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We describe the results of computer simulations on a model polymer chain with excluded volume interactions in
the presence of an external stretching force. For weak and moderate forces the response is linear while for strong
forces the behavior is nonlinear, consistent with the non-Gaussian nature of the end-to-end vector R distribution for
large R . In the vicinity of the © temperature the onset of nonlinearity occurs at larger forces.

I. INTRODUCTION

The elastic behavior of a single polymer chain
in a good solvent is related to the general problem
of rubber elasticity and to phenomena occurring
in dilute polymer solutions subject to high-velocity
gradients.!™ The single-chain problem has been
studied recently using the scaling properties of
the end-to-end vector distribution function Py (R)
of chains with excluded volume interactions con-
taining N links. According to scaling Py (R)~ P (X)
where X =R/R,(N) and R2(N) is the averaged
squared end-to-end distance.* (It is important to
note that scaling will not hold for very large R
values, R~Na>>R (N), where a is the link leng-
th.)

In the presence of a stretching force ?, e.g., an
applied electric field ﬁacting on two small charges
attached to the ends of the chain, the end-to-end
distribution function P(X) is transformed into
P(X) exp(BR-T) where f=1/kT. The average
value of ( R) is thus given by

-

J P(x) exp(fE-B)R d°X

(R) =
[ P(x) exp(6F-B) @°X. (1)

Let R; be the component of R parallel to 1.
Writing X; =Ry /R, we find from Eq. (1) that{ X; )
is a function of a single dimensionless variable
1n=BSR,,

(Xp)=0(n). (2)

Quantities such as ( R%) and { 6R%), the mean-
squared fluctuations in the components of R per-
pendicular and parallel to the stretching force,
respectively, should follow a similar scaling
property.

According to Pincus® and de Gennes?® one can
distinguish two stretching regimes.

A. The weak stretching vegime. Here
n<<1 and we can assume ¢(n)x<n so that
(Ry) =AfBR3, (3)

with A some constant independent of N and 7.
Equation (3) is analogous to the stretch-force
relationship of a random coil without excluded
volume interactions. In the latter case, R} N
and A =3 so that (R;) « N while in a chain with
excluded volume interactions R and thus also
(R; ), behaves as N*” (v ~0.6).

B. The strong stvetching vegime. Here n>1
(but still Bf <1/a), and a linear relationship,
¢ R,e) o N, can be expected for all chains since
in the strongly stretched chain excluded volume
interactions between distant segments are greatly
reduced. This assumption together with Eq. (2)
leads to the power-law relation*

¢(m)=n®, A=(1/v-1)=0.66. (4)

Assuming that for large values of X, P(X) is
approximately of the form

P(X)x<exp (- constX?), 4"

one can use Eq. (1) to obtain ( Ry ) xR, with y=
1/(6 —1). When combined with (4) this gives

6=(1-1)"1=2.5,

In the present note the above theoretical con-
siderations will be tested for the first time by
numerical results obtained from Monte Carlo
simulations of model chains in a continuum. We
shall also present some results for the elastic
properties of a polymer chain in the 6 regime
when the excluded volume interactions are approx-
imately balanced by attractive interactions.

316



23 ELASTIC PROPERTIES

II. THE MONTE CARLO METHOD

The model chain® is made up of N + 1 beads
located at positions {r;}, i =0, ..., N separated
by links of fixed length a. Any two beads in the
chain interact via a potential V(7 ;):

Vee(i )= Ves(Rn), 715 <Rp

V('rij)= 0’ 71, >R, (5)

and 12 6
Vu(”u)=4€[(}gj) - <7%) ] ’

where 7; , =|T; =T, | and V,, is the Lennard-Jones
potential.

Note that for R, =2'/%0 the potential is purely
repulsive while for larger values of R, it has a
finite attractive region. It is generally believed
that the behavior of long polymer chains is uni-
versal, i.e., it depends only on the general fea-
tures, not the details of the interaction.

In our simulations we considered two cases: (i)
purely repulsive interaction, R,=2'%0, Be=0.1,
0=0,Ta. This represents a chain in a good sol-
vent; (ii) R, =20, 0=0.7a and different values of
Be including the neighborhood of the 6 point in a
poor solvent. The total interaction energy for a
chain configuration Y is thus given by

U1 =2 Vi) -1y - o). (8)
i

An ensemble of configurations distributed ac-
cording to the canonical distribution

P(Y"f)oce-BU( v,f)

was generated by a reptation Monte Carlo (MC)
dynamics® as follows: A configuration Y’ = {'r,'}
is generated from the configuration Y by the
transformation

r{ =t;,,, fori=0,...,N-1,
. . e . (1)
ry=ry+s, |s|=a,

and the direction of § is chosen at random from
a uniform distribution. With equal probability,
this transformation is carried backwards, i.e.,
with 1] =Ty_, and F{ in a random direction at a
distance a from ?,. .

A new configuration Y. of a Markov sequence
is taken as either Y or Y’ according to the Metro-
polis criterion™:

Yy, if exp{glU(Y,T)-U(¥ D)} >
(8)

Y, otherwise,
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where pis a random number uniform on (0, 1).
This procedure obeys the detailed balance criter-
ion, and leads asymptotically to the equilibrium
distribution.

The relaxation time of the reptation dynamics
is of the order of ~ N? Monte Carlo steps. Equi-
librium averages are obtained by dividing the
total sequence of MC steps into 15-20 blocks,
each block > N2, and obtaining the final average
and the standard deviation by averaging over the
block averages, excluding the first couple of
blocks during which the system is still in the
process of equilibration.

III. RESULTS AND DISCUSSION

A. Weak stretching regime. In Fig. 1 we plot
( X; ) versus n=gfR, for n<2. We note the
linear dependence. The line in Fig, 1 represents
the relation { X, ) =n/3 which corresponds to

=% in Eq. (2). Our results show that within the
statistical errors (which become large for small
stretching force) the linear-response law is
obeyed for n=1,5. This is considerably beyond
the regime where Eq. (8) might have been ex-
pected to hold g priori. The fact that A =% can be
interpreted to imply that P(X) is well approxi-
mated by a Gaussian distribution around its
maximum at X=1. To check this interpretation,
we evaluated the fluctuations ((R; — (Rs))?). We
find that for BfR =2, ((R; =Ry ))*> ~R%/3 con-
sistent with a Gaussian distribution. The rela-
tively large statistical errors in this regime are
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FIG. 1. The normalized average component of the
end-to-end vector in the direction of the force (R /R,
versus n=gfR, for fRy<2. The straight line repre-
sents the relation (R,)/Ro=%n.
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FI?. 2. Log-log plot 0f2<Rf>/R0 versus 7 for chains of N=10-80. The straight lines represent the relations
(Rp)/Ryxn and (Rp)/Ryec 3,
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FIG. 3. The lateral extension of the stretched chain. A log-log plot of (Rf)/R% versus 7 (the slope of the solid line:
-4 ; a log-log plot of (Sf)/R% versus 7 (the slope of the solid line: —%). The dashed lines represent the values of
(R?Y/R} and (S%)/R, for a free chain.
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FIG. 4. The normalized average component of the
end-to-end vector in the direction of the force (Rf)/Ro
versus 7 for a chain with attractive interactions. The
solid line represents (Rz)/R¢= ;-n. The dashed line
represents the results for purely repulsive interactions.

due to the fact that as { R; ) =0 for f =0, the
fluctuation remains sR2.

B. Strong stretching vegime. Figure 2 presents
the values of { X ) versus non a log-~log plot.
The straight line represents the power-law de-
pendence, Eq. (4), with v=0.6. The following
features can be noted.

(i) For the longest chain studied N=80 there
is a very good fit to this power law in the range
3 <n<12. In this range ¢ (n)=~0.43 n°*%¢, For
sufficiently large values of X and 7 the integrand
in Eq. (1) should have the form: exp(-AX®+nX;).
If one approximates { X;) by X2, the value of
X; for which this integrand has a maximum one
obtains

1 1/(8-1) _
¢<n)=(,—@—) /(6=

By comparing this expression with our numerical
results we estimate A~1.2-1.4,

(ii) For each chain length N the scaling {R; ) /R,
= ¢(n) is obeyed up to a maximum value of 7 =71,(N)
which increases with N, For 17>1.(N) the results
for a chain of length N show some deviation from
the universal curve. It seems that 7,(N)/Ry(N)
is approximately N independent, and has the
value 0.6-0.7. Thus the upper limit of the scal-
ing regime corresponds to a 8f ~1/a. For higher

stretching forces the dependence of the elonga-
tion of f is slower than ( R; ) <« f2/3,

(iii) Transverse fluctuations: Figure 3 presents
the effects of the stretching on the dimensions of
the coil perpendicular to the direction of the
stretch as characterized by ( R2). We find that
(R%) /R? is also, roughly, a function of the
single variable . { R%) decreases with increas-
ing stretch. The straight line represents the
77933 dependence expected from scaling theory.
Our results confirm this power law. Similar
behavior characterizes ( S2) the radius of gyra-
tion in a plane perpendicular to T as shown in
Fig. 3. The data which characterize the perpend-
icular size are more noisy at large stretches
than Rf .

C. A chain with attractive interactions. The
results of Xy ) versus 7 for a chain with attrac-
tive interactions are represented in Fig, 4. Here
the potential given by Eq. (5) with R,, =20 and
Be=~ 0,6 was used. For this value of Be the N
dependence of { R2) in the free chain is linear,
so that the temperature can be considered to be
inthe theta region.® We find indeed that the linear
behavior persists over a wider range of stretch-
ing force than in the purely repulsive case, i.e.,
¢(n) is linear for 0<n< 4. This is consistent
with a Guassian-type behavior of P(X) extending
over a wider range of X values.

CONCLUSIONS

We find that for weak and moderate stretching
f <1.5/B R, a linear-stress strain relationship
holds for chains with excluded volume interactions,
similar to a behavior of an ideal coil under str-
etching. The lateral dimensions are not sensitive
to the stretching in this regime. For large
stretching Bf >3/R, the f dependence of the elon-
gation is nonlinear and the lateral dimensions
contract with increasing f. The dependence of
(R;) and ( R%) on f obeys power laws with
exponents which agree with those predicted by
scaling arguments. The basic scaling property
of the magnitudes Ry} /R, and (R3) /R% is
obeyed in the range 0<Bf s 1/a. For higher
stretching forces a slower dependence of the
elongation on f than ( R, ) ~f2/® seems to emerge.
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