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1. — Introduction.

I shall deseribe here some work whose connecting link i its orientation
towards the development of a Gibbsian statistical mechanics of non-equilibrium
processes [1-7]. Tissentially we try to find I“space ensembles that will repre-
sent systems not in equilibrinm in the same way that the canonical ensembles
represent systems in equilibrinm. All the physically interesting equilibrium
properties of a given macroscopic system, d.e., one with a given Hamiltonian,
are completely specified, through the use of the canonical ensemble, by one
parameter, the temperature. It would be very desirable to find analogous
ensembles which would give the properties of non-equilibrium systems in terms
of a certain set of a few parameters characterizing the state of the system.
Clearly such a description cannot hold for completely arbitrary non-equi-
librium situations and, therefore, our main interest les in those systems which,
though not in equilibrinm, are yet in a steady or quasi-steady state. A steady
state can be realized, for example, by systems whose ends are kept in contact
with heat reservoirs at constant but different temperatures. In such systems
there can flow a stationary heat cuwrrent. The quasi-state systems we have
in mind arve primarily those which are experimentally characterized by the
local hydrodynamic quantities evolving in accordance with the Navier-Stokes
equations. Since experimentally the behavior of these systems appears to be
determined, to a large extent, by these hydrodynamiec variables we hope that
there exist general Gibbsian ensembles, depending only on these parameters
and on the Hamiltonian, from which the properties of these systems may be
directly deduced.

What we want for these quasi-steady-state systems is a I-space ensemble
which is analogous to the Chapman-Enskog normal distributions in the kinetie

() Supported by the United States Air Force Office of Scientitic Research,



2 J. L. LEBOWITZ [178]

theory of gases [8]. There, the one particle distributions function f(r, v) 1§
assumed to be determined by the values of the hydrodynamical variables.
One can, of course, weaken this requirement and permit the ensemble to depend
also on additional sets of variables (cf. Grad’s thirteen moment method in the
theory of gases [9]) including perhaps also the lower order distribution functions
(ef. Bogoljubov’'s theory [10]) but we shall not consider here any more detailed
knowledge of the system’s state than that contained in the five hydrodynamie
variables.

In practice it is not usnally necessary to know the detailed I™space distri-
bution of a system in order to find its macroseopic properties. These are mostly
expressible in terms of the reduced single particle and two particle distribution
functions. However, even aside from the theoretical importance of the Gibbs
ensemble it might happen that, as in equilibrium, it will be more convenient
to first find the N-particle distribution and then by integration the lower
order distributions [11].

2. — Open systems.

We shall describe here our work on steady-state systems. In order for
a system to be in a steady non-equilibrium state, it eannot be isolated but
must be in contact with inexhaustable reservoirs. These reservoirs are the
statistical mechanical analoge of hydrodynamic « temperature baths ». ‘We hope
that the detailed nature of the reservoirs will not significantly affect the steady-
state of the system and we, therefore, construct idealized model reservoirs
which have the following properties: 1) they consist of an infinite number
of identical non-interacting components, 2) each component may interact
with our system but once, 3) this interaction is impulsive. These idealizations
permit us to describe the time evolution of the Gibbs-ensemble representing
our system if we know the stochastic kernel K(w, a’). Kz, o')daedt is the
conditional probability of a system located at the point 2" in its I-space at
time ¢ to have a collision with a reservoir component, causing it to make a
transition to the volume element (2, #-+da), in the time interval (f t4df).

The equation governing the time evolution of the ensemble density u(z, ?)
is a generalization of the Liouville equation for isolated systems, taking ac-
count of changes in u due to collisions with reservoir components. It has the
form

} i) t !
gy 2D = f (@, @) pla'y 1) — K@’y 2)ple, H]a’
i r

K@, «') =3 Kz, '),
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where K represents the effect of the a-th reservoir which, in the cases we
have considered, is some kind of temperature bath at temperature 7.

Our model, and eq. (2.1), can be generalized to include systems which can
exchange both energy and particles with the reservoirs [2]. Each of these
reservoirs i characterized by a temperature 7, and chemical potential g .
They play the role of thermodynamic « temperature and chemical potential
baths ». Almost all the rvesults deseribed here can be suitably generalized to
include systems open with respect to particle exchange and we shall not give
any more detailed congideration to it here.

It is also possible to use this type of model in quantum systems. This
has been done for some problems by us [4] as well as by others. In attempting
to do it, however, in a general manner, i.c., to derive an equation similar to
eq. (2.1), one encounters certain difficulties. These are due to the fact that
only the diagonal elements of the density matrix (which plays the role of the
digtribution function in quantum systems) correspond to probabilities. The
quantum analoge of eq. (2.1) is, therefore, not known te us,

2'1. Approach lo stationary states. — Eq. (2.1) unlike the Liouville equation
can lead to true irreversible behavior of the ensemble density (@, t). We have
been able to prove explicitly the following sufficiency theorems coneerning
ula, t).

1) If K(x, a')< Mvo(H(x)), where M is a positive constant and » is an
integrable function, then p(z,t) will approach some time independent distri-
bution as ¢ -+oco. The convergence is uniformly exponentially fast. (The proof
is via a theorem due to Doeblin.)

This theorem, though very powerful, has the unfortunate disadvantage
that the physically reasonable kernels K do not satisfy its stringent requi-
rements. We have, therefore, proven a weaker but much more general type
of H-theorem of the following nature:

2) If there exists a stationary ensemble satisfying eq. (2.1) then it will
be approached asymptotically in time by an arbitrary initial distribution.
The proof of this theorem is quite simple. Let u, (@) be the stationary distri-
bution satisfying (2.1),

(2.2) (., H) = j [K (2, ) pal@) — K(a', ) pyfr)] da’ .
Define the funetion uw(f) as

(2.3) W(t) = | p(, ) Ingle, dz; gz, ) = HE&D
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then:
(2.4) (a) W)= 0

the equality holding only for y = p, and

_ mv L gy | @t it
(2.5) (b) fK s 'y ) [ln (qf'(ﬂ‘, t-)) i o(@ ) 1] deda'< 0.

[ B
=) 8

The integrand in (2.5) will be zero only for those pairs of points x, ', for which
either K(», #') vanishes or g(r) = @(@'). This implies that W will continue to
decrease towards its minimum value until ¢ is constant, or u(w, #) is propor-
tional to u.(»), inside those regions A; of I-space where K(r, 2') + 0 for o, o'
both in the same A,. This by itself is insufficient to show an over-all asymp-
totic approach of u(e t) towards p,(#) when, as is often the case, the sets A,
are of a much lower dimensionality then the whole I'-space (i.e., of measure
zero). It was therefore shown separately that W (or a function very similar
to it) will continue to decrease until ¢ i constant inside all regions B,, defined
by the property that a system starting at a point in some B, can reach any
other point in the same B, region under the combined action of its natural
motion and collisions with reservoir components. The same type of consi-
deration appliex also to the first theorem.

The second theorem can be generalized somewhat further to show, without
assuming the existence of a stationary solution p,, that any two distributions
(e, 1) and p.(x, ) will approach each other. This, therefore, shows that when
there exists a final solution which is periodic in time, as would be the case when
the Hamiltonian is periodic, then it will be approached by arbitrary initial
distributions. More generally by taking p,(x, t) = pl, ), pa(e, ) = pla, 1) we
show that the initial information is gradually wiped away.

BERGMANN and Morwris [12] have also shown that one can construct a
functional ¥ of the distribution u.

(2.6) Flul :J'T[la [(H’, ) —}—’[K(;r, a' )y p(x") — Kz, z) u(e)]dx’ i

is positive definite, is zero only for the stationary distribution and decrease
monotonically with time. The funectional F' is a measure of the closeness to
stationarity of any given distribution. It has the additional property
that as time progresses the digtribution becomes « better» by this measure.
F can thus serve as a variational principle for finding the stationary
distribution.
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2'2. Approach to equilibrium states. — When the stationary state of the
system is that of equilibrium, as would be the case when the system is in
contact with only one reservoir, W(t) assumes an easily recognizable form. This
quantity which now measures the deviation of the ensemble from its equi-
librium value and decreases steadily as time progresses becomes now,

27 W _—‘Iu{.'x:. t)[1n u(w; 1) — nexp [(F, — H)kT]de =

= _% 4 {,f— .f?, — (U~ T'8) — F[T .
Here S iz the ensemble entropy,
(2.8) S kﬁu In g da
[T is the average energy,
(2.9) I-’—-Jﬁuﬁ_’da' :

T is the temperature of the reservoir with which the system is in contact
and F, is the Helmholtz free energy of the system after it has come to equi-
librinm at this temperature, This suggests that we think of ET'W as the de-
rivation of the system’s free energy from its equilibrium value. (When the
equilibrinm engemble of the system is a grand canonical or an isobaric-igo-
thermal one, corresponding to the system being also in particle and mecha-
nical contact with its surroundings, then the role of the Helmholtz free energy
in eq. (2.7) is taken over by the grand canonical or Gibbs potential respec-
tively.)

There is, however, some difficulty with this interpretation of W in eq. (2.7).
While the entropy S and internal energy U are defined by egs. (2.8), (2.9)
for an arbitrary ensemble the temperature T' is only defined generally for the
reservoir. It only becomes a characteristic parameter of the system when
the system is close to equilibrium. The rate of change of W, however, has
always a well defined meaning. According to (2.7) it has the value

. 17 .- i 1
2.10 Fran W Cp e S S T e
(2.10) W Tc[b 7 kgg(

Here ¢ it the sum of the rate of entropy production in the system S, and in
the reservoir, — U/T. The latter follows from the fact that U is the rate of
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heat flow into the reservoir and 7' its temperature which remains unchanged.
We may thus interpret W as the sum of the system’s and reservoir’s entropy

referred to an appropriate reference level.

2'3. Properties of the stochastic kernels and Onsager relations. — The detailed

the reservoir components and on their distribution prior to a collision with
the system. It was shown in reference [2] that when the components of a
particular reservoir are in a Maxwellian distribution in their own p-space at
a temperature 7', then quite generally the kernel K, representing the col-
lision with that reservoir, has the « time reversed » symmetry property,

(2.11) K, (@', #) = exp [8,[H(e)— H(="]| K (7, ©), B.= (BT ).
where 7 is that point in phase space which corresponds to » under time re-
versal, i.¢., it has the same co-ordinates and the opposite momenta as 2. Further
K, will generally satisty the «integral condition »_,

(2.12) J}_i;(.:!, a') exp [— f, H(2") | de' = | K, (', #) exp [— p.H{x)|da' .

This condition is clearly necessary, and according to the last seetion also suffi-
cient, to make a system coupled only to this rveservoir come fo equilibrinm
at a temperature T,

When the system is coupled to several reservoirs whose temperatures are
close to each other, then the final steady state of the system will deviate only
slightly from equilibrium. The Onsager symmetry relations [13] for the matrix
relating ¢ fluxes » to «forces» are now valid. These can be proven in our
model without an appeal to fluctuation theory and without the assumption
that detailed balancing holds for the interactions between the system and
reservoirs. All that is needed is the validity of eqs. (2.11), (2.12). The fluxes
in our model are the rate of energy flows from the reservoirs to the system

(2.13) o< f da p(a) f do' Kyla', o) [H(z') — H(x)] .

E,
|

The rate of change of entropy in the [-th reservoir is s
(2.14:) o= J;/T;
and the total entropy production at any time is

(2.15) g=R8—"S L1
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=

In the steady state § =0 as well as

(2.16) : s s A
Therefore in this state

(217 o =D kify— B = 3 pid,

where 8 is the reference temperature. This equation shows that the J, and
e are the fluxes and forces of the Onsager theory.

We can now prove from the definition of the J°s that when #in eq. (2.13)
is a solution of the time-independent part of eq. (2.1) and the K, satisfy
eqs. (2.11), (2.12) that

; & oJ
(2.18) L1l L |

oy &
=0 Yifyp=0

= AR .

These are the Onsager relations,

3. — Examples.

In this section I shall describe briefly some examples to which our formalism
has been applied. First we shall consider the case of a Knudsen gas [3] in a
container whose walls are maintained at different temperatures. Then we
shall specify our general model further by considering explicitly a particular
type of reservoir. This will permit us to find exact solutions for some simple
systems and to discuss approximate solutions for general systems.

3’1, Knudsen gas. — We wish to describe the time evolution of a 2us 80
rarified that collisions between the molecules composing it may be neglected.
The only forces acting on a molecule arise af the walls of the container holding
this Knudsen gas. As stated previously, the interaction between a molecule
and a wall which here acts as our temperature reservoir is impulsive. The
state of a molecule (system) after a collision with the wall will be determined
both by its own state and that of the wall at the « beginning » of the collision.
We ean only specify a certain probavility that the walls are in some particular
state prior to collision. In turn this implies that for any initial state of the
molecule there will be many final states (after the collision) corresponding to
different initial states of the wall. In short, in view of the nature of the reser-
voirs there will exist a stochastic kernel K(v;v') such that if the velocity of
the system prior to collision is ¢/, then K(v, v') is the probability that the
system will have a velocity in the range (v, v-+dv) after the collision,
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We may consider our container to be a right cylinder whose axis is the
@ axis of unit length, i.e., 0 <o<1. We assume that molecules are perfectly
reflected except from the normal bounding walls at #=1 and = 0. This
reduces our problem to that of a one-dimensional gas.

Let N be the total number of molecules in our gas, » the # component of
their velocity. The probability of finding a particle in the interval (2, ¥-}-dz)
having its velocity in the range (v, v-+dv) at time ¢ we denote by fla, v 6) dee do.
The one particle distribution funetion is normalized, i.e.,

L3

(3.1) Jde! flo, w; Hde =1 .

— o

At any time there will be two non-interacting streams of molecules; one going
to the right with »> 0 and one to the left with »< 0. Because there are
no collisions between the molecules, f(x, v; 1) may be discontinuous at » = 0,
not only near the walls but also in the interior. The mean free path is the
length of the cylinder. We therefore break up f(a, v:?) into two parts, one
for each stream,

fle, ;3 8) = faliryvs 8) for v>0,

(3.2)
= Fite wiit) for 1< 0.

Sinee no forees are acting in the interior of the cylinder, we can write

4 . 3
(3.3) i o A e I Ay
ot s ot far

in 0<<x<1, v=0. The stochastic boundary conditions on f are

of (0, v t) -—JE‘,{-v: Yo' (0, o5 tyde’

(3.4)

of(1, 03 1) :[Kl(f‘fv v')o'fi(1, o' ) de’
;

with Ky(v; ") and K,(v; ') the stochastic kernels for the walls #=0 and
#—=1. The specification of initial data for f. and f_ completely preseribes
with (3.3) and (3.4) the temporal evolution of the distribution of the system.
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From the definition of the kernels it follows that

(3.5) Piv) = ’_ﬁ',-{-e!’: dv'=1, 4 =0 1,

1]

This insures that the normalization of f is prescrved in time.

The explicit form of the kernels K, will depend on the nature of the Lorces
between the system and the wall and on the temperature of the wall. When
both walls are at the same temperature T, — T, = 7|, we expect, as discussed
earlier, that a stationary solution of (3.3) and (3.4), is the canonical distri-
bution: f.(v) = f-(v) = (1/Z) exp [— fmo?/2],

L=<}

(3.6) g —(k, Z —f{-'xp [— fme2/2]de = (2x/Bm)t .

—

A necessary and sufficient condition for this to be the cage iz that the kernels
should satisfy the ¢integral condition» of eq. (2.12).

(3.7) K (v;v") = Ri(v; v') exp [Bmo'|2][v" ,

where
‘.R,{n: o) de’ :fR,u«’: o) do’, i—0, 1.
0 0

Bince onr two walls act independently we may write in general (i.e., when
T 2 3 :,r_- Tfl)p

Ky(o; v') = Ry(v; ") exp [+ Soma"*[2] [0,
(3.8)

Ey(0;0') = Ry(0; 0') exp [+ fumo’*[2]]" .

We consider now an explicit form of the kernels K. We will assume that
at each wall a eertain fraction of the incident molecules is specularly reflected
while the remainder is diffusely reflected. The diffuse reflection is to be such
as to lead to a redistribution of the velocities independent of the initial velo-
vities of the molecules. This redistribution may be thought of as due to sur-
face adsorption and subsequent release of the molecule at the wall. The ker-
nels will have the form

Ky(v;0") = (1 —a) 8(0 — v') -+ o, H,(v) |

Ki(ero) = (1 — o) o — 0') oy Hy(®) 2 ’H‘I:i.-‘} e T

0

(3.9)
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where the «, are the thermal accomodation coefficients (1 — o) and (1 — z)
being the fraction of moelecules specularly reflected at the walls at @ = 0 and
o =1, respectively. In order to satisfy eq. (3.7) we must ehoose H(v), ¢ =0, 1
to be

(3.10) H;(v) = v exp [— fimv®[2](5;m) .

The stationary distribution corresponding to the kernels given by (3.9)
and (3.10) can be found to be

stymfBy eXp [— fomed (2] + oy (1 — atpymp, exp [— gyme?/2]
Floe(2 — oy WoomPe 21 + 04 (2 — o) (mem By [ 2) | :
P ayiify exp [— Bom®[2] + ou(1 — o, )mf, exp [— Bome® (2]

Ho(2 — o Hﬂmﬁr.’lz}i oo (2— -I“)(:‘T?R-p’“":ﬂ)]"}

filn) =

(3.11)

From (3.11) we ean calculate the rate of heat transfer from the wall at @ = 0
to that at @ =1, .J,. J, is the difference between the heat transfer by mole-
cules with ¢> 0, ., and that by molecules with »< 0, J_, i.c.,

(3.12) Jo=Jri—d_.

We tind that

( | x,,;}:._ o ) 1\.-‘;‘.{11“— T1}
%o T O Ky, .

5 e L, s [
_ Oy -+ oty — aeaty ) AZRT, oty — oty — ooy | \2K T,

which to terms O(T,— T,)* reduces to

Badly NE
3.14 T e e
¢ ) 8y + o — otety (2am kT, %o )

This result differs from that given by KuNNARD [14] since we negleet the re-
digtribution of kinetic energy in the y and z divections. For a truly one-dimen-
sional gas the flux J given by KENNARD reduces precizely to the above expres-
sion.

3'2. Specific reservoirs. — We consider an arbitrary physical system con-
tained in a cylinder whose ends are closed by two movable pistons. The state
: of the inner system is specified by the varviable y = (ry, ..., rys Py, ...y P,) that
J of the two pistons by (Q,.F,) and (Q., P,) and the whole system by
I &= (Y, Qu, Py, Qu, Po), 0= Q..
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To the left of Q,.

(@1 Py) (Quc Py)

my & ' My
T, ‘ Y T

Cy

there is an ideal gas (heat reservoir) of particles having mass m,, density ¢,
and temperature 7, while to the right of @, there is a similar reservoir of
particles having mass m,, density e,, and temperature 7,. It is clear that
the only system variables which will ¢hange digcontinuously during a colli-
sion with a component of reservoir one or reservoir two are P, and P, res-
peetively. We shall thus have

'ETI("'FQ @) = K, (P, P;,] é{Ql_' Q;) (5(;’9‘ —4) 5(@; = 0;) 6(P2 24 -P;)

and a similar expression for K,(z, 2'). Hence our basis equation, eq. (1.1)
will assume the form

0 @y b
@as) S0 L gy

= [ Ly, P o, @0, P, Q. Py ) — B (Pl P e, 0] 074

f‘f[En{P‘u P;}F{?fr Q4 Pyl Pi’ - Kz(Pés Py) peliey )] dP; 3
where

(8.16)  H(x)= Hy) + Ulry, r,, @1, Qu) - PY(230,) + PL(2D1,) .

We now assume that prior to collision the particles of each reservoir have
a Maxwellian distribution of velocities with their respective temperature T
and T,, and that the density of the particles is uniform everywhere outgide
the pistons. These assumptions are certainly not satisfied exactly by any real
gas and neither is it possible to find a rigid piston, whose state is completely
specified by its position and velocity, in nature. As was stated however in
the introduction it is known experimentally, and we hope that it is possible
also to prove mathematically for our model, that all the important features
of the stationary state of a system conducting heat arve independent of the
details of the interaction with its surroundings.

Using the laws of conservation of energy and momentum during a col-
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lision [25], we get

Aom (M, + m,)®

e e S S T SR T 2 :P_Pf\ s
{2:-;-m,,IcT,,)*(iZm.a;)f,)‘-'FH (P — Bl LB

3.1%). K(P., P.)

[(By, —P.) + m,[M (P, + PP
- 3m, kT T el

CeXp

where o —1,2, A is the area of the piston and h is the Heaviside unit function

SR
e(Z) =

0, ="

The presence of the unit function is due to the fact that during a collision P,
can only increase and P, decrease.

This model ean be made much more realistic if we imagine each piston to
congist of N parts which are held tightly together by sfrong forces but uare
not rigidly fixed. The state of the o-th piston would then be specified by
(Q,, P)=(Q., ..., Q%, P., ..., P7, 2), where z stands for all those variables
not affected during collisions. The momentum of each part of the piston would
now change independently during u collision with a regervoir eomponent, The
stochastic kernel K (P,, P)) will now be a sum of N kernels K(PY, P®).
When the area ¢ and mass m, of each part of the pistons is held constant then
the total avea and mass 4 and M are proportional to N. Such a piston will
approximate a physical wall when the structure of the wall molecules is un-
important in collisions with reservoir components. We shall however mnot
congider this more complicated model in detail but shall sometimes indicate
how our formulae are to be modified to apply to this model.

When the temperatures of the two reservoirs are equal, 7, =T, =T, we
expect the stationary state of the system to be one of true equilibrinm. We
can indeed find the stationary solution of eq. (2.2) for this case. It has the form

(3.18) He= (Z”'l) exp [_ﬁIH = 5'752*4(1?2 e :"I!AQ!]] s

where = ¢ kT is the pressure of the «-th reservoir and

(3.19) ZUT, 2y, ) — J exp [— BIH + mAQ, — mAQ,]] dz .
I

In order that Z be finite, i.c. g, normalizable, the system must be confined
to a limited rvegion of physical space. This is accomplished if there is some
term in H which prevents €,, when & <, from assuming infinitely large
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negative values. If piston two has no external forees acting on it then the
pressure inside the system, m, equals m,, and u, has the form

(3.20) e = (Z7Y) exp [—B[H + =2V + (7 — m)AQ,]],

where T = A(€,—,) is the volume of the system.

When =z, = m,, or when (), is held fixed, g, has the form usually assumed
for an ensemble representing a system at fixed pressure [15]. It is gratifying
that we get this ensemble, approached asymptotically in time for arbitrary
initial conditions. The fact that only the temperature and pressure of the re-
servoirs enter into the description of the stationary state of the system lends
strength to our belief that the details of the interaction between system and
reservoir are not important for the final state.

It is interesting to note that the quantity W' which was shown in eq. (2.5)
to be negative until the stationary state is reached is here too equal to the
total entropy production in the system and reservoir

21 W=——lg—2" == e,
(3.21) | rdb 7 Kggo

£« (ﬁ+.—-;s-")} AN
This is completely analogous to the case of a system whose stationary state
is represented by a caneonical ensemble, eq. (2.10) (%).

8'3. Further simplification of the kernels. — The solution of the time in-
dependent part of eq. (3.15) becomes much more difficult to find when the
temperature of the two reservoirs is not the same. Even the form of the solu-
tion will now necessarily depend somewhat on H. To take a very extreme
example; let the system consist of two separate parts, each interacting with
but one reservoir, i.e., H = Hy(i,, @y Py)--Hy(y,, Q., Po)s 4 =4y, 45)- The sta-
tionary ensemble would now be a product of two equilibrium ensembles,

o= (Z77) exp [— i LH — @i A)]] (457%) exp [— . [H, + 7,0.4]]

and no heat would be conducted across the system. This is of course not the
kind of system we are interested in. To tackle the true non-equilibrium situa-
tion we simplify the structure of the right side of eq. (2.2). First we make
the hypothesis that the mass of the pistons is much greater than the mass of

(") If the pistons are tied down to some equilibrium positions by very strong forces
then our gystem would in effect have a constant volume and the stationary solution
wounld be the canonical ensemble appropriate for such systems,
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the reservoir particles, y, = m |M_<1. We now use the known result that
the integral operator on the right of eq. (2.2) is equivalent to a differential
operator of infinite order [16]. That is, for an arbitrary K,

A
(8.22) f[I{(_P, PYu(P') — K(P', P)u(P)|dP' = 3 T [QW(P) u(P)],
Al 0o A5
where
QWP sz(P'. Py P—P"ap’ .
The change from the integral to the ditferential operator can be made sepa-
rately for each K_. We have

QW(P) = 3 QU(P,) =3 J K.(P., )P, — P.) apr.

&
and for the kernels considered here

o

_ Cody,((n—1)/2) Z?
i (1) = W 7 | — 1)Y= Z e -~ - )
13.23) QTP LR kT L) Z“|Z\|e[(— 1)*Z] exp ST
“ ﬂz'P.‘V i
‘[1 + 23 g T 00|

When only terms of O(y/y,) are kept in the differential operator () above
then eq. (2.2) assumes the form

o [ (4Pat) ;7 (D)

o .
£ s
ap‘.’ : a=12 -l?P\ o I

T

@an BO9 L my s
where

hy= C ABy kT [xM,)* and D —iM_kT,.

-3

The right side of this equation has a structure similar to the usual Fokker-
Planck equation where mA and (—m,4) is the average force exerted by the
reservoirs on pistons 1 and 2 and A, is the friction coefficient [17]. Note that
if the o-th reservoir were on both sides of the z-th piston then the average
force-term would vanish and the friction constant would be 2 ,. The average

(*) These are the lowest order terms which contain the essential features of the
TEReTVOITS.
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forces can be included in the Liouville term by defining a new Hamiltonian I 1
H' = H'+mA4Q,—m AQ,. The fundamental equation whose stationary solution
we want is then

(3:25)  E i m) =

A=1

2 WPx| 8 o

om0 [ (oo 2]

where use has been made, in the last expression, of the relation between ¥
and D. After this simplification of the kernels the total entropy production ¢
can be written down eagily. The entropy preduced in the first Peservoir is
01 = (—J3{T), where J,=J,— x4 (A<Q,>/dt) is the heat current flowing into
the system from that reservoir: J, being the energy flux. Similarly for the
second reservoir

Ja [ a0, & O d<H' . :
T i T o fu 1 AN, i "] ]. e P — 15 lay — == J—,‘ =

a, T, .J- + gead dt while it Jy + T, % Ty o,
The rate of entropy in the system is

y ds, d: [ T

o —ms —— e 1 == = A
(3.26) g kdtj# npdie '(..’ = In s
We find from eq. (3.4) that J, = 4 [k7.— (PHI2M.)

ds, ) Pty 8 ( Bly \]*
— + == X =t e P [ g 7 kil @ |5
0'=0y+ o3 - = k g D.“.lt\'p 23‘{“ (1) A Ie\p 53l ,u) da = (

In the stationary state

as, A 3
(3.27) é =" (% =di+dy =0 gy = J!
50 that
b ek J]_ J‘I Jl
(3.28) 3 == s R R T T,
T, 7, o, )
and
2".
(3.29) J =Jy = W(RT, — (PHIM) = 4, (i‘ij A kz;) >0, if T,>1,

is the heat current in the stationary state. 'We expect the fellowing relation
to hold in general 7', > T/ =T >T,, where T =1 (<P3IM) is the
wall temperature. The physical meaning of the expression for J' is obyious.
J, is proportional to the deviation of the mean kinetic energy of the o-th
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piston from the equilibrivm value it would have if it were only in contact with

the a-th reservoir. It is a further consequence of eq. (3.9) that in the sta-

tionary state,

DAY e S e L
Sk 2

where T is the weighted average temperature of the two Teservoirs,

It also follows from the definition of A that J and ¢ are proportional to
the area of the piston so that a heat flux per unit area, j, can be defined. The
quantity 4[4 plays the role of a heat conductivity across the interface between
piston and reservoir. In the more realistic case described after eq. (3.17) of
a piston consisting of N parts, the mass of the piston M, is veplaced by m"
the mass of one segment of the piston, in the expression for the heat flux.

(3.30) e

3'4. Simple stationary ensembles. — We consider here some very simple
systems for which exact stationary non equilibrium ensemibles can be found.
First we congider the case of one piston between two reservoirs. The position
and momentum of this piston arve designated by (@, P), and its Hamiltonian
is (@, P)= P2M+V(Q). Eq. (3.4) will now have the form

= e3P |~ oar |ap\ T |20 | #))

QEUNE Y o <
3.8 i g =3 —
(3.31) o (1, 1) P

N

where L' = h-4-(m,—m)AQ.
Equation (3,31) has the time-independent solution

(3.32) w, = exp [— pr'@Q, P)1/Z,

where

g YN % = — oy (my TR -+ ca(m, T3)?
Sk ke CRIX YA — = Bl
! : p Z D, f . ey (my T3)E -+ ey(m, T)

The stationary heat flux J and the entropy production o are, (for T,> T:)

= ;q?fle = T] S }.5 MT T:} = (; ;1/_7) .-'{{_T‘ A T_,} '
M T Aa)
(3.34) 3 ‘ ‘ )
J J‘»]_lg k it
o g =1 = gm) o™

From the expression for A given in eq. (3.3) we get for the heaf current per
unit area

& 83\ s eulm: mus T T2
(3.33) y="=( | Gifuftrm, T, o)

A~ \adrz) (elm, T+ ex(m,To)t
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The magnitude of .J will be determined primarily by the reservoir with the
lower value of 1. Tt is that reservoir which imposes the limit on the fransport
of heat.

The stationary non-equilibrium ensemble found here for g simple piston
¢an be extended immediately to a piston consisting of N parts. The Hamil-
tonian of such a piston is

N 2

P
(3.36) #=3 __,m—:m + Uihy v, Qs 2),

fw1

where 2 stands for all those pairs of canonically conjugate variables which do
not change during a colhsion., The equation governing the time evolution of
this system’s ensemble is similar to eq. (4.1)

(3.37) Wy -y QJY'TP_" s Py, 2)

c't ik

2 < F . IrJ:x P\c ?‘ f’:t‘Pﬁ
(.. ) —’_gl EP: [1{1 exp 'ﬁ.{}"_‘ ap (9_ 1 !_Er_nii‘”’ 3 g) y
k=12

where in order to get the right side of this equation we have to assume m, <<my,
Equation (4.7) again has the stationary solution

(3.8) He = (Z7") exp [— B#],

with § given by eq. (4.3). This average temperature is the same for all parts
of the piston being independent of the mass m and the areg a; of each part.

¥
The heat flux j across this piston will be proportional to Zai(m}“”}‘z/z a; but
i=1

will not depend otherwise on the structure of the piston,

4. — Some further comments.

The stationary ensembles found here for these simple systems may have
some relevance to the kind of ensembles we may expect for g fluid between
two temperature reservoirs. They suggest that, as a Starting point, we might
isolate (mentally) a narrow cylinder of fluid perpendicular to the temperature
gradient and consider the fluid to the right and left of this eylinder as two
temperature baths. The interaction among the particles inside each eylinder
will set up an approximate equilibrium there which wijl not be too disturbed
by the surroundings when the temperature is intermediate between those of
the sides. Thus a kind of local equilibrium can exist in the fluid. Indeed the
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Ispace ensemble representing a system in local equilibrium has been taken
as the starting peint in recent investigations of transport processes in fluids [3, 18].

This local equilibrium is, however, continuously disturbed by the inter-
action among particles in adjacent layers. This gives rise to deviationg from
local equilibrium which are responsible for the dissipative behavior.

We have shown recently [6] that the low order distribution funections com-
puted by first finding the Mspace ensemble are similar to those found from
the kinetic equations for these low order distributions. Furthermore the I-space
distribution can be expressed in terms of a variational principle [6, 7]. The
quantity whose maximum yields the non equilibrium distribution is a sum
of the system’s entropy and the time integral of the entropy production in the
reservoirs, It is thus a generalization of the quantity W discussed in this
paper.
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