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Results are presented of Monte Carlo simulations of continuum-model polymer chains which results
confirm the idea that for long chains the degree of expansion due to excluded volume depends on the
interaction range o, on N, the number of links, and on the link size a through a single variable
z « (0/a)*y/ N. The expansion factor y(z) is very close in form to that found by Lax, Barrett, and Domb
for lattice models of a polymer. For z > 2, yi(z) follows a power law predicted by Flory. For finite chains
there are corrections to Y(z) which depend on N and on the form of the interaction.

I. INTRODUCTION

In this note we describe Monte Carlo studies
of the swelling of a polymer chain in a good solvent
resulting from excluded volume interactions. The
pioneering work of Flory,! as well as more re-
cent studies,?” agree that for a chain of N units
of length a, with a repulsive interaction U(r) be-
tween any two units,

R*/Na®=a*(z,N)—(z) as N—=, (1)

Here R? is the squared end-to-end distance of the
chain which can depend generally on N and the form
of the potential U(r):

2=(3/20BVN /a*, B=[(1-edF.  (2)

In our model system U(r) is strongly repulsive
for small values of » and vanishes for larger 7.
For a real polymer in a solvent, U(») will be some
effective interaction between parts of the chain
which depends both on the polymer and on the
solvent,

The physical idea behind this simple universal
dependence of @® on N and U is that as N -, the
density of the monomers, p« N/R®, goes to zero,
so that the dominant term in the free energy comes
from binary interactions in which the dependence
on U(r) enters only through B, Indeed, one can
obtain a formal power series in z whose coef-
ficients approach a well-defined limit when N — %3
This series, however, is not expected to be con-
vergent (it may be asymptotic),® and is thus not
useful for finding «? for a given U and N. It is
therefore in practice supplemented by a power
law which was first derived by Flory from the

formula
a®-a’=3V3z,

(3)

which for z > 1 gives

- 3
a?~z22v 1)’ =3,

V=%

(4)

More recent renormalization-group computa-
tions of the critical exponent v give v=0.588,”
very close indeed to Flory’s value. While the as-
ymptotic N dependence of R? implied by Eq. (3),
R*~N!-2  has been verified (within a few percent)
both experimentally® and by computer simulations,®
the general validity of Eq. (1) has been checked
directly only for lattice systems.

Lax, Barret, and Domb (LBD)® found evidence
for the dependence of a® solely on z as N -« and
B -0, Furthermore, a single function ¢(z) could
be fitted to the results on various lattices.

The question then naturally arises of whether
Eq. (1) is also valid for more realistic continuum
models of polymers. Also of interest are the fin-
ite N corrections to a®. We describe here Monte
Carlo computations which were designed to in-
vestigate some of these questions.

II. MODEL AND RESULTS

We studied a continuum chain of'beads connected
by rigid links. Models of this character are much
used in polymer theory for the study of excluded-
volume effects. The units in this model represent
statistical segments of the polymer molecule
rather than single monomers, since the angular
correlations between neighbors which characterize
real polymer chains are not represented in the
model. Any pair of beads along the model chain
interacts via the repulsive potential

4([(2)12—<2>6+%], y< 26
Ur)= v ¥

0, »>2Y%

(5)

with Be =0.1.
The parameter z in Eq. (2) can be rewritten as

z=(3/27)¥24(Be)o3VN /a®. (6)
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FIG. 1. The data points represent the extrapolated values a?(z,N)+ Cz/vN: C=0.8 for our results, C=0.7 for the
results of Ref. 12, C=1.0 for the results of Refs. 13 and 14. Solid curves: Eq. (8). Dashed curve: Eq. (9). The error

bars of our results are 2-3%.

[For hard-sphere potentials A =47/3, while A(0.1)
=3.22.]

Equilibrium configurations of chains with N
links, N =4-159 and values of 0/a between 0.16
and 0.8, were generated by reptation Monte Carlo
dynamics.!® The results for a?(z,N) at fixed z
increase with N and appear to converge to a limit

as N—- =, Their behavior is consistent with the
relationship
a®(z,N)=y(z) = Cz“N ", W)

with ¢=0.5, p=1.0+0.1, and C ~0.8. The ac-
curacy of Eq. (7) may be judged from Fig. 1 where

we plot (R?2/Na?+0.8z/N°-%) vs z using all our data,

The solid curve is given by the following formula:
P1®=1+20z +156z%+5922°

486
6 -2
+2500z (1 +3500 2 ) (8)
Equation (8) has the same form as Eq. (42) of
LBD constructed to fit their lattice results—the
only difference is the coefficient of z® which was
adjusted to fit our results for large z,

(Numbers in the inset denote values of N.)

¢ (z) ~(1.68 +£0.03)z°%, (9)

When one averages the coefficents of the corres-
ponding equation given by LBD over the lattices
they treated, one gets the value 1.663. The values
of the first three coefficients in Eq. (8) were ob-
tained by Barrett!'! from the series expansion of
¥ (z) in powers of z for lattice models. The lat-
tice values of these coefficients agree with those
obtained for a continuum model by cluster-ex-
pansion calculations.? Thus, while the form of
Eq. (8) is ad hoc, the coefficients contain only
two adjustable parameters which have similar
values for lattice and continuum systems.
Baumgartner and Binder'? have studied continuum
chains of hard-sphere beads connected by rigid
links, Their results, extrapolated using the cor-
rection term of Eq. (7) with C ~0.7, are included
in the inset of Fig. 1. Although their potential is
harder than that of Eq. (5), the corrected results
fit the curve given by Eq. (8). Also represented
in Fig. 1 are the results for the bead-spring model
chains of Ceperley, Kalos, and Lebowitz,'® and
the results of Bishop, Ceperley, Frisch, and Ka-
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los.'* In these models, the distance between beads
is not fixed and a® is the average squared distance
between adjacent beads. The interactions between
beads in these studies is of the same form as Eq.
(5) in this work; the values of Be are 0.1 in Ref.
13 and 1.0 in Ref. 14. The results were extrapo-
lated using the correction term in Eq. (7) with
C=1.0. Our curve lies within the error range
of the adjusted results. Thus it seems that the
correction to the asymptotic #(z) is not universal
but depends on the type of potential and on the
nature of the distribution function of bond lengths.

We have also evaluated the values of the squared
radius of gyration, S?, We find that for z> 2, R?/
S2~6.34 with no significant z dependence. This
ratio approaches 6.0 as z - 0. In Fig. 2 we
compare J (z) =S%(z)/S*(0) with the experimental
data on swelling of polystyrene chains in various
solvents compiled and analyzed by Ackasu and
Han.!® The values of z for the data were deter-
mined from the relation z=A7VM where M is the
molecular weight, 7= (T - 9)/6, and A is a con-
stant which we adjusted to obtain a fit of the data
to our curve in the high-z regime: A=9.6 x103,
Also represented in Fig. 2 are ¢ .(z), the solution
of Flory’s formula Eq. (3), and J(z), the solution
of a modified version of Eq. (3), o®- a®*=Qz where
@ was adjusted so that ¥ .(z) ~ v ¢(z) for large val-
ues of z. It is apparent that ¥ .(z) approaches the
asymptotic power-law behavior more gradually
than either 74(z) or the experimental data.

We note that Eq. (7) may be written in the form

o®(z,N) =u(2)[1 - K(o/a)*/¥(2)], (10)

where K=0.85 for our data. For fixed o/a and N
sufficiently large so that z 2 2, R%(N) will be given
by

where K, =K/1.72. The very slow decay of the
correction term in Eq. (11) will result in a modi-
fied effective exponent

2v(0,N) = 2v+0.2K,(c/a)*-*N"-2 (12)

which is slowly varying function of N and . The
corrections to (z) will therefore be manifested as
a correction to the exponent obtained from a
power-law fit to the data for finite chains. Indeed,
the fact that some of the continuum results for
bead chains give exponent values 2r=1.21-1.23
(Refs. 12 and 14) which are higher than 2v ~1.2
obtained for lattice walks indicates a slower ap-
proach to the purely z dependent region in con-
tinuum chains.

1. DISCUSSION

The data presented here support the hypothesis
that for excluded-volume interactions, as repre-
sented by short-range repulsive potentials, the ex-
pansion factor a? is a function of a single para-
meter z for long chains. For z >2, ¥(z) follows
a power law ¥ « z%* consistent with an excluded-
volume exponent v~ 0.6. The values of ¥(z) agree
with the results for lattice walks with pseudopo-
tential interactions. We also find good agreement
with experimental data in both the asymptotic and
crossover regimes.

For finite chains we find that o® depends on N
as well as z, and can depend on the details of the
potential. For fixed potential range o, the ap-
proach to the asymptotic limit N - is rather
slow. Accordingly, the deviation from a power
law of the N dependence of R? for short chains
is not pronounced, and is manifested in some-

R? < a®N*[1 - K,(0/a)*-*N"*2], (11) what increased values of effective exponents.
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FIG. 2. Experimental data for ¢s=sz(z)/52(0) for polystyrene in various solvents vs z (Ref. 15). Solid curve: Eq.
(8). Dashed curve: Flory’s formula Eq. (3). Dotted curve: modified Flory formula (see text).
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