Sphericalization of nonspherical interactions
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A density and temperature-independent spherically symmetric reference potential is constructed for an
interacting classical fluid of nonspherical molecules. It annuls the first order correction to the free energy and,
in special cases, the second as well. The potential is a limiting form of that used successfully for N, by Shaw ez
al., and reproduces numerically the Y, approximation of Barboy and Gelbart for homonuclear dumbbell

molecules.

I. INTRODUCTION

Equilibrium classical statistical mechanics of simple
bulk fluids is a well-tilled field. An obvious extension
is that of molecules with internal degrees of freedom,
among which rigid rotations assume particular impor-
tance. These become meaningful when the molecule
changes its aspect under such a rotation, i.e., is non-
spherical. The increase in complexity resulting from
the consequent use of angle-dependent interactions is
not trivial, and even minor computations such as those
of the low order virial coefficients become major un-
dertakings.1 Computer simulation of such fluids is
much more burdensome, and analytic approximations
harder to justify and harder to carry out.

But much of the real world is modeled by such fluids,
and a good deal of effort has gone into treating them.
A particularly appealing viewpoint is that of starting
with a reference spherically symmetric molecular
fluid, all of whose properties are reliably known, and
then turning on the asphericity perturbationally. 2 Shaw,
Johnson, and Holian® have recently made the observa-
tion that for a realistic Ny mode! that they consider,
there exists a spherical reference system remarkably
independent of density and temperature which is such an
effective reference that the corresponding free energy
reproduces that of the desired fluid to very high ac-
curacy. We would like to point out in this note that
their result may be simplified, that it then amalgamates
several approaches, and that in special cases it may be
extended to higher order without difficulty.

li. REFERENCE POTENTIAL

To start with, we consider a fluid with spherically
symmetric interaction ¢y(r;;) and canonical (Helmholtz)
free energy Fy. We then convert to the desired po-
tential, say ¢(ry, wy, wy), for rotationally asymmetric
molecules via a sequence ¢,(r3, w;, w,) which without
loss of generality can be taken as

Oy (712, @1, W) = D7) + ¥ A 7yy, Wy, wy)
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where

Ay(71g, Wy, W) = Blryp, Wy, Wp) — Pgl7yy) « (1)
Since?

OF _ 1 90,(12)

5 "3 | my12) 2 qraz, @)

this means that there will be no first order change in
F, if

f”zo(flz)Ao(Viz, wy, W) dwydwydr;p=0. (3

In fact, it is not even necessary to know the reference
fluid pair distribution ngg(7y,) if

on(fxz, Wy, W) dwydwy =0 (4)
is satisfied. This criterion is not new. The obvious
choice’

¢,(12) = ¢(12) +y [¢(12) - ¢(12)] (5)

identifies ¢y(12) as the mean over angles of $(12), A
more reasonable choice might be®

exp[-8¢,(12)]= exp[- By(12)]
+y(exp[-8p(12) ] - exp[-By(12)]) , (6)

so that the Boltzmann factor of ¢, is the average of that
of ¢. But there is no obvious a priori way of distinguish-
ing the various possibilities.

Our first point then is that one may ask for a formula-
tion (4) such that Ag(ryy, wi, wy) = Ay [0(12), ¢4(12)] is
unaltered under any 1:1 functional change: A,[¢(12),
69(12)]= ao[ 7[#(12) ], f[#4(12) ]}, thereby making ob-
solete the question of the optimal function of ¢ to use.
By taking f(x) = Ax and then f(x) = x*, k-, it is easily
seen that, to within a constant multiple, Ay must take
the form

AO(¢: ¢0) = Sgn(¢) - ¢0) ’ (7

with the accompanying criterion

[ sgnlo(rig, @, wy) - Po(rip) ldwidw, = 0., (8
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Thus, ¢g(ry) is no longer the mean of ¢(ryy, Wy, w,)
over angle but rather the median interaction at each
value of »,. Indeed, one sees that Eq. (7) corre-
sponds to the extreme limit, B—- =, of

AO(X) =sinh™ Bx y X=¢1= 9, (©)

the function used by Shaw et al.,® who also observed
numerically improved results as the parameter B grew
large., We conclude that their excellent agreement
with Monte Carlo simulations for N, is shared by Eq.

(8).

I1l. DUMBBELL MODEL

Another simple check can be made. Suppose that
each molecule is hard but nonspherical, Then the
median ¢y(ryy) of Eq. (8) is either 0 or «, with a cross-
over when ¢(r;, w;, wy) at fixed 7y, is 0 half the time,

« half the time. Hence if the separation »(wy, wy)} at
contact at fixed w(, w, i8 uniquely defined (and it will

be unless the bodies are highly nonconvex), the diame-
ter R, of the reference hard sphere potential is given by

f dw1 d(.c)zz f
R0>r(w1,¢12)

R<riwg,wy)

dwy dw,

=% fdwide (10)

and the effective volume of course by
Dy = 1TRO/6 (11)

Equation (10) is equivalent to a RAM potentialG hardened
at the radius at which the Boltzmann factor becomes 3.
With no further corrections, the predicted equation of
state would now be

BP/p= ¥y (ve0) , (12)

where ¥, is the P/p ratio for hard cores, a function of
the product vyp alone.

Consider for example the case of homonuclear dumb-
bell-shaped molecules, pairs of (overlapping) spheres
of diameter 4 with centers separated by xa. Many
simulations and approximations to such fluids have
appeared in the literature, and we will focus on results
reported by Barboy and Gelbart’ for the special values
A=0.6, A= 0.2. A direct numerical computation using
Eq. (10) shows that

A=0.6: ny=1,00564>,

(13)

A=0.2: py=0.68464°,

(compared to the corresponding molecular volumes
v,=0.93834%, 0.6786 ¢°). Insertion into Eq. (12), using
standard hard sphere equation of state data® produces
equations of state that are graphically indistinguishable
from the numerically effective Y, approximation of Bar-
boy and Gelbart. " It must be pointed out however that,
like RISA, ? this is a medium density approximation:

the normalized second virial coefficient BY = B,/v, pre-
dicted by the low density behavior of Eq. (12) is ob-
tained from the derivative of Eq. (12),

B¥ = 4vy/v, , (14)

and is not very accurate at all.

IV. FURTHER CORRECTIONS

Finally, let us examine briefly the second correction
to the free energy, obtained from*

f (12 n,(12) d1d2 — ;3[( (12)>

f (12) 3¢,(34)

XVLZY(IZ d1d2 ‘y

><[n4,(1234) - nz,(lz)nay(34) ld1d2d3d4

26[ (13)

If Eq. (4) is retained, Eq. (15) cannot in general be made
to vanish at y = 0 independently of n,;, #3, #4. The
requirements are now that in addition

ny(123) d1d2d3 .  (15)

on(Tﬂ, Wi, Q)z) dw2= 0 s

f (A (ri, @y, wy) = BAY(7yy, wy, wy)? ]dwidw, = 0, (16)

where A} = 84/8y |,.;. However, the first of these is in
fact implied by Eq. (4) whenever the interaction takes
the form

O{ryg, w1 - wy) , (17

and the second, while affecting the computation of local
quantities such as distributions, is invisible in free
energy calculations. Moreover, it is comforting to
note that even a form as simple as

BA, (0 — dg) = (1 —y) sgn(¢ — ¢g) + [By(d = dp) + 1 =¥]y
(18)

is consistent with Egs, (1) and (8), and the second of
Eq. (16). A Boltzmann factor version of Eq. (18) is
readily obtained.
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