a single value of R, the whole procedure for finding
w(R ) takes less than one minute of CPU time ona VAX-11/
7801n the case of LY molecules. We computed w(R ) at several
different values of R (up to 60 for some of the potentials
considered) and used a cubic spline fit to interpolate between
these. Whenever necessary, the long range part of the medi-
an potential was very accurately represented by a three term
linear least squares fit with a choice of fitting functions ap-
propriate to the asymptotic behavior w(R )~4¥(R ), R /I» 1.
On the other hand, the finite range of the median potential
for a RLJ molecule was easily obtained from the median
hard sphere diameter for a hard dumbbell molecule of equi-
valent elongation. Such median diameters are given in Ref.
4.

B. Thermodynamics for the median potential

Having obtained w(R ), several different existing proce-
dures could be used to calculate thermodynamic properties
for it.* We chose Ross’ procedure® for its simplicity and also
because it seems to be accurate both near the triple point and
in the high temperature, high pressure detonation regime.
We sketch the method which consists of an empirical modifi-
cation of the variational principle of Mansoori and Canfield’
and Rasaiah and Stell® based on the Gibbs—Bogoliubov ine-
quality.’

One starts with the expression

A" 7(4 — 37) 2ap (7 PY)
= + w(R R /d,
Nk, T (1= 7P kyT ) (R ) g8 7)
XR2%dR — (4 7* + 1 + in), (8)

where A “/N represents an approximate upper bound for 4 /
N, the excess Helmholtz free energy per particle of the medi-
an potential fluid of number density p at temperature 7,dis a
hard sphere (HS) diameter, = (7/6) pd > and gl is the cor-
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responding. HS radial distribution function in the Percus—
Yevick (PY) approximation.’® On the right-hand side of Eq.
(8), the first term represents Ay /Nk; T as given by Carna-
han and Starling'' while the first two terms together would
give the Gibbs~Bogoliubov inequality if giiY’ were replaced
by the exact gys. Ross’ empirical correction consists of the
use of gy’ together with the addition of the third term. The
variational approximation to 4 /Nk, T is obtained by mini-
mizing the right-hand side of Eq. (8) with respect to d for
each thermodynamic state ( p, 7). At minimization the inte-
gral term in Eq. (8) represents U /Nk; T, where U is the ex-
cess internal energy, but the pressure p must be found by
numerical differentiation along an isotherm

= 1405), ()
=1l4p— . 9
pkyT P30 )+ \ Nk, T ©)

Many previous variational calculations in this field
have been for potentials which were sums of exponential,
Yukawa, and inverse power terms. The use of Laplace trans-
form techniques in conjunction with the Wertheim-Thiele
analytic solution of the PY approximation for HS'*'* then
facilitates evaluation of the integral in Eq. (8).”'*!* Shaw et
al.? were indeed able to fit their sphericalized potentials by
exponential-six expressions and, in the course of the present
work, we found that for short LY molecules the important
part of w(R ) was well fitted by a sum of three Yukawa terms.
Since we were, however, unable to obtain similar fits for the
more elongated molecules, all of the numerical results re-
ported in the following section were calculated using direct
numerical integration. By generating values of gite’ with the
very efficient Perram algorithm’® the computations can still
be made reasonably fast.

Ross® only tested his procedure for (atomic) Lennard-
Jones, exponential-six and inverse power potentials so that
its validity for our median potentials may be questioned.
(The same doubt would arise for the possible alternative
methods® of obtaining median fluid thermodynamics.) For
the median-like potentials of Shaw ez al.,” however, the Ross
procedure was found to be accurate to ~ 1% by comparison
with molecular dynamics simulations. A similar comparison
for the median potential of a highly elongated E6 diatomic
(! /r,, = 0.6288)still found an accuracy of ~3% (J. D. John-
son, private communication). We are therefore confident
that the median fluid thermodynamic results reported below
are sufficiently accurate to justify our statements concerning
how well the median fluids represent the thermodynamic
properties of the corresponding molecular finids.

lil. RESULTS AND DISCUSSION
A. Comparison to simuiations

Before describing our main results we note that the cal-
culations of Shaw er al.? for E6 with //r,, = 0.3028 were
carried out using a potential which is close but not identical
to the median potential. The accuracy of thermodynamics
which we obtained with the median potential is almost as
good as that claimed by Shaw et a/.% for their spherical poten-
tial, by comparison with their (rigid rotor) simulations.’

Our principal interest is in the LJ system since it has
been most widely studied in simulations. We have carried
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out calculations for ali of the elongations at which simula-
tions are available but show results only for three of these,
which are, however, sufficiently indicative of the observed
trends. The three have / /o = 0.3292, 2 model of nitrogen,'®
1/0 = 0.5471, a model of bromine'® or chlorine?® and //
o =0.793, a model of carbon dioxide.?® I /o = 0.5471 is
probably not the best elongation available for either bromine
or chlorine?® but we are here concerned only with compari-
son of theory to simulation and not with the underlying real
systems. Therefore we chose to present results for this parti-
cular elongation solely because of the large amount of simu-
lation data and other approximate data available for it.

Figure 1 shows the median potentials for the shortest
and longest LY molecules we consider alongside four times
the site-site potential. Clearly as / /o increases the position of
the potential minimum moves to larger separations and the
well depth decreases markedly. In addition, the repulsive
part of w(R ) becomes steeper. We also remark that there
seems to be a discontinuity in dw/dR near the minimum.
This is most obvious for large / /o but we believe that it exists
for any nonzero /.

Figures 2—4 show our thermodynamic results in terms
of the dimensionless quantities which have become standard
for LY molecules: T*=k,T /€, p* =po, p*=po’/e,
U*=U/Ne,and E* = U* + §T*. The simulation results
shown come from Tables II and IV of Wojcik ez al.2! who
conveniently summarize all available machine data for LJ
molecules. Since these results are based on linear interpola-
tion along isochores but the range of temperatures studied is
not given, we cannot rule out the possibility that some of the
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FIG. 1. Median potentials for L diatomics: —: 7 /o = O[i.e., 4R J]:- - -:{ /
o=0.3292; .../ /o = 0.793.
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FIG. 2(a). Pressures for LJ diatomics with //o = 0.3292: —: median
(MED); + : simulation (SIM) (Ref. 21). (b} Internal energies for LJ diato-
mics with / /o = 0.3292: —: MED; + : SIM (Ref. 21).

high pressure simulation results shown in Figs. 2—4 may be
unreliable extrapolations.

The pressures shown in Figs. 2(a}4(a) show some deter-
ioration of accuracy with increasing elongation but this is
not nearly as bad as the deterioration of the energy results
[Figs. 2(b}-4(b)]. A plausible explanation for the poor energy
results can be given in terms of the distribution of potential
values shown in Fig. 5 for / /o= 0.793, R /o = 1.20. This
value of R is smaller than the HS diameters determined by
the Ross procedure for this LY molecule and yet nearly 40%
of potential values in the angular domain & are negative.
Thus a large number of negative energy configurations are

MacGowan et a/. : Thermodynamics of diatomic fluids
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totally ignored in the median calculation and it is not sur-
prising that E * is too positive. The same effect is present toa
smaller extent in the less elongated molecules. This is a mani-
festation of the inability of the median to handle important
localized fluctuations of the potential. A more extreme ex-
ample is provided by the hard dumbbell molecule. The addi-
tion of a sufficiently narrow (finite ranged) attractive well to
this molecule does not affect its median potential az all.

We have seen that the median method works much bet-
ter for E6 molecules at extremely high (p, T’} than for LY
molecules at normal (p, T'). This, together with the fact'*
that the median works well for hard objects, strongly sug-
gests that the deterioration in the normal liquid regime is due
to the importance there (especially for the internal energy) of
attractive forces. A natural test of this hypothesis was to
apply the method to purely repulsive continuous atom—atom
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FIG. 4(a). As for Fig. 2(a) with { /o = 0.793. (b) As for Fig. 2(b) with //
o =0.793.

potentials of which, to our knowledge, the only ones to have
been simulated are the two mentioned in the Introduction.

For RLJ molecules, only three simulation states are
available. Median results for these are shown along with the
simulation data'® in Table I. Trends in accuracy cannot be
distinguished from just three states but the values of U * seem
to remain quite accurate even at fairly high / /0. Indeed, ex-
cept that p* is clearly too high at the lowest temperature, the
median results probably lie within the uncertainties of the
simulation data.

The repulsions in E6 and RLJ molecules are very strong
and so it is of interest to see how well the median method
works for softer repulsions. Motivated partly by this consi-
deration and also by the availability of a wider range of simu-
lation data due to Few and Rigby?? we applied the median
method to P molecules. Our results are compared to simula-

FREQUENCY

0.4 1
0.5 06
1 Il 1 1 L 1 1 ni
-4 -2 (o} 2 41 6 8 10 12 14
w/e v/e

FIG. 5. Frequency distribution for potential energy values of the LJ diato-
micwith/ /o = 0.793 at R /o = 1.20. Cumulative fractions are indicated by
vertical lines, that with 0.5 corresponding to the median potential w(R ). Fre-
quency units are arbitrary.

tions in Fig. 6. We draw attention to the fact that, for good
reasons,> we use different dimensionless units from those of
Few and Rigby. Since we have no simple elongation ratio for
P molecules, we must distinguish “‘elongated” P molecules
by high values of p! * and k, T /€. The median results for P
molecules are quite accurate for both isotherms simulated
but less so for the more “elongated” case.

B. Comparison to other perturbation theories

Thus far we have only compared median (MED) results
with simulations but it is also of interest to compare MED
with competing perturbation theories. We remark that, in
the sense of equal ease of computation, the only truly com-
peting reference system is the (spherical) angular mean po-
tential.>* However, this works so poorly for diatomic mole-

TABLE I. Comparison of simulation (SIM) (Ref. 19) and median (MED)
results for RLJ pressures and excess internal energies.

*
UMED

l/o p* T Phm Phep Um

0.5471 0.524 2.18 12.69 12.69 2.48 2.38
0.524 2.44 13.48 13.66 2.64 2.62

0.6288 0.500 1.28 8.56 8.92 1.58 1.61
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FIG. 6(a) Pressure of P diatomics for two isotherms. k, T /e = 1: —: MED;
@: SIM (Ref. 22); lower density scale. k, T /€ = 1.678 X 10~ : - - - MED;
O: SIM (Ref. 22); upper density scale. (b) Excess internal energies of P diato-
mics for the same two isotherms as in Fig. 6{a}.

cules>?> that we shall not consider it here. Of greater
interest are three other approaches which we outline briefly
before making numerical comparisons.

Angle averaging of the Boltzmann factor yields a tem-

perature-dependent spherical reference potential v, (R ) de-
fined by

fdﬂ, fdﬂz [exp{ — v(R, Q,, Q,)/k; T}
—exp{ —v(R)/kpT}] =0. (10)

Now commonly known as the reference averaged Mayer
(RAM) potential, v,(R) was first proposed by Cook and
Rowlinson.?® It was more recently reintroduced by Perram
and White?’ and then formulated in a more general context
by Smith.?® A very comprehensive review of RAM is given
by Smith and Nezbeda.”® Due to the temperature depen-
dence of v(R ) it is much more difficult to compute thermo-
dynamics for 2 wide range of p and T using RAM than using
MED and this accounts for the sparse RAM thermodynam-
ic data in the published literature. For the same reason,
available RAM thermodynamic data were not obtained (as
were our MED results and the WCA results discussed be-
low) by differentiation of 4 /Nk T but rather from integrals
involving the correlation functions. In this respect, the
RAM and MED results are not strictly comparable but in the
absence of other results we nevertheless make the compari-
son. It is probably fairest to compare MED (lowest order free
energy expansion) to higher order RAM (correlation func-
tion expansion) results. We also point out that the accuracy
currently obtainable from RAM is the consequence of trying
many different versions of it and choosing the best.?* Of par-
ticular relevance in the present context is the fact that early
RAM calculations used the centers frame (CF) but that im-
proved results were later obtained using the site frame (SF).
In contrast, our present formulation of MED is a straightfor-
ward first guess using CF which may be amenable to later
improvement.

The remaining two methods involve nonspherical refer-
ence systems which immediately give rise to difficulties in
obtaining reference system properties. They constitute two
different generalizations to molecular systems of the idea,
due to Weeks ez al. (WCA)?® for atomic systems, of splitting
the potential into its repulsive and attractive parts. Kohler et
al.* suggested carrying out this split in the CF for each fixed
(2,, 2,). Tildesley,*! on the other hand, carried out a WCA
split of the site-site potential. In both cases, the properties of
the repulsive reference system are ultimately obtained from
those of hard dumbbells. Following Quirke and Tildesley*?
we denote these two methods WCA(CF) and WCA(SF), re-
spectively. Both require considerably more computation
than MED but while WCA(CF), like RAM and MED, is
in principle applicable to any nonspherical molecule,
WCA(SF) is fundamentally restricted to treating site-site
molecules.

For LJ molecules, we expect that the WCA theories will
both yield better results than MED at high / /o and this is
seen to be true for WCA(SF) from Table II. That it is also
true for WCA(CF) can be seen by comparing Fig. 3 of
Fischer®* with Fig. 4(a) of the present paper. More surpris-
ingly, it appears that at/ /o = 0.3292 MED is of comparable
accuracy to the WCA methods at least for pressures and
internal energies. There are, however, some simulation re-
sults for free energies®® and it can be seen from Table I1I that
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TABLE II. Pressures and excess internal energies for L) diatomics. The orders of the various RAM calculations are indicated by subscripts. In the bottom
row, /SIM indicates that the radial distribution function of the RAM fluid was obtained by simulation. (Otherwise it was found in the PY approximation.)
RAM(CF)? is used to denote the F2% results of Ref. 32.

/o 0.3292 0.3292 0.5471 0.5471 0.5471 0.793
p* 0.66 0.6964 0.3002 0.524 0.524 0.422
T 1.791 1.55 2.31 1.23 2.26 1.345

pl Ut pt Ut pt Ul pt U* P# U# p# Ul
SIM®® ~006 —17.64 +030 —1860 —0.14 —7.18 —087 —1358 +331 —1250 +0.14 —10.54
WCA(SF)® +31 —17t +36 —124 —00 —105
MED —0.12 —1748 +045 —1866 —022 —645 —080 —1285 +368 —11.86 +078 —9.34
RAM(SF), +14 —169 +32 —129 —21 —107
RAM(CF),>< —30 =179 —059 —1707 —-01 —130 —18 —108
RAM(CF) >© —-37 —166 —412 —1767 —-056 —679 —365 —118 —08 —11.5 —1.8 —92
RAM(CF)°® -15 —117 +12 ~—129 —12 —108
RAM(CF/SIM), —-4.02 —1787 —043 —11.55

*Reference 19.
®Reference 32.
°Reference 33.

the WCA theories give markedly better values for 4 /Nk, T
itself. The accuracy of MED for p* and U * can be attributed
to its remarkably constant and quite small error for
A /NkyT. Again from Table II we see that, compared to the
most accurate of the RAM results, MED gives better pres-
sures but poorer energies.

We have already seen for RLY molecules that MED is in
good agreement with simulations and so it is no surprise to
find (Table IV) that this agreement is better than for the
other perturbation theories, apart from WCA(SF) which is
especially suited to RLJ. The observation that WCA(CF) is
not very good for RLJ suggests that its accuracy for LJ may
be due to a fortuitous cancellation of errors arising from its
treatments of the repulsive reference system and of the at-
tractive perturbation.

For RLJ, only zero order RAM results are available
and RAM(SF) is clearly better than RAM(CF). The
RAM(SF) calculations of Nezbeda and Smith>® use simula-
tion input for the site—site radial distribution function while
those of Quirke and Tildesley>? are free of simulation input.
The superiority of the latter result, admittedly only for a
single thermodynamic state, leads us again to suspect a par-
tial cancellation of errors occurring in the simulation-free
RAM(SF) calculation due to the approximate treatment of

the RAM potential fluid and to its representation of the true
molecular fluid. No matter which of these versions of RAM
we consider, MED is still superior in treating the RLJ sys-
tems that have been simulated.

IV. CONCLUSIONS

Because the median potential is density and tempera-
ture independent, MED provides a means of obtaining a
wide range of thermodynamic results from a relatively small
amount of computation. For purely repulsive potentials, or
for the detonation regime where attractions are unimpor-
tant, MED works very well. When the potential has an at-
tractive part whose effect is large, MED still works well at
small elongations but at larger elongations the pressure re-
sults deteriorate somewhat and the negative contribution to
the internal energy is severely underestimated. A possible
remedy for this situation, without going to higher order
terms, might be to take the median separately for the repul-
sive and attractive parts of the potential. We are currently
exploring this.

TABLE IV. Pressures and excess internal energies for RLY diatomics. All
RAM results shown are zero order.

/e 0.5471 0.5471 0.6288
o* 0.524 0.524 0.500
TABLE III Excess free energies for LJ diatomics with / /o = 0.3292. For T* 2.18 244 1.28
the last state, a second order RAM calculation (Ref. 32) yields 4/ p* U* * U* p* U*
NkyT= —17.60.
SIM* 1269 248 1348 264 856 158
A/Nky,T WCA(SFP® 12.4 2.4
WCA(CFY 13.39 9.28
p* T* SIM® MED WCA(SF)®* WCA(CF)
MED 1269 238 1366 262 892 161
0.6 3.0 —2.02 —2.15 —2.06 —2.02 RAM(SF)® 12.6 24
0.7 3.0 —1.7 —1.86 —1.75 —1.70 RAM(CFP 9.3 1.7
0.7 20 —466 —4.79 —4.66 —4.67 RAM(SF/SIM)  13.1 13.7 9.1
0.7 1.55 —17.35 —7.47 ~7.34 —7.39

* Reference 35.
®Reference 32.
°Reference 34.

2Reference 19.
®Reference 32.
°Reference 34.
9 Reference 36.
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Another shortcoming of MED is its inability to treat
successfully potentials where the only nonspherical part is
multipolar, although the situation is less clear for multipolar
potentials with nonspherical short range repulsions. For ex-
ample, the median potential for dipolar hard spheres is obvi-
ously just the hard sphere potential,® whereas for dipolar
hard dumbbells the median potential is the median hard
sphere corresponding to the (neutral) dumbbell” plus a finite-
ranged repulsive tail.
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