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A diatomic molecule is considered as two hard spheres connected by a spring. It is imbedded
in a gas of hard-sphere atoms, which is assumed to be in thermal equilibrium at all times. Only
a one~dimensional model is considered, and the possibility of multiple collisions during an encounter
is neglected. The molecule is assumed to dissociate immediately whenever its vibrational energy
exceeds E. The density in the phase space of the diatomic molecule is described by the Liouville
equation for the isolated molecule with an added collision integral for collisions with the gas atoms.
Since the gas is assumed in equilibrium this integral equation is linear. The rate constant for dis-
sociations is found directly from the integral equation and (for small mass of the gas atoms) after
its reduction to a Fokker-Planck equation,

We consider the dissociation of a symmetrical diatomic molecule in a chemically
inert gas of monatomic particles. The gas is assumed to be in thermal equilibrium
at all times. As an illustration one may think of a dilute solution of iodine molecules
in an inert gas. The molecule is assumed to be two hard spheres connected by a
spring and the gas atoms are assumed to be mass-points. The problem will be dis-
cussed classically and quantum-mechanically, using Bohr-Sommerfeld quantization.
In order to simplify the calculations we shall treat only the one-dimensional case, so
that the molecule would more correctly be described as two pistons connected by a
spring. The criterion for reaction is taken to be that the vibrational energy of the
molecule reaches a certain value E, which is assumed to be identical with the spectro-
scopic dissociation energy.

The reason for choosing this model is that the weak interaction theories, which
have been the main centre of interest recently 1+ generally give rate-constants
which are much lower than the experimental values. The hard-core potential we
have chosen here is certainly not realistic, but it will probably reveal the more im-
portant features of a strong interaction theory.

Although the present theory by the choice of interaction potential is a strong
interaction theory, we can, by letting the concentration ¢ of gas atoms go to infinity
and the mass of the gas atoms go to zero (so that ¢,/m is finite), obtain a Fokker-
Planck equation for the motion of the diatomic molecule in phase-space. In this
way the present theory makes contact with weak interaction theories.

CLASSICAL THEORY

Let M be the mass of the atoms in the molecule, m the mass of the gas atoms and
p(p.q;t) the density in oscillator phase-space. Let us furthermore in the beginning
assume that the centre of gravity of the diatomic molecule is fixed in space so that
we consider the motion of one piston of mass M, cross-sectional area 24 and co-
ordinates in phase-space p,q. The motion takes place in a harmonic potential (for
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energies smaller than E) and under the influence of bombardment by particles of mass
m coming from a gas at equilibrium.

For the density in phase space we then have

dplot+(p,H) = [K(p.q,p’sa")p(p'sa' )dp'dg’ —p(p.g,0IK(p'.q",p,q)dp'dq’ (1
as derived by Bergmann and Lebowitz.5 Here (p,H) is the Poisson-bracket and the
kernel K(p.q.p’.q') is

2Acm(M +m)* /B
K ? j! 3 ! =
(P02, J@rm)2mM)*

ST _Bla+np—(1—np)
|p—p'|5q q)exp{ = }
(2

where 7 = m/M and B = 1/kT. Since the colliding particles are hard spheres, the
co-ordinates of the particles do not change during an encounter and the kernel
therefore contains d(g—¢g’).

In the derivation of this equation, multiple collisions in the sense of Widom 6
have been neglected. Since most cases amenable to an experimental investigation
correspond to y<1, for which multiple collisions are of minor importance, this is
presumably a reasonable approximation.

If, in the above equation, we change to energy-angle variables and assume the
density in oscillator phase-space to be angle-independent, we get

a r ’ ! 1

3 tﬂ(s,t) jK{c,b )p(e',)de’ — - g)p(e,t). (3)
where & is the vibrational energy of the oscillator and (g) = [[K(¢',6)de’]~! is the
relaxation time for change of energy of the oscillator. The kernel K(g2) is related

to K(p.q.p',q") by
. [K(p.g.p,q)[H(p,q)—elo[H(p',q")—¢']dpdgdp'dg’
K(ee') = AV (e)de : “4)

where V() is the volume of phase space for which the energy of the oscillator is less
than e.

The rate constant for escape is now determined by summing p(e")K(e.e") over all
initial energies &' <E and all final energies e> E. This leak of particles out from the
potential well will of course change p so that it is not the equilibrium distribution,
but if the well is sufficiently deep we can, to a first approximation for p, use the
equilibrium distribution Z(E)™! exp (— fe'), where Z(E) is the partition function for
the bound states. This is essentially a perturbational approach, and the resulting
rate constant will therefore approximate the true value of the rate constant better
than the equilibrium distribution approximates the correct distribution. This
argument leads to the following expression for the rate constant,

_ [, [Fexp(=pE) dve, ,
k= J.z dﬂ_[o Z(E) K(e,g") 3 de’, (3

and we shall see later in connection with the quantum case that the value of the rate
constant obtained from this expression is identical with the one obtained by a more
orthodox perturbation method.

The expression for k can be thought of as merely stating the rather obvious fact
that the particles which escape from the potential minimum will not all jump from
the bottom of the well. Rather there is a distribution of particles on the possible
energy levels in the well, and from all these levels there is a possibility of leaving the




|
|

T. A. BAK AND J. L. LEBOWITZ 191

well in one jump. Seen from this point of view the expression seems almost trivial,
but one must remember that, without an explicit calculation of K(e.¢'), it is still

without any practical use.
It is convenient to rewrite the expression for k in the following manner,

EEC”_J. exp (—pe’) *exp (—pPE) dv dinZ
0

since it is clear that the last two terms are negligible compared to the first. Also in
the first integral, we can extend the range of integration to co, since the interval
E<g' <o contributes negllgﬂ:ly We therefore have

exp (—fe’ ]
dE j —z) FEs Fds'

and, using detailed balance in the form,

K(E,&") exp (—ﬂs')(d V)
de /,-.

dk exp(-ﬁE) dv <
E- B (EE)J il

ifl dVv |
" Z(E)rcﬂ)(g)m R =R

The intuitive meaning of this is particularly striking, since it states that as the
activation energy E is increased the rate of dissociation diminishes, because the flow
of particles from the surface in phase-space where dissociation takes place back to the
potential minimum is increased.

From this expression for the derivative of k we get

dVv
1 (—) P (—BE){1+0[(PE)'T}, (©)

dv
- KeEyen (18 )

we obtain

" PZ(EY(E)\ de
which is our final expression for the rate constant.
To simplify the presentation, we shall only discuss in details the calculation of
K(e,e") for equal masses. For this case, we have

) _ 2AcB r’
K(p.g.r'q) = M\/ —=|p—p'|éa— q)exp( Bt ) @)
where M is the common mass of the atoms. To get the conditional probability that
the oscillator goes from energy & to & in the time d¢ we use eqn. (4). The integration
is most conveniently carried out after a change to energy-angle variables, since the
integrations over the energies are immediate because of two of the J-functions. We
are left with

K(ge) =

2A I 2n In b e
cvh dﬂj do’ | /e cos 0— /¢’ cos ' | exp (— e cos? 0) x
0

M/ nM2nw)
2&'
a(ﬁsme— f——sinB’), ®)
K K

where @ = \/x_,’ﬂ_{ is the frequency of the oscillator and k the spring constant.
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The integration over 6 is immediate when the d-function is used giving, for e>#’,

2Ac\/ﬁ exp (—fe) [

i < |e—¢'sin? 0— /' cos 0 | exp (e’ sin® 6") x
M, /rMnw 0

l:zj(l ol sin? G’)]_idﬂ’. )
® 8

Assuming fig’>1, this integral can be evaluated using Laplace’s method,” i.e.,
expanding fie’ sin2 0’ in the exponential function in powers around its maximum value
and retaining only terms up to the second power.

In the rest of this integrand 0 is replaced by the value for which the exponential
function is largest, and that part thus reduces to a constant. Finally, the limits of
integration are extended from —oo to oo, since the integrand vanishes rapidly
outside its maximum value. It is seen that in this case there are two values of 0, for
which the exponential function has a maximum, namely 6 = 7/2 and 0 = 37/2, and
that they contribute equally to the integral.

In this way we obtain

K(ee") =

24
K(e,e) = t/z"n%—nj_; exp [-fe—¢)]; e2 ¢, (10)
and using detailed balance we then have
2,/24c
=t b = '.
K(e,e') M e E=¢ (11)

In both cases we have assumed that f¢’ is large compared to one, but since we
want to use these transition probabilities to caleulate the rate of transitions leading
to chemical reactions, which in most cases will stem from transitions from fairly high
energy levels, this is not a severe limitation.

Using these expressions for K(g,") we obtain

R 224 [E1 e
], Ko S [ e o]

where, to the approximation we use here, the last term in the bracket can be neglected.
Since for a harmonic oscillator Z(E)~Z(o0) = 2n/wf and ¥(e) = 2nefw, we finally
obtain

4,/24c
k= TL\/H ‘\/E exp (— BE). (12)

When these calculations are repeated for y#1, one obtains precisely the same
result for the rate-constant although the intermediate results for K(e.g') differ some-
what from the results given above. The only interesting feature is that one finds for
£>¢’ that K(s,') is only significantly different from zero in the range,

i e 4 (13)

— | e<é'Ze.

14y -
This shows clearly that as y—0, the energy range from which transitions to & is possible
becomes exceedingly narrow. We shall return to this point in connection with the
Fokker-Planck equation.
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So far, we have assumed that the centre of gravity of the molecule is fixed so that
the molecule acts as a piston which has twice the area of a single piston, and which is
anchored to a fixed point. To investigate the behaviour of a diatomic molecule
constrained to move on a straight line through the atomic centres we introduce two
collision kernels, one for each end of the molecule. We then express that during an
impulsive collision between one end of the molecule and a gas atom the other end
does not change momentum nor co-ordinate. Furthermore we assume that the
translational motion of the centre of gravity is in thermal equilibrium at all times.

Let P;,Q; and P, Q> be the co-ordinates of the two atoms in the molecule, P,Q
the co-ordinates of the centre of gravity and p,q the relative co-ordinates. We then
have

P 155 %P —P
P 2 =%P +p
and

exp (—fP%[4M)

K(p.q.p'.q4") = IK(Pl,Q1., 1:Q1)0(P; — P3)0(Q, — 03) N dPdP'dQdQ"+

b ata | ,.exp(—pP?/4M) 2 .
J.K(Pz,az,Pz,Qz)acPl—Pl)a(&—Q‘)—W_— dPdPdQdQ;

where K(P;, 01,P1,0;) is the kernel for atom no. 1 and K(P,02,P3 Q) is the kernel
for atom no. 2, both given by egn. (2). The integrals involved are all elementary
and we obtain

oo 2Ac(147)/B ; g BLp' —(1+9)p]?
K(p.q.p'.q") = M%ﬁ?(y+2) |P—P |5(¢I—Q)CXP {—W} (14)

Using this kernel we can determine K{z,g’) for this case and from that the rate
constant, using the methods outlined above. We obtain

8Ac(1 +?)

whereas the fixed centre rate constant was independent of m (or 7), we here have a
slight y-dependence. It is interesting to note that as y—0 the two rate constants
become identical, which is what one would expect, since in that case the translation
of the centre of gravity becomes unimportant.

k= (15)

QUANTUM-MECHANICAL THEORY

An exact quantum- mechanical theory of chemical dissociation seems, at present,
to be impossible. As an alternative to the full quantum-mechanical treatment we
shall now consider the quantum correction to the classical case which arises from
dividing phase space into cells. We consider only the case y = 1 and fixed centre
of gravity of the oscillator for which the kernel is given by eqn. (7). From this we
want to calculate Ky, the probability of transition from quantum state »’ to quantum
state n. It is convenient to introduce a quantity K(n.p',q") which gives the probability
of transition from the classical state p’,¢' (with energy less than (n+1)hw) to the
quantum state n. Since the energy of the quantum state n is (n+4)fiw, we define
the quantum state n as the part of phase space for which the energy of the oscillator
lies between nfiw and (n+1)iw. Furthermore, the value of ¢ is unchanged during a

G
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change in state since the collision is impulsive. For each value of ¢’ and p’ the oscil-
lator can therefore jump down to a p-range,

—\2M(n+ Dio—M?0?q < p< —/ 2Mnfio — M?0?q"?,
or up to a p-range,
V2Mntio— M202q% < p<~/2M(n+ Do — M2w’q>.

The probability of transition to the quantum state n is therefore, provided the
energy of the initial state is less than (n+1)ffw,

240 — V2 Mnlio— M2alg?
K(nsp'sq’) = WTQ-M_[

(p'—p) exp (—Bp*/2M)dp +
—v’ﬁ{(n+l}nm—&fzmzq’z
VIM(n+1)ho- M202g?

j (p—p') exp (—pp?*/2M)dp

V2 Mntio—M2alg?
4cA
V2nMp
~ To get Kunr We now average this over the values of p and q' which correspond to
the energy surface ¢’ = (n’+1)lw . that is,
_ IK(n,p',q")o[(n' + Hiw— (p'*/2M) — $Mw?q'*]dp'dg’
§ [dV{S’)}’d&’]s-:("q,*)hw )

As before, the integral is most conveniently carried out in energy-angle variables
and we obtain

4Ae pn'fiw ﬁn'hm)
K, = ——[1—exp (—fhow — fnhiw) ex I 3
- \/Zn'Mﬁ[ p (—phw)] exp (- pnhw) p( 3 ) u( >
where Iy is the hyperbolic Bessel function of zeroth order. That is. Iy(z) = Joliz),
where Jy(z) is the ordinary Bessel function of zeroth order, and for large z we have,
asymptotically, Ip(z) = e?/,/2nz.
From the value of Ky for n>n’ we can get the transition probability for all values
of n and »’ by using detailed balance and we therefore have

K= \a’;:;rfﬁ[l —exp (— fhw)] exp (— fnliw) exp (ﬁv:m)lo(ﬁv; w)’ (16)

exp (*ﬁTMﬂ”qz) exp (— Bnfi)[1 —exp (— flie)].

K,

[v = min (n,n")].

As a check on the correctness of this we note that assuming fliw<1 and v> !
and using the asymptotic expression for 7 we obtain the classical transition probability
derived above.

Let x;, be the population of the nth level of the oscillator and N the largest stable
level. A particle which reaches the (N+1)th vibrational level is thus immediately
*“ absorbed , that is, the molecule dissociates, and as above we neglect the possibility
of particles returning from the states n> N+ 1. The populations of the levels satisfy
the equations

dx,, N i @
dt ==z Z I\uu'xn' xnnénKn'n =

M=

. ]
n=n

Il

Ann'xn', (17)
0

n

(m=0,1,2,3...N).
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Following the method used by Montroll and Schuler,! we can now approximate
the rate constant for dissociation by the numerical value of the numerically smallest
eigenvalue of the matrix Apy. For N—oco, the numerically smallest eigenvalue is
zero, and for finite N we can obtain the eigenvalue by conventional perturbation
technique starting from the equilibrium solution, which corresponds to a zero
eigenvalue. In this way we obtain

4./24c. e .
- N ﬁ]iw\/ Ntiw[1—exp (— fiw)] exp [— (N + Diw], (18)
which is the guantum-mechanical expression for the rate constant. If ffliw<1 we
can expand the first bracket to get 1 — exp (— fliw)] ~fiiw and the expression then
to its classical value. The sole effect of the discrete levels of the oscillator is thus to
cut down the rate with a factor [l —exp [whf]/fiw and the physical reason for this
is that the oscillator now cannot split up an energy change fiw on two or more jumps.

Since the above perturbational calculation in the classical limit leads to the same
result as the closely related eqn. (5), it is at least very probable that the latter pro-
cedure will have the same property as the ordinary perturbational procedure, namely,
that the eigenvalue approximation is better than the eigenfunction approximation.

k

THE FOKKER-PLANCK EQUATION

As has been shown by Keilson and Storer,8 an integral equation of the type used
above may be transformed into a differential equation of infinitely high order. We
have

d
d_P_a -“’(n)(P)P(P,qJ)];

(19)

’ ’ ’ r " ol r r r s I
J‘[K(p,q,p a0, q', 00— K(p',q,pig,)p(p.q,0)]dp'dg = Y

Zinl

where
"(p) = [K(p 'q',p.q)(p—p’)'dp'dq’.
With the kernel used here, we have, retaining only terms up to \/ ;T,

8y
AV =44c [——p,
< ﬁnMp
8y
AD =84c [ M
¢ paM

so that the integral operator to this approximation becomes

8y [a .0
e P75}

and the Liouville equation reduces to the Fokker-Planck equation,

dp pép dVap 0 4 0
3 rdg g 0w oy p+Mp )" (20)
where ¥ is the molecular potential and the friction coefficient # is 44¢/8y/fnM.
The coefficients #/® (n>2) contain only y in higher powers than } and as long

as p<l, they can therefore presumably be neglected. It is seen, however, that
the expansion is not simply an expansion in powers of y*. In order for the friction
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coefficient to be finite, one must assume that as y—0, c— 00, so that ¢./y stays finite.
Only then does the integral operator change into a second-order differential operator.

It has been shown by Keilson and Storer, for a somewhat simplified kernel, that
in spite of the different response of the two types of equations to an initial -distribu-
tion for small times, the two solutions will be almost identical for large times. Since
the escape of a particle from a potential minimum is a slow process in the molecular
time-scale, one might therefore expect that one will get the same rate constant from
the Fokker-Planck equation as the one found above. This, however, is by no means
the case. Writing the Fokker-Planck equation in energy-angle variables and assum-
ing that the density in phase-space is independent of the angle, we get

ap 5} d
— =p—sl 1+87'= Jp,
o "aa‘g( o+ 5s)p

for which the solution which vanishes at ¢ = E is?
p=exp(=fe) 3, C,exp(~na,t)iFi(~a,1,pe).

Here a, are the roots of the equation Fi(—ay,1.pE) =0, 1F; is the confluent
hypergeometric function and the coefficients C, are determined by the initial
conditions. The rate constant is therefore approximately nay which by various methods
discussed previously can be determined to be, in the limit fE> I,

g
ko = nag = 4Ac\/ m—?MﬁE exp (— BE). @1)

It is seen that the energy dependence of the pre-exponential factor is quite different
from that found before and since the previous expression was independent of y, this
is a peculiar result.

We believe these differences to be due to the very special limiting process used
in obtaining the Fokker-Planck equation. Clearly, not both expressions can be
correct, say for I, in He, but it is quite difficult to argue in favour of one of the results,
rather than the other. It is perhaps significant that when terms proportional to y
are included in eqn. (20) and treated as a perturbation one gets

k = ko[1+7(BE)*/8] (22)

which for instance for I, in He at 300°K gives an increase in the rate constant by
about a factor of 12. This is quite a large perturbation and naturally leads te a
certain scepticism about the validity of this whole approach.

CONCLUSION

The main purpose of this paper has been to show how a particular kind of strong
interaction can be taken into account in dissociation reactions. The theory can, in
principle, be extended to any kind of strong interactions by using a linearized Boltz-
mann equation rather than egn. (1). The method which we have used to eliminate
the translational motion of the molecule can also be used to eliminate the rotational
motion when a three-dimensional problem is treated. In both cases, however, one
encounters considerable mathematical difficulties.

Although the present work therefore has a preliminary character it is interesting
to compare the conclusions with the experimental results. For I, in He, we have
the following experimental values 10: at 298°K, k = 442 x 1015 exp (— E/RT) sec™!,
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and at 1400°K, k = 1-76 x 1014 exp (— E/RT) sec~1. The concentration ¢ is measured
in molecules/ml and E equals 35,500 cal/mole. Using egn. (15) and setting 4 = no?2,
we calculate from the rate constant ¢ = 10-8 A at 298°K and ¢ = 6-8 A at 1400°K.
These o-values are somewhat larger than the sum of the hard-core radii of I and He
and the rate constant calculated from eqn. (15) will therefore be too low. The change
in the calculated ¢ with temperature furthermore shows that the temperature de-
pendence of eqgn. (15) is incorrect. If instead, we use eqn. (22), we get too low o-
values, namely, 1-3A and 1-2A but here the temperature dependence comes out
right. In view of the fact that the model is one-dimensional, the agreement must be
considered largely fortuitous.
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