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ABSTRACT

This report Flegcribes an attempt 1_:0 obtain infoxmation_a'bmt the
stationary nonequilibrium state of a fluid through which heat is :flcming. The
fluid is in contact with several heat reservoirs at different temperatures and
is assumed to be described by an ensemble aensity:}meich satisfies a generalized
Liouville equation. Our method consists of minimizing a positive functional
W(f&) 5 Wwhich vanishes only when ,u= /"'S’ the correct stationary I_' -space
disti‘ibu‘bion, by assuming a Particular form for the density /.b, fl= /:_, , with
variable parameters., The }2. we chose is essentially one represeniing-e
product of local equilibrium cononical ensembles which are- —— teMininize with
unspecified space dependent macroscopic parameters. These parameters are the
density n(r), mean volocity u(r) end the temperature T(r). The reservoirs
determine the temperature on the boundaries. We show first that ng) is related,
somewhat indirectly, to the irreversible thermodynamic entropy production in the
system and is naturally divided into parts related to the temperature and
and velocity gradients. Considering then a situation in which only e temperature
gradient is present T(g) is.varied to minimize 7, This leads to a differential
equation for T(g) subject to boundary conditions specified by the reservoirs. It
is then shown that the heat conductivity deduced from this equation does not
agree, in the low density limit with that computed from linetic theory. It is
further shown that this difficulty is not alleviated when the class of distribu-
tion functions used in the variational principle is modified so as to include
more realistic distributions. Our conclusion is then that W is not useful as
a practical variational principle. The reason for this is that W looks at too
fine detalls of /.L as is shown by the fact that it remains invariant in an

isolated system,



I. Introcduction.

In a series of previous publications a model was developed for the

description of the time evolution of an ensemble, representative of a "system"

in contact with a number of idealized heat and particle "reservoirs”. (1-4)
The system Hamiltonian has the form
ot » 2 E B2 vu ) oL
H(p;q. =z{ i +U, (q.) +3 2 q)} {1.1)
> b & e - u 19 2 ip \'P Sy

Here the cartesian position and momentum of the i'th particle of the system are
denoted by ay and Py U(qi) is an external potential, such as might represent the
effect of the walls; ‘*J(qiq j) represents the interactions of the particles,

Let x stand for the set of variables {pi, qi% with the domain of integra-
tion [ and let /L(x)dx be the probability of the system being found with the
set of variables having values in the region dx about x, It was shown by

Bergmann and Lebowi‘bz(l’e) that /..4.(x,t) for their model satisfies the equation

%‘5&1’ f(MELE ) = K (e xR ) axt - [ RGex)plat)ax
Here ( /L H) denotes the Poisson Bracket of /u- and H, that is

(pot) = 3 (Vo po Voy - Fp e Vo) (1.3)

(1.2)

The "kerrol" K (x x') represents the effects of the reservoirs on the system.
Specifically the quantity K(x x') dxdt is the contingent probability that during
a time interval dt the system, Imown to be in a configuration x', suffers a
"collision" with the reservoirs and as a result Jumps discontinucusly into the

region dx. The general conditions

K (x x*) >0, /u-(x,t) >0 and fP}A.(x,t)dx =1
are to be imposed and are consistent with equation (1.2).

It was first shorn 5‘?’ 3; )that if equation (1.2)possesses a time independent



-2-

solution /lS(x), then any iritial ensenmble density /u.(x,o) will tend to /ué after

a sufficiently long time., In order to demonstrate this fact a number of functionals

of ,.L(x,t) were considered which had the following properties:
a) F[/u];o c) & F[/u.(t)]so

dt (1.4)
b) F[,ts] =0

A special example of such a functional is

a2

F = In dx

(p) = [, AL 1 (M p)

All these functionals were constructed so as to compare the temporal evolution
of two differing ensembles; either two arbitrary ensembles or an arbitrary

ensenble with a stationary one as in the example given sbove. Bergmann and

I-’Iorris(l") introduced a new functional W( /—L ) defined as follows:

SR vl 0T RN ) 2
w(}».)-{’}l(_b%) dx—fﬁ (K}A_-L/A-)dx (1.5)
where

L}A =(}J~:H)

K/‘_ = [ X (x x')/.‘.(x')dx' - fK(x',x)/A(x) ax!

W ( ’.1.) is seen to be dependent on one ensemble function /.L(x,t) only, and has
all the properties (l.4). These characteristics make W ( /-L) suitable for use
as measure of the closeness of /A to the stationary ensemble /"B' Thus, if we
are given two ensembles M, and /‘12 and find that W (1.‘-41) >¥( /-&2) then we
will say that M, is closer to /-‘-s than )U.l is to Mg, If /ua(t) =
:}('(t #7) then property (l.ke) implies that W( Ab,) < W( J{;) which ve sre
interpreting as meaning that /Ll(t +70) 1is closer to stationarity than

f-ll(t) is.

The explicit expression for the rate of change of W was shown to be

N % x)12 ;
W = [ A) Kl x )[%z:(_) . O 4G axax (1.6)



This expressien vanishes if the Lerr@l K (x x') becemes zero. Equation (1.1)

then reduces ‘i:o Liouville's equation and (1.6) is an expression of the fact

that functionals of the type under consideration are invariant under the natural
motien of a closed system. We stress that the change in W is "proportional” to
the "size" of the kernals,

It is the ebject of this report to see if physically significant results
obtain from the use of the criterion just described,

This introduction will end with a discussien of certain features of the
kernals useful for the purposes of this report. The kernal K generally represents
the combined action of several reservars at different temperatures. It was shown
(1,2) that any given reservoir acting alone would tend to bring the system into
equilibrium at its own temperature and thus the kernmal relevant to a reservoir
at a temperature T, (= l’/&k), K (Bq, X z'),

has the property
T Pt i) b g ' t o~fcREYn
L,K (Byox x')e Bok (=) gyt = j;ﬂlgx(%tx x) dx' e~k (’.c‘?u (1.7)

It is assumed here that

53

E(x x') = ZK@(ﬁ ¥x x') (1.8)

oA
that is the kernal is composed of independent parts each of which obeys relation
(1.7).

The detailed structure of the kernals has been discussedca) and a satis-
factory deseription is the following, The basic interaction between reservoir
and system is a two body collision between a reservoir particle and a particle of
the system. In such a collision the positicns of the colliding particles remain

unchanged while their momenta are altered discontinuously., Thus
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K“(B x x') =i§1 Kf‘ (8 PiPi') a(qi‘qit) B(Yi'yi' ) (1.9)

vhere x =§> 1293,¥1 j -
and yi=(q'1’ soelliolr U4, oGy P;_‘: sooBil]s Py .pN]

It follovs from the nature of two body collisions that K '(B,p; pyt)
does not depend on the configuration of the remainder of the system that is
on yi(=yi'), but it may depend on g, (=q;'). This dependence is at our disposal.
We have in mind that the reservoirs are external to the system and act only near
to the surface of the system. In order to rarallel this physical idea in the
mathematical structure of the kernel,we could introduce a factor exp(—{k(qix/keu)
where Ay is a constant distance and 'ty (q;) is the distance from qy to the
region of the surface at which the e‘th reservoir acts.

In this case
n

Kg® xx) = T K" (B 2ypy) e~ ™/dg Blay-g;") Blysy; ") (1.10)
It is easy to envisage a situation, such as in a treatment of lattice-spin or
lattice-electron interactions, where the relevant kernals would be independent
of (ay)e

We will call the region in which the action of the reservoirs is appreciable,
the boundary of the system. It would be possible to regard the interaction as
confined to the surface of the system but if that were done, it would be necessary
to regard this interaction as a boundary condition to the Liouville equation(s)

rather than as an additional term. . T v "
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IT. The Locally Canonical Distribution

ystem in equilibrium at a temperature T can be

thé‘banogtcai:anqemble

/u-e HexP [‘H/kz_p].

= (2:3)

Z being a normalizing factor., The properties of a given system in equilibrium,
i.e. a system with specified H, are thus completely determined by one parameter,
the temperature.

It is natural to ask whether a system not in equilibrium can also be
described by an ensemble which is a funetional only of the macroscopic perameters
describing the fluid. A single component fluid needs for its macroscopic specifi=-
cation a knowledge of at least the values of the temperature T (—32- mean kinetic
energy per pa.rticle), local velocity u , and density n at all points of the fluid,
It is generally assumed that the correct non-equilibrium ensemble for small
variations in the macroscopic parameter is made up of a local equilibrium ensemble
ﬁ plus corrections linear in the gradiants of the macroscopic variables., The
ensemble ﬁ consists of a super-portisn of canonical ensembles for each small

region of the fluid,

A N
m
/‘(T, 4, n) .’PJ—: ( 2?1

3/2
)

/ﬁ}exy[—igl B0y = Pl (2.2)

A
Z being & normalizing factor, Here

tes e

1
( ) L 3

TR - + U + = 37

Py'= (pg = gy m)/ e e T

is the energy of the ith particle and ?L; (.P(qi) is to be chosen so as to give the

correct value of n. QP may be related to the chemical potential by using a thermo-

6
dynamic relationship which remains true even for this non-equilibrium case.( )
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The main defect of the locally canonical distribution is that it does not
represent a stationary or even quasi-stationary state. It thus predicts the
absence of any heat flow and that the stress deviator is always zero. It is
believed, however, that the correct non-equilibrium distribution differs only
slightly from the appropriate local equilibrium ensemble (i.e. one having the
correct macroscopic parameter) though this deviation gives rise to all the trans-
port processes,

The first question we ask, and try to answer by the use of criterion
described in section 1, is this., What are the optimum values of the parameters
(T, u and n) to be used in the locally canonical distribution for the stationary
state of a system in contact with specified reservoirs? The answer will be in
the form of a set of partial differential equations for the parameters, the boundary
conditions being determined by the relevant features of the reservoirs,

In order to carry out this program we substitute from (2.2) into equation
(1.5),

A

(’-%% )° ax (2.4)
A
_,Af‘—?at = K/L?_-L/i (2.5)

W(T:#:n ) =/J

Bt

where

The expression K }-?- will be evaluated first.
As mentioned in Section 1, we assume that the interaction between the fluid and
the exterior, as represented by the reservoir, is confined to a narrow region of
space, the "boundary" of the system. We also make the assumption that the temp-
erature of this reglon is equal to the temperature of the reservoir with which it
is in contact. This implies that there is no observable temperature drop between
reservoir and fluid and that the temperature does not vary much over distances
covering the extent of the action of the reservoirs.

By using these assumptions and equation (l.T) it is seen that the term

A
Ff: is zero for the choice of/l.made here, i.e. the effect of the reservoirs is to
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impose boundary conditions on T. The expression (2.5) now reduces to

A A
WeT T " Mgk S

In order to indentify this quantity we write (2.2) in the form

A A
log/.L+ log Z

1 o) w(es0) GRS x)] ar

where H(r) B (P(r) -(3/2)111 B(r)
and N
a(r, x) = I E(r-q_i)

i=1
N

h'(r, x) = 2 8(req) h*
1=1

Thus the w.h.s. of (2.6) becomes

./’1;[5(1.) (H, h') +‘Q(r) (5, n)] ar . (2.7)

An interpretation of this type of expression is provided by the relation for a
closed system which also holds in an open system for quantities not changed

directly by the interaction with the reservoirs

fptﬂ,}k) A (x) ax
IF(A, H)/uax,

which says that (A,H) is a phase function whose average is the rate of change of

*
g (2.0

A
the average value of A in a closed system, We define S as the ensemble average of

)
the phase function =kln /ul.. .

g = —lz‘fyaln’"-/‘:- dx

where }L is the correct distribution function corresponding to a given quasi-

hydrodynamic state, then from (2.7) and (2.8)
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Py i on' 2n
S -fv ','f(?) St +Y1T _ﬁ]dr P) (249)

where h'(r) and n(r) are the mpcrescepic emergy density and perticle density,

respectively.
The second law of thermodynamics may be extended and written in a form
connecting the densities of entropy s(r) local energy h'(r) and particles n(r)

as

dh'

: + Nan ,

ds =

Therefore, defining the thermodynamic entropy S as [drs(r), then

&l d_%_ ('E)h'

+ T _55__

z
is identical with (2.7) when A is identified with \7 vhich is indeed the case.(o)
(8,1n ﬁ) = G (x) can thus be identified as a phase function whose average is
related to the rate of change of entropy in the system,

A A A
Since {1 IJ-(H, In fb) dx venishes, the use of A as the ensemble

density predicts a vanishing production of entropy in the system as might be

expected from the previeus corments.
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Having made a physical identification of the expression (2.7) we can next
put this term in the form most suitable for future caleculation. This involves
the quantities (H, n'(x)) and (#, n(x)). Equations similar to (2.8) allow these
quantities to be identified as phase functions whose average values are equal to
the time derivatives of the local densities, On the other hand, the indicated
Poisson brackets may be explicitely evaluated before averaging and thus relate
these guantities to the divergences of energy and particle flux. In this way
Kirkwood(T) derives the equations of hydrodynamics from Liouville's equation,

Tt follows from the anslyses of Kiriwoodl?), Mort(®) ana Levowitz(97)  that
the unaveraged expression (2.6) is equal,after some integration by parts in which

surface terms are neglected, to

f[_g,(g,:c) . % e(z) . E(Ex) %&] dy = G'(_:E,x)/k (2.10)

where the vector Q(r,x) and the tensor p(r,x) are phase functions whose ensemble
averages are the heat-flux and the stress deviater at the position T, i.e.

g(f,x) and E(E’x) may be interpreted as these quantities for a system specified

by the point x in [ﬂ on which absolutely precise measurements are made. (T(E,x)

is similarly the function whose average is the thermodynamic entropy production,

We have B
%_(E:x) = El 5(3"%1) Q‘i(Pi’q') (2011)
i= =
where
N
Q = 55 Q; 5(pss 3450 gy) (2.12)

and
1 2 1
| |2 (opoma(ay))® - Ala) |(pprm(a ))E 1=
om M\ 1/ PgRiNG; //m
9 3 {[_;L_ ] (2.13)
2

[W(wij) % + (fij Eij/rij) w’(rij)](_pi—m_{(qi))%ﬁ § %3
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Here ﬂ(qi) is the enthalpy per particle at q,. The expression for p(z,x) may

be written in a similar form
p= I
- &

o 3 |3

z 8(: = qi)gil-} (2.1}4-)
J —

%[?1‘m§(qi)) (p;-ma(q;)) - XT(q,) %J, 1 =3

2 Yle,)
237 T wilay,
5[ soams 15 TRE BT é], 143

(2.15)

where pr i1s the potential contributien to the scalar pressure and we have neglec-
ted ‘Uterms which depend linearly on ¢, and will, thus, essentially vanish after

integration. We note gagain that the ensemble average of Q and p with respect to

/U- are zero,

Substituting (2.10) into (2.%4) yields

W(T,u,n) = de/:“.{fdf[_%(z,x) —&(‘:l ] % Idx;-E—:-f G-(_r,x)dg a (2,16)

It follows from the symmetry of the functions Q and p that the average value of

products of Q and p vanishes and that,

fax fa(z,x) Qz'x) = Mz) 8(zx') 1. (2.17)

Similarly, the average of all cross-products of the components of D will also
vanish, The functional W of (2.16) will thus break up into two i:ldependent
positive definite parts related to the irreversible entropy production due to the
temperature and velocity gradiant, We may, therefore, consider each part
separately and shall, therefore, set u equal to zero now, i.e, we will consider

a pure heat flow problem. In order that g% also vanish, we must have the pressure
constant(':’)We shall, therefore, assume that for a given temperature distribution
T(.:_') the density n({) is so adjusted that the pressure is indeed constant.,

Eq. (2.16) then becomes
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Taking the variation of W with respect to B(r) and equating to zero we
obtain
2 7
0 = 8far )(29_)
e

5 8 08 4y, (088
s ¥gE ) v ouy MB—&M (S5:-)

o 2
- Jor g3 o (28-)° . zfa;.«a% B2 &

1
= ~2fdr 5?3,)‘/2 5-1‘87 . ( )\1/2 :%%" )

for arbitrary 88, which vanishes on the surface, This leads to the partial differ-
ential equation
atv (M2 graa B(z)) = o, (2.19)
subject to the boundary conditions imposed by the reservoirs.
This is to be compared with the equation derivable with the aid of the

Fourier conduction law

S
ar) = kP T = J¥ grad (r) (2.20)
thich states the condition for a steady state

div Q = div (Jg gred B) = 0 (2.21)

~

Equations (2.19) and (2,21) are only equivalent i ( %2 ) is independent
A

~/
% re This would be the case if (K / >‘1f 2) depended only on the pressure which
e have assumed, since there is no flow, to be constant,
-~ A
That this is unlikely is shown if we compare the value of]((:K= conductivity
g k’.t'g) for a dilute gas with the value of )\ for this model calculated from

-~
‘quation (2,13b). It follows from kinetic theory that (10 ).'KQC (kT)S / Q/mlx 2a2, (2.22)



-12-

where a® is the scattering cross-section, while (2,13b) ylelds in the low density

limit

3 2
2 +0° N 2 . Bme—
-i';—- ff!dg(ca--5/26) Ce B
A= —
#02 . pme?
”,wdﬁ e
=B (r)’ 1k (2.23)
3
o4
= e,
g
vhereas p = nkT,

A similar situation appears when one attempts to use the irreversible
thermodynamic principle of minimum entropy production to find T(g).(ll)

Minimizing the total entropy production in the system, jS‘, gives

< k3 . 48
ao‘t 8/ G(r) dar =Xk a,rg(z) 3= dr

-

b of Hx) @Far = 7 2 faros 2 Lo o) = o,
= Y ” - dr

or

aw (Y2 88) o,

rather than eq. (2.21). The quantity actually minimized in the stationary state
£
is clearly the integral of Q2.“
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IITI. Ensembles Describing Transport Processes

Having failed in our objective of obtaining the transport coefficients by
using the locally canonical ensemble /1 , we will investigate whether it is
possible to modify the ensemble used, to obtain the correct equation governing
the distribution of temperature, that is Eq. (2.21). It is clear that to arrive

at this result we must begin with a figure of merit proportional to

~
[ (Kix) @ 8(x) )° (3.1)

This form ought to be derived using a distribution function capable of predicting
a conductivity factor G(Z(r) for the system.

In order to see if this is possible a distribution function /ﬂ‘-( ’D':)
predicting the correct fluxes will be described, Starting with /& at some initial

time, the ensemble at a later time is formally given by

/LL(t) =

_(J‘C+ L )t}L(o)

-(%+ L )S L}Lds +/u.. (3.2)

Now Lim M(t) = M.g 1f the latter exists, that is the initial dis-
t 900

A
tribution, }L in this instance, would eventually decay to the stationary distrib-

ution. However, there is a range of times T:<<t < 5 for which on the one

N
hand fll'e is so small that the macroscopic parameters calculated from }J-( L5) are

not significantly different from those in /1.. , and on the other hand, MA(t) is
Fa
capable of giving the fluxes corresponding to the parameters of /-‘- correctly.

This is shown explicitly by Mori(lg)

for a dilute gas of hard spheres. There
is a short relaxation time rl: <<72 corresponding to a large eigenvalue of L;

this corresponds to the mean time between two body collisions and /J—(‘?.')
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calculated by using this relaxation time gives the same value for the coefficient
% as Tound by CImpma.n-Ensl:og(ll) theory.
This quick internal relaxation is in sharp contrast to the slow relexation
which is governed by the lernal K , Although the effect of the kernals is due
to two body collisions with the reservoir, these tale place only near the boundary;
therefore, they have an overall {requency less than internal collisions, and cor-
respond to a much longer relaxation time ’T.: K
The significance of this discussion for the present purpose is that changes
in the functional W tale place on a time scale QYK rather than q:i. This is
because VV is invarient to the internal motion of the system and is changed only
by its interaction with the reservoirs. IfJ}L(QY), 1?<:’Cé is used in place of)zz,
then W(}}L(qf) ) would not be appreciably different from ngid. Thus, if we
approximate (3.2) by
MB) = pLe T AL (3.3)

then
’~

WL = )+ (R (3.4)
which leads to essentiglly the same equation for T as before.

The use of a/ﬁ((if) for large T (beb'té)would be better, but this
would involve the exact computation of the integral in (3.2) which is equivalent
to a direct calculatirn of}/ié and has never been done,

Our conclusion must be that we are unable to obtain a useful variational

principle out of the use of W,
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