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In this paper we continue the investigation of a model for the deseription of
irreversible processes which we had proposed in an earlier publication. This
model permits the construetion of Gibbs-type ensembles for open systems
not in equilibrium, The internal dynamies of the system that is engaged in a
nonequilibrium process is assumed to be deseribed fully by its Hamiltonian. Its

| interaction with its surroundings, i.e. the driving reservoirs, is deseribed in
terms of impulsive interactions (collisions). The reservoirs themselves possess
definite temperatures, are inexhaustible, and are free of internal gradients (i.e.
they are temperature baths). The ensemble obeys an integro-differential
equation in D-space, containing both the terms of the Liouville equation and a
stochastic integral term that describes the collisions with the reservoirs. It is
shown in this paper that, under very general assumptions, all distributions
approach each other in the course of time. If there exists a stationary solution,
it will be unique and will be approached asymptotically by every time-de-
pendent solution. In general the stationary state does not represent thermo-
dynamic equilibrium; the ensemble remains unchanged only because its sur-
roundings maintain temperature gradients inside the thermodynamic system.
Only if these surroundings are all at one temperature, i.e. if the system is in con-
tact with but one reservoir, then the stationary state will correspond to the
eanonieal distribution. As a result, the stochastic integral kernel that describes
the effect of collisions with the reservoir will satisfy certain symmetry condi-
tions. A detailed investigation of our micro-model shows that these conditions
are indeed satisfied if the reservoir components are themselves in a canonical
distribution prior to collision. In the presence of several reservoirs at slightly
different temperatures, the Onsager reciprocal relations are satisfied by the sta-
tionary distribution. In our model the Onsager relations are thus obtained
without an appeal to fluctuation theory, and without the assumption that de-
tailed balancing holds for the elementary stochastic processes, i.e. for the
interactions between system and reservoir. In the latier part of the paper,
finally, we consider reservoirs that maintain thermodynamic potentials in
addition to the temperature, including chemical potentials. Tt turns out that
our prineipal results are unaffected by this generalization.
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1. INTRODUCTION

In a previous paper (1), we have proposed a statistical-mechanical model for
nonequilibrium processes which permits the use of Gibbs-type ensembles for
open systems not in equilibrium. We consider a system, with canonical variables
= (@, " qv; p1, - Py), in contact with inexhaustible reservoirs, “tem-
perature baths.” These reservoirs maintain temperature gradients within the
system. Because of the infinite size of the reservoirs, the I'-space ensemble repre-
senting the system can approach in the course of time (and remain in) a sta-
tionary nonequilibrium state. In order to eliminate the infinite-dimensional phase
space of the reservoir from the description of the system, we let the reservoir
consist of an infinite number of independent, identical components, each of
which is to interaet with the system but once. We further assume an impulsive
interaction between system and reservoir component. Thus at the beginning of
an interaction the state of the reservoir component is independent of the previous
history of the system. Subsequent to the collision, such a dependence exists but
is to be disregarded, because by assumption there is no further interaction. Hence,
the effect of the reservoir on the system can be completely deseribed if we specify
the time-independent distribution of the reservoir components in the y-space of
the reservoir before collision; we never have to deal with the total phase space
of the reservoir. We shall call the phase space of one reservoir component T,
(this is the p-space of the reservoir).

Each collision results in the discontinuous transition of the system and a
reservoir component from some initial state (2/, ') to a final state (x, y). The
over-all motion of the system in its own phase space I', will be continuous most
of the time and determined by its own Hamiltonian H,(z); this continuous mo-
tion will be interrupted from time to time by jumps corresponding to collisions
with the reservoir. These jumps are not uniquely determined by the position of
the system in I'» but depend also on the position of the reservoir component in
T, prior to collision. Hence from the point of view of the system we can only
specify a contingent probability K(z', x) dx’dl. This expression represents the
probability that the representative point of the system, known to be at the
location z in I';, will be thrown into the volume element dx’ within the time
interval dt as the result of a collision with some reservoir component.

This contingent probability is the result of averaging over the initial (pre-
collision) states iy’ and of summing over the final states y of the reservoir com-
ponent. Because of the nature of our reservoir the stochastic kernel K(x, 2') is
independent of time £,

The ensemble density of systems at some point x in T, w(z), will change
because of the natural motion of the system and because of collisions with the
reservoir. The equation for g will have the form

WD 4 (o, ), H@) = [ K, 29, 0 = K@, e, 0] e’ (LD




IRREVERSIBLE GIBBSIAN ENSEMBLES 3

The Poisson-bracket on the left side represents the effect of the natural motion,
whereas the right side describes the effect of collisions. When the system 18
isolated there are no collisions, K = 0, and Eq. (1.1) reduces to the usual Liou-
ville equation. In T it had been assumed that the distribution of reservoir com-
ponents prior to collision was canonical and corresponded to some definite tem-
perature. Such a distribution has the form

wly) = (2™, 8= 1/kT (1.2)

On the grounds of microreversibility it was claimed in I that, for a system
in contact with a reservoir of this kind, the kernel K(x, ) should have the sym-
metry property

K(z', r) = exp {p[H.(z) — H.2")]} K(%, 2'); Hiz)' = H(Z) (1.3)

where # is that point in I', which corresponds to x under time reversal, ie. it
has the same coordinates and the opposite momenta as x. The “time-reversed
symmetry” condition (1.3) was found to be insufficient to insure that the en-
semble density u(z, {) approach the canonical distribution in the course of time,
a result to be desired, because in the Gibbs formalism the canonical ensemble
represents the equilibrium state of a system in contact with a temperature bath.
Hence, if our model was to represent a physical situation it had to lead to canon-
ical equilibrium in the course of time, i.e. K(x, 2') must have properties such
that under Eq. (1.1)

pe() = lim e fu(z, O} = (ll_,-'Z)f—ﬁHu]

for any initial conditions. Accordingly we went a step further and assumed that
microreversibility, i.e. equality of cross sections, holds not only as regards the
transition # — 2 and the “time-reversed” transition & — %, but also for the
“directly reversed” transitions x — 2’ and &’ — z. This assumption implies the
“direct symmetry relation”

K(z', z) = exp |B[H(x) — H(x")]} K(z, z) (1.4)

This additional assumption was shown to assure the monotonic decrease of the
Helmholtz potential of the system in contact with a single temperature reservoir
until the ensemble density becomes eanonical. The “direct symmetry” condition
(1.4) is equivalent to detailed balaneing in the canonical ensemble as regards
stochastic transitions: As many systems pass from 2’ to x as make the reverse
transition from z to 2. In I we were unable to decide whether the assumption
of “direct reversibility” (1.4) is necessary (as well as sufficient) for our results
to hold, nor whether it can be justified in terms of our micro-model.

When the system is in contact with several reservoirs, each with its own
temperature and its own peculiar coupling to the system, then the kernel of Eq.
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(1.1) will be the sum of individual kernels
K(z, @) = 2 Ki(x, 2) (1.5)

each representing the effects of one (the ith) reservoir. The symmetry properties
(1.3) or (1.4), respectively, now will apply to each K; with its own temperature
T: = (k8:) '. In the stationary state (which is not an equilibrium state) there
will be heat currents J; flowing from each reservoir to the system. It was shown
in T on the basis of (1.4), that the dependence of these currents on the tem-
peratures of the different reservoirs satisfies Onsager’s reciprocal relations

21i00) (a1
( 63:' f;=8 a3 Bimp (16)

In this paper we shall demonstrate that the assumption of “‘direct symmetry”
of K is not required for the approach to equilibrium, but may be replaced by a
weaker requirement, which will be derived explicitly. Our argument will be
based on a general theorem which states that, regardless of any symmetry as-
sumptions on K, (1.1) possesses at most one stationary solution, and that this
state is approached by the ensemble in the course of time (Section 2). Section 3
will be devoted to the investigation of the weaker condition to be obeyed by
K(x, '), which is both necessary and sufficient for asymptotic approach to
canonicity, and the proof of the Onsager relations under these conditions when
there is more than one reservoir. In Section 4 we shall return to our physical
model of impulsive interactions between the system and its surroundings and
“derive” Eq. (1.1). Thus we shall construet the kernels directly from the physical
model. We shall ascertain there the necessary properties which the reservoir
and the laws of collision must possess for the different symmetry eonditions on
K to hold.

The remainder of this paper will be devoted to extending our formalism to
more general types of reservoirs than “temperature baths.” In Section 5 we shall
treat the case of a reservoir whose components prior to collision are distributed
in a generalized canonical ensemble. Finally, in Section 6 we shall treat systems
that can exchange particles with a reservoir.

2. APPROACH TO THE STATIONARY STATE
In I it was shown that if the kernel K(xz, 2") satisfies the condition

Kz, 2') < Mo(H), f i) de = 1 ML
and
f j; Klz, 2" ()] dz df’ > alt — t)

then the distribution w(z, {) defined int Eq. (1.1) (with H /ot = 0) will approach
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asymptotically some stationary distribution u,(z). Our proof was based on a
theorem by Doeblin, which applies to general Markoffian processes. In this sec-
tion we shall prove under considerably weaker assumptions that an integro-
differential equation of the form (1.1) possesses solutions whose form for large
values of ¢ becomes asymptotically independent of the initial distribution fune-
tion p(z) at some time {,. For time-independent kernel K and Hamiltonian H
this result implies: If there exists any stationary solution, then it is the only
stationary solution, and it is approached for large values of { by every nonsta-
tionary solution; if K is time-independent and H periodic in time, then if there
exists any periodie solution it will also be unique and will serve as an asymptotic
limit for all solutions. The assumptions under which our general result holds are:
(1) that the stochastiec kernel K does not induce ‘“‘run-away” conditions, in the
sense that the system does not increase its mean energy indefinitely and without
upper limit; (2) that the combination of deterministic and stochastic motion
enables a system to get eventually from every part of its phase space to every
other part. This latter condition we shall call the indecomposability of phase
space, in close analogy to the terminology customary in ergodic theory.

For our proof we shall introduce a functional W of two solutions of Eq. (1.1),
w and we , which is positive definite and which equals zero only if the two solu-
tions coincide. We shall then show that the functional W decreases monotonically
in the course of time, so that its value must approach a lower limit. With the
two assumptions made above, we shall show that this lower limit is zero.

We shall define the functional W as the integral

w

j; pIn (/) de = f; (wiIn g — o In g — wy + o) dae
(2.1)
= [ wme—9+Ddr,  $=mw/u

whose integrand is non-negative and different from zero unless u; equals ps.'
Its derivative is

aw Bt . B} g o mrRiyn
d_t*fr,[ln‘i’ai ¢'at]dl fr;lnqb(H,m) &(H, uo)| da

noeon e | 962)  #(E)  eola) W, :
L .’;J. K(z, 2')us(a) p() I:qb(;r) In Y| (@) - l:I dx dz (2.2)

= [ n o, w) — o(H, )] dz — [[ Kuss (% 1n§- ~ % ) 1) dt s

1 Aceording to Stueekelberg (2), W. Pauli first called his attention to the inequality

o
¢ Ing — ¢+ 1 =f Ingde >0
E

-]



[§) LEBOWITZ AND BERGMANN

The last integral represents a self-explanatory abbreviating notation. Paren-
thetically, it should be noted that in this caleulation no assumption concerning
the time dependence of either H or K is involved. Of the two integrals on the
right of Eq. (2.2) the second one is non-negative, because of the Stueckelberg-
Pauli inequality. The first one can be shown to vanish, because the integrand
may be converted into a series of complete Poisson brackets, whose integrals
are zero because of Gauss’s theorem. In fact, we have

f[ln (H, m) — o(H, w)ldr = f(H,m[¢ m¢ —¢ + 1))de (23)

Hence dW/dt is negative. The integrand of the last integral in Eq. (2.2)
will vanish for any two arguments x, 2 only where K(z, ") vanishes, where
us e vanishes, or where ¢ = ¢'. We shall now consider these possibilities. If
¢ = ¢ throughout phase space, then u is proportional to us ; hence, because
both distributions are normalized, they must equal each other. In that case, the
two solutions are identical, and we have nothing further to prove. Or, we may
have the situation in which, for large values of Z, ps wps tends to zero, a con-
tingency we have called a run-away condition and have explicitly excluded.
Such a run-away condition may be brought about by the choice of a kernel K
which permits the system to pick up energy from the reservoir systematically
and without limit, so that the high-energy domains become available for a
progressive dilution of our ensemble. Finally, it is possible that the factor K
vanishes wherever the square bracket fails to tend to zero. To examine this
possibility further, we shall introduce new canonical coordinates, so-called co-
moving coordinates, in terms of which the Hamiltonian vanishes and all repre-
sentative points remain at rest except for the stochastic motion. In terms of
these new coordinates, Eq. (1.1) is simplified in that the Poisson bracket term
vanishes., K will in general become explicitly time-dependent, but this circum-
stance has no effect on the validity of Eq. (2.2). The argument that follows is to
be understood in terms of these co-moving coordinates.

As W is bounded from below, the integral over dW /di taken from { to ¢ + 7
must tend to 0 for any fixed finite value of 7 as we let £ go to =. But according
to Eq. (2.2) such an integral over d W /dt cannot tend to zero unless the stochastic
flux of representative points from any region about 2 (of nonzero measure) to
any similar region about «' with nonequal values of ui/us likewise tends to zero
when integrated over a time interval 7. Thus we conclude that for any domain
of nonzero measure the value of this ratio, pi/ue = ¢, must tend to a limiting
value. We can now divide all of phase space into a (finite or infinite) set of
domains each of which corresponds to a different value of ¢. There can be no
flux of representative points from one such domain to another that does not
tend to zero. Hence, within any such domain the total number of representative
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points belonging to either of our two solutions must remain constant. Thus
we have divided up phase space into a set of domains between which there is no
communication whatsoever. The nonexistence of such domains is the precise
formulation of our assumption of indecomposability above.

This assumption is very much weaker than the assumption that K(x, z') be
different from zero for all pairs of arguments; the latter would exclude from
consideration all physically interesting situations. (For instance, a collision will
not take a representative point from z to z’ if the configuration coordinates of
these two locations in phase space are different). The introduction of co-moving
coordinates freezes the deterministic motion; our domains of equal ¢ move about
their respective energy surfaces in terms of stationary coordinates. Thus to get
from x to 2, a representative point is permitted to alternate between determinis-
tie and stochastic motion an arbitrary number of times. We prohibit a situation
in which in spite of this freedom of choice it cannot reach 2.

If K is such as to satisfy our requirement of indecomposability and our pro-
hibition of run-away solutions, then, except perhaps for a domain of zero meas-
ure, w; approaches s asymptotically for large values of ¢, and this regardless of
any time dependence on the part of either H or K. We are particularly interested
in the case in which both of these functions are periodic in ¢ with a period 7o (in
situations we have envisaged, K does not depend on the time ¢ at all). In that
event, we may in particular consider two solutions of 1iq. (1.1) such that

pe(t) = m(t + nro) (2.4)

where n is any integer. These two expressions approach each other, too; in other
words, g will tend to be periodie for any fixed length of time T'. If there exists a
strictly periodic solution, then u will approach that solution asymptotically.
Henece, there cannot exist two different periodic solutions.

If both H and K are stationary, then there exists at most one stationary
solution, toward which all other solutions tend in the course of time. In con-
cluding this section, we should like to point out that the expression (2.1) for W
is by no means the only functional that is non-negative, vanishes only if the two
distributions considered are equal, and decreases monotonically with time, Our
particular choice was motivated principally by the circumstance that for the
case of single temperature bath and for the choice of the canonical distribution
for u» the expression (2.1) is proportional to the excess of Helmholtz potential of
the distribution p; over the equilibrium value, cf. Eq. (3.3). Even when the
stationary solution g, is not canonical, one can still give W, a simple form. If we
denote the negative logarithm of g, by A4, . = ¢ *, then W, is

W, = (4) — kS (2.5)
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3. APPROACH TO EQUILIBRIUM AND THE ONSAGER RELATIONS

We shall now apply the results obtained in the previous section to those cases
that interest us most: those of systems in contact with one or several tempera-
ture baths. Inasmuch as we require that in the presence of a single reservoir the
ensemble density of a system approach eanonicity as { — =, it is necessary that
the ecanonical distribution be a solution of Eq. (1.1),

1/Z)e™, H) = (1/2) f Kz, 2)e ™" — K, 2)e™®)dz’ = 0 (3.1)

since
(™, H)=0 (3.2)

Because of the theorem of Section 2, Eq. (3.1) is also a sufficient condition on K
for the system to approach equilibrium. Equation (3.1) is obviously less restrie-
tive than the “direct symmetry” condition (1.4): it implies only “ecircular
balancing” in the eanonical distribution.

The quantity W, defined by (2.5), which decreases monotonically until equilib-
rium is reached, is in this case simply related to the Helmholtz free energy F

W,=—S/k+8U—-InZ=8lU—-TS8—(1/8)InZ] = (1/kT)[F — F) (3.3)

where F; is the Helmholtz free energy at equilibrium.

It is to be noted that Eq. (3.1), which we might call the “integral condition”
on K, makes no reference to the “time reversed” symmetry condition (1.3).
Though Eq. (1.3) will hold if the reservoir distribution is eanonieal, it neither
implies nor is implied by (3.1). However, we can show that if the probability of
a collision of the system with some reservoir component (total collision cross
section) remains unchanged when all the momenta are reversed,

1fa(z) = fK(.r’, z) da’ = fK(I-!, B dx’ = 1/7() (3.4)
then this equality, together with the “time reversed” symmetry of q. (1.3),
implies (3.1) and through (3.1) the approach to the canonical distribution. For
proof we combine (3.4) and (1.3)
f K@@, z)di’ = f K@@', %) de’ = f K(x, &)exp {B[H(z) — H(z")]} dz' (3.5)
or

fK(x', a)e P gy’ = fK(a:, e ™= da!

which is just (3.1) since dz’ = d&’. It can be shown similarly that the “integral
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condition” (3.1) combined with the “‘time-reversed symmetry’’ property (1.3)
implies (3.4).

In the presence of a single reservoir, then, the kernel K should satisfy the
integral condition (3.1). When the system is in contact with n reservoirs at
temperatures 7; = (kﬁ,—}—', i = 1, --- m, then as pointed out in Section 1 the
kernel K has the form

K, 2y = 3 il )

=1

Each of the K; will satisfy (3.1) with its own 3, .
fK.-(:c, z)e M) gy’ = fK;(a:', z)e P da! (3.7

The Onsager reciprocal relations, defined by Equation (1.6), which were derived
in I on the basis of the assumption of the “direct symmetry” of the K, will
now be shown to hold also on the basis of the less stringent “integral condition”
of Eq. (3.7). However, unlike the approach to equilibrium, the validity of the
Onsager relations (here as well as in I) depends on the “time-reversed symmetry”
condition (1.3).

This is not surprising, for in contrast to the approach of a system to equilibrium
which is unidirectional in time and happens, so to speak, in spite of the reversi-
bility of the fundamental laws of nature, the Onsager relations are a direct conse-
quence of micro-reversibility.

The heat current .J, that flows from the /th reservoir to the system is given by
Eq. 5.4 of T as

5 = [[ oK, o) — HE@)de' da (3.8)

Although K, depends only on the temperature of the kth reservoir (or 8:), the
eurrent ./, will depend on all the 8;,7 = 1, --- | n, through u. When the system
has reached a steady state, then

s it 0 (15.6)

=1

The stationary distribution u,(x) satisfies the equation
o 1) = 3 [ K, ) — Kol dhm(a)] de’ (39)
=1
If all the 8; are equal, 8; = 3, then because of (3.7)

ws(2) |pims = 277 (3.10)
and the steady state is that of equilibrium.
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When only linear deviations from equilibrium are taken into account, then,
according to the Onsager relations, the cross-derivatives of the flows with respect
to the thermodynamie forces are, respectively, equal. It was shown in I (Section
5) that in our formalism the “forces” f; are linear functions of the 8, [f; =
k(8 — B:)]. Hence, we have to show that

_ g.fk(ﬁ.-)) _ (a.h(s‘-)) o
b= ( B /o= \ OB Ja=p T 810
Now

Ji = f f w@ K@, 2)[H@E') — H(x) dz'do, k#1 (3.12)
where

.u.,(ﬂ'.} - (g;:)ﬂ‘:ﬂ’ Kk(x” x} 23 Kk(.r", J‘.‘) [sk..s

Changing the variables of integration from (z, #') to (%, ) and then using (1.3)
we get

Ju = [[ w@Ria, 2 exp BUHE) — HEOY HE) - H@ld' dz (313)
From Equation (3.9)

(e, ) = [ [Rex, @ ula’) — RGa', (o) da’
(3.14)
+z f Rz, 2)e ™ [H(2") — H(z))dx'

where
R(z,z') = 2, Rx;2))
f=ml
Multiplying (3.14) by ¢ and substituting the resulting expression for the
second term on the right of (3.14) into (3.13), we find for the difference in the

cross-derivatives

it = Tu = Z [ dae™ @ e, H) — (@, H)}
-z | f K (z, )¢ [u(@)m(a’) — m(@m(z)] de’ do (3.15)

+2 [[ K6, ) @) — @) de' da
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The first and third term on the right of (3.15) will vanish, partly because the
terms in the square brackets are odd functions of x, whereas the expressions by
which they are multiplied are even functions of x, and partly because the in-
tegral of a complete Poisson bracket over all space vanishes. Similarly in the
second term the part in the square bracket changes sign when (z, ) » &, 2
while the factor multiplying it remains unchanged because of (1.3). Hence, Iiq.
(3.11) has been proved.

4, CONSTRUCTION OF KERNELS

In the last two sections we have taken Eq. (1.1) as our starting point. This
equation makes explicit use of the transition kernels K to describe the effect of
the reservoirs on the system. Our approach has been to find out what properties
these kernels must possess so that Eq. (1.1) may lead to certain results which
we believe to be true. We shall now return to our physical micro-model (as
described in Section 1) and construct the kernels K(z, ') directly from the as-
sumed distribution of reservoir components prior to collision and from the laws
of the collision. We shall then examine the symmetry properties of these kernels.

Let I', be the phase space of the system, T, the phase space of a reservoir com-
ponent, and T'. the composite phase space, z = (z, y)

I=(¢I1“"QA~'§P1““PNL y= (G, - Qu;Pr, - Pxy)

The assumption of impulsive interaction between system and reservoir implies
that except for some [2(N + M) — 1] dimensional surfaces S(z) = 0, the system-
reservoir combination moves along trajectories z(t) determined by the Hamil-
tonian H(z) = H,(z) + H.(y). Whenever the trajectory z(f) reaches a point 2
on one of these singular hypersurfaces, S(z') = 0, the representative point jumps
to another point z on S, z = T(2); thence it continues its motion along the
trajectory passing through z. At each point on S the vector Z will make an acute
angle with the normal to one side of S, the “‘outgoing” side S, , and an obtuse
angle with the normal to the opposite side of S, the “incoming” side S;. The
combined system then approaches S; at 2 and leaves S, at z. The mapping
is a completely deterministic transformation.

The joint distribution function f(z, y) = f(z) will be discontinuous at S. Let
us call the value of f on S; (the incoming side), fi(z, ) and on S, , fu(z, y). We
can specify f(x, y), the distribution before a collision, in advance. This and the
collision transformation z = 7'(z) will then determine f,(x, y).

Since S has [2(N 4 M) — 1] dimensions it can be described by the 2N system
variables x and (2M — 1) parameters u;,7 = 1, -+ (2M — 1), so that on S

yi =y 0@ w); j=1,-,2M Sy, w) =0

Let dw. be a volume element on the incoming side of S such that all the
points contained in dw,’ will reach S;, in the range dS/ = da’du’ in the time
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interval di. The collision transformation 7" will carry dS,” = dz'du’ into dS, =
dx du. All the points leaving dS, in a time interval df will then form a volume
element duw, . :

Then, because of Liouville’s theorem, we must have

i@, w) = fulx,w)  fuld, w) = £, yP@, 4], ete. (4.1)
and
dw, = dw, (4.2)

We may express this equality of volume elements by introducing as a new
quantity the coefficient o(z, u),

dw = o(x, w) dzx du dt (4.3)

for both the incoming and the outgoing trajectory.

This coefficient may be interpreted as the Jacobian of a coordinate transfor-
mation in phase space I'. . We may characterize every point P in I'. , both on and
off the surface S, by means of the trajectory on which it is located, and identify
the latter by means of the parameters ', % of the point P at which it inter-
sects S. To complete the identification of P, we also introduce the time ¢ which
has passed since the trajectory traversed S, positive for outgoing and negative
for incoming trajectories. Thus z'*, u and ¢ form a complete coordinate system,
and ¢ is the Jacobian J(z/z", u, 1), for t = 0, that is on S. Accordingly we
must have

ola’, u') de' du' = o(x, u) dz du (4.4)

As for the form of o, an evaluation of the Jacobian, whose details we shall omit,
yields the expression

iy -5 Yy \( i _ 0@, W) ‘

In this expression, the symbol 8, ;- represents the (skew-symmetric) Levi-Civita
symbol in the (2M)-dimensional space Ty, and the indices j, j'(=1, -, 2M)
and the index i(=1, --- | 2N) are summation indices. The velocity components
Y, & are those obtained from the Hamiltonian equations of motion.

Physically, o represents the flux of representative points (per unit density)
into (and out of) the hypersurface S in terms of the parameters on S, z'*, w.
(On the hypersurface S, 2 and x are, of course, identical).

We shall now consider the (fractional) number of systems that undergo colli-
sion during the time interval df and in the region dr of the system phase space
I'; . This quantity is

n, " dz dt = f fiz, We(x, w)dedudt, n'"~ = f filz, welz, w) du (4.6)
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n." is the fraction of systems lost from a given region of I': per unit volume and
per unit time because of collisions. Likewise, we define a similar quantity 1,
that enters the same region of I';, as follows:

net = ffg(x, wel(z, u) du (4.7)

The net gain is represented by the difference between n,” and 2., Presumably,
f: is given to us, whereas f, must be obtained from the Liouville relationship
(4.1). For this purpose we shall introduce both the collision mapping leading
from the incoming point 2° on S to the corresponding point z on S, and the
inverse mapping, as follows:

=T, o), u= T, u) (4.8)
and
= Tz, w), = Tolz,w) (4.9)

Accordingly, we may write the net change in (z) per unit time as a result of
collisions in the form

g_:,‘ + (u, H) = f“ [folz, w) = filz, wle(x, u) du

= f [fia’, ) — fila, wlo(z, w) du = f (£ITs (2, W), Talz, w)] (20

— fix, w}olx, w) du

which must now be compared with I£q. (1.1).
To this end we write the incoming joint probability density f; in the form

filz, ¥ = u(@)G(z, y*) (4.11)

By this definition we have introduced a new function @, which represents the
(conditional) distribution of reservoir components and which is independent of
the time £. We then conclude that the positive term in the integral (4.10) is to
be equated with the positive term in the integral (1.1), and that likewise the
negative terms in the two integrals correspond to each other. Hence we shall
equate

[ 6o = f K, &)’ da's [ Godu= [ K@ var'(=1/x@) @t12)
The integrals, as they stand, are disparate in that the domains of integration on

the left and on the right are not comparable. To remedy this defect we shall
introduce on the left the primed and the unprimed variables as formally inde-
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pendent and conneet them again by the introduction of appropriate Dirac delta
functions into the expanded integrals

f WG du = j‘ f f WG abaylz, Talz, Wlbenenltd, Tolz, w)] du di’ dz’ (4.13)

Substituting into the first Eq. (4.12), and omitting on both sides the integration
over /, we then obtain the following expression for K(x, ')

K(z, z') = ff _ G oboyl’, Tolz, w)asalte’, Tala, w)] du du’
U (4']4)
= f Gla', y® 1, Tolr, Wle(z, wowlz’, Tilz, u)] du

This expression automatically satisfies the second Eq. (4.12), because of the
equality (4.4).

We shall now proceed to discuss the properties of the kernel K in terms of the
assumed incoming joint probability density f;, Eq. (4.11). We shall begin with
time reversal. If the collisions between the system and the components of the
reservoir are subject to the laws of mechanics, including the law of (micro-)
reversibility, then the transition (@', «') — (x, u) must have a counterpart,
(%, @) — (&, @). In terms of the Dirac delta functions we must have

donlz’, TH(I, 1()]6“;4[1:’, ﬁ(r, u)]da:' du’
= boxl®, To(F, @) annslir, To(®, @)) dz du

regardless of the choice of coordinate system and parameters u. On the other
hand, it will be understood that, for time-reversed points, coordinates and param-
eters have been chosen so that

(4.15)

dz = dE; du = dii (4.16)
With this choice, we have also
oz, u) = (&, @) (4.17)
and hence, because of Eq. (4.4),
cdidi = ¢'dx’ du’ (4.18)

By combining Eqgs. (4.18) and Eq. (4.15), we obtain the equality
sunlz’, Ti(z, w)Basrafte, Tol, W)le(x, u)

= oyl Ti(E, @) oanala, To(@', @)]e(®, @) (4.19)
With its help, and by applying the expression for K, Eq. (4.14), we find for the
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time-reversed kernel A (i, &) the expression
K(#,3) = f f Gabuxla', Ta(w, Wseale, Tolwr, w)] dudu’ (4.20)

It differs from Eq. (4.14) only in that G’ is replaced by G.

The strongest assumption we can make about the form of G(z, y) is that it be
independent of x and a Boltzmann-type exponential in H,(y); this assumption
yields the time-reversed symmetry condition (1.3) immediately when we utilize
the principle of energy conservation

= aw, H'=8" B =5 (4.21)

However, Eq. (1.3) holds even under a much weaker assumption concerning @,
to the effect that G may be given the form

G(I, ylx)) . en..ﬁﬂr(wg(r_, _!j) (_122)
with
g(x', u') = g(&, @) (4.23)

This weakened assumption is sometimes useful when we consider a reservoir
whose configuration coordinates are constrained in a manner that depends on the
value of configuration coordinates of the system. We may, for instance, wish to
consider a system consisting of “hard” particles of finite extension. We should
not want to be required to permit the penetration of these hard particles by the
reservoir molecules. In such situations the factor ¢ depends only on configuration
coordinates, which neither are affected by transition to the time-reversed situa-
tion nor suffer a jump in the event of a collision. Hence the assumption (4.23)
still holds, and with it Eq. (1.3).

We next investigate the conditions for the validity of the integral condition
(3.1), which is both necessary and sufficient for the canonical distribution to be a
stationary solution of Eq. (1.1). We can do this best directly from Eq. (4.10).
If we let u there be the canonical distribution u., then, using the definitions
(4.11), (4.22) along with Eq. (4.21) we find that the integral condition requires
that

au |
It | p=pe

= 7 [exp {=BIH.() + ()]
(4.24)
lg(a’, u") —g(x, w)] oz, w) du = 0

This integral will of course vanish if
gz’ u') = gla, w) (4.25)
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If the distribution of reservoir components prior to collision is independent of
the state of the system and if it is canonical, then g(x, y™') is constant, and both
Eq.’s (4.21) and (4.23) are fulfilled. Hence a system in contact with one such
reservoir will reach equilibrium in the course of time; in the presence of several
such reservoirs the Onsager relations will hold in the stationary nonequilibrium
state.

The time-reversed condition for g, Eq. (4.23), together with Eq. (4.24) leads
to

[ exv 1=8H.6/)] 96z, Doz, u) du
(4.26)

= fexp [—8H,(y"™)] gz, Welz, u) du

According to the second Eq. (4.12), this equality implies the invariance of the
total collision cross section with respect to time reversal, i.e. 1/7(z) = 1/7(%),
which had been obtained previously in Eq. (3.5) without reference to the micro-
model.

The validity of the direct symmetry condition, Eq. (1.4), which implies
detailed balance in equilibrium, would be assured, according to Eq. (4.14), by
the following two properties of the micro-model: (a) Each transition (2/, ) —
(x, #) has an inverse (z, u) — (&', u'),

donlz’, Talz, W) Saaa[te’, Tolz, w))dz’ du’

= daylr, Th(x’, u))Bonafu, To(z', w')) dx du (427)
and (b) the coefficient ¢ satisfies the equality w

g, y'*®) = glx, y"* (4.25)

To illustrate the results of this section we shall work out a simple example of
a micro-model in the Appendix, whose initial joint distribution satisfies the
condition (4.23), but not the condition (4.24). The kernel K(z, ') will therefore
satisfy the time-reversed symmetry condition (1.3), but the canonical distribu-
tion will not be a stationary solution.

5. GENERALIZED CANONICAL ENSEMBLES

In this section we shall extend some of our previous results, which we had
derived on the assumption that the reservoirs were pure temperature baths, so
that we needed to consider only the transfer of heat. We shall now examine
systems interacting with more general types of reservoirs, whose components
prior to collision form a “generalized canonical ensemble’ (3). The joint distribu-
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tion of system and reservoir components prior to collision will now have the
form

Ji@', ) = u(@) exp [— 2t &'A ()] gz, ¥™) (5.1)
where
A" = H,, o = 1/kT

We are particularly interested in those cases where all the 4" are (a) additive,

Az y) = 4'@) + A'w), A =H, (5.2)
(b) eonserved by collisions,
A + 4'@7) = 4@ + 4,°G7) (5.3)
and (¢) conserved by the natural motion of the system
(A H,) =0 (5.4)

When all these conditions are satisfied, many of the theorems derived in the
last section for temperature baths remain valid. Thus, in analogy to Eq. (4.24),
the equality

f exp [ —2 A/ (@) + A o', v) — (glx, Wle(z, wdu = 0 (5.5)

implies that the generalized canonical ensemble g, is a stationary distribution
for the system density,

= 71 oxp e T AN (5.6)

In turn, if this distribution is to be stationary, then the kernel K representing
the interaction of a system with one generalized canonical reservoir satisfies an
integral condition of the form

fK(';r, z') exp I:E a'd,’(z) d.zil = fK(:c', x) exp I:—Z a":i_,"(x)il dz’  (5.7)

The quantity W, defined originally by Eq. (2.5), which decreases monoton-
ically as long as the system is not in its stationary state, is here given by

Wi f Wy + 32 oA’ = In Z,] de = % [F — F (5.8)

where F is a generalized thermodynamic potential,

F = [0 =8F 4 kTia"{A,‘)] (5.9)

fe=]
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6. GRAND ENSEMBLES

Up to now we have considered systems whose chemical composition was
fixed, i.e. systems which did not exchange matter with their surroundings. Hence,
the system was completely specified by a point in some fixed phase space I';.
We shall now consider systems that can exchange particles with their surround-
ings (chemical potential reservoirs). According to Gibbs, the treatment of such
systems calls for the construction of grand ensembles.

For simplicity, let us deal with a system that contains but one type of particle;
the generalization to several types of particles is straightforward. At any time {
the state of the system can be specified by a point x, in some phase space T'.,
having 2nl dimensions; n is the number of particles in the system at { and 1 is
the number of degrees of freedom of one particle,

Lo = (51! 2= 12«)
£= (g -, 0p o, p1)

Both n and x, will vary in time. Although the variation in x, (for fixed n) results
both from the natural motion of the system and from collisions with the reservoir,
n can change only as the result of interaction with the reservoir.

By assumption all the particles are identical. As a result, we have a choice of
two deseriptions of the state of the system. If two points z. and z.”,in T.,,
differ only by a permutation of the £’s they may be considered to describe two
different states of the system, or they may be considered as representing the
same state. In the first case, according to Gibbs, one speaks of a specific phase;
in the second case, the phase space obtained by the identification of all such
points is called the generic phase space T.,".

For a system containing n particles there are n! specific phases for each generic
phase. Hence, if f(z,) is a symmetric function of all the &'s then

v | S
f{ o Tl ") da,™ = = f . e daa (6.1)

We shall now construct an ensemble which contains member systems having
different numbers of particles, a grand ensemble. For each ensemble we may
define two ensemble densities, w,’(z.) and w,’(x,), as follows: w, (&, -+ &)-
dg, - -+ dg, is the probability that there are n particles in the system and that
particle 1 is in the range (& , & + d&), particle 2 in (&, & + d&), ete., whereas
w (&1, -+ E)dE - - - d§, is the probability that there is one particle whose
identity is not specified in the range (&, & + d&), one in (&, & + d&) ete
It is clear from these definitions that

.V'np(xn) = ;.uﬂ(xn)
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Giibbs found that in order to make the entropy, defined as
§= =¥ f LI (6.2)
n=f

additive, it was necessary to use the generic density in Eq. (6.2). In quantum
mechanies, the specific phase of classical physies does not even have an analog.
In our model, in which particles can enter and leave the system in the course of
time, use of the specific phase space would be awkward. We shall work with the
generic density up.’(x.) in the phase space T'.,’. Henceforth we small omit the
superseript g.

The equation which deseribes the time evolution of w,(x, , ) is a generaliza-
tion of I5q. (1.1); it includes the possibility that the system loses or gains par-
ticles. This generalized equation is

An (2 , 1) : _5 e AN ot
T + (.un’ IIN(TR)) = ; ff [I&n. 1(-(“ y Lj )P-l(l:a) (6.1}

E—+ Ka’, ﬂ(Il"} rn)ﬂﬂ(rn)] dﬂtr;

where K, (x,, z/) is the probability per unit time that a system at 2" will
make a transition to x, . In such a transition the number of particles in the sys-
tem changes by (n — 1).

The stationary grand ensemble which represents an open system in equilibrium
with a reservoir that has a chemical potential » and a temperature 7' is the
arand canonical ensemble whose density w,(x,) is

pa(a) = (1/Z) exp [—BH.(xa) + 1l (6.2)

where

n=()

L L ST f: exp [— BH.(z.)] dza

The necessary and sufficient condition for the grand canonical ensemble to be
a stationary solution of Eq. (6.1) is that

o f (K, dxn, ) exp [— BH(x]) + 71l — K; (2!, z,)

=0 J et (6.3)
exp [— BH.(x.) + ynl} dx/ =0

The role played by the Helmholtz free energy for a petit ensemble in contact

with a temperature reservoir is assumed in a grand ensemble by the “grand
canonieal potential” @,

G =U— TS — »(n) (6.4)
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where
U= iﬂ in(xs‘)Fi(x{) du;
: (6.5)
() = X i [ wited da,

A theorem analogous to that of Section 2 shows that the stationary state is
approached monotonically in a grand ensemble. The symmetry properties of
the particle exchange kernels K, .(v,, ©,) that are analogous to the time-
reversed symmetry condition (1.3) for the kernels K (z, ) are

K, .M(In ; xm’)
Kmm(f’m 3 -'f'u)

When n = m, i.e. when no particles are exchanged, Eq. (6.11) reduces to Eq.
(1.3). The factor ¢” is the “fugacity” of the reservoir and so represents in some
sense the probability of a particle leaving the reservoir and entering the system,
while (e7)" represents the same for k particles leaving the reservoir. Usually
K, . is zero unless m = n, n == 1, as the number of particles in the system
changes by one at a time. In analogy to Iq. (3.5) we can prove that if Eq. (6.11)
is satisfied and if further

= exp [BlHn(xn) — Halz,)] — (m — n)y] (6.11)

1/ 7u(zs) = Z f Kia(wd, 2) dzd = 1/7a(Z) (6.12)

then Eq. (6.3) also holds.

When the system is connected to two or more reservoirs having different tem-
peratures and chemical potentials, then in the stationary state there will be both
particle and heat current flowing through the system.

1If we consider the heat flowing from the ith reservoir to the system, J;, and
the particle flux J/; as “currents” and §; and y; as the corresponding “forces,”
then for systems not far from equilibrium these quantities satisfy Onsager rela-
tions.

7. CONCLUSION

In this paper we have considered the asymptotic independence of solutions of
our basic integro-differential equation under more general assumptions than
previously. We found that if there exists a stationary solution then it will be
unique, and it will be approached by all other solutions in the course of time.
The existence of a stationary solution under the Doeblin condition had been
established previously, and we have added nothing to that result. We have re-
examined the necessary symmetry conditions obeyed by the stochastic kernels,
have found that our original requirement was stronger than necessary, and have
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been able to derive the new and weaker conditions directly from the properties
of the underlying micro-model.

As the principal lines of future investigation, we envizage the extension of our
physical model to quantum physies, and the development of methods permitting
the explicit construction of stationary solutions.

APPENDIX

We shall give here a simple illustration of the ideas developed in Section 4. We
consider a system consisting of a one-dimensional particle with a Hamiltonian
H,

H,(z) = p’/2M + V(g) (A.1)

The reservoir will likewise consist of an ideal one-dimensional gas each of whose
components has a Hamiltonian f.(y),

H.(y) = P/2M + U(Q) (A.2)

The three-dimensional surface S(z) where collisions (elastic) between the
system and reservoir components take place is defined by the relation,

8t) =g —G =0 (A.3)

A point on 8§ will be defined by the system variables (¢, p) and the parameter
u = P, so that here

Q=q P =P (A4)

The collision transformation 7', which transforms the initial state 2’ into the
final state z, is

- m — M i 2m ', - 2M ' ﬂ’f —m ¥ =
B (m s M)"’ + (m = M)P L _(m ¥ M) B +(;n- +m)P (A5}
g=49'% Q@=@Q =g (A.6)

This transformation satisfies Eq. (4.27).
Substituting (A.5) and (A.6) into Eq. (4.14) for the kernel K we get

ke = s [[aree s - (3 35)P - (50)]

L M . o
- I:P = (m T j,-[) P — (m) P] exp {‘_ ﬂl:[ (q) +mi|} (A7)

P___P_‘l
m M|/

glg’, 9’5 4/, P)

In order to perform the integration in (A.7) we need to know the form of g.
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We shall consider here two cases: (1) The distribution of reservoir components
prior to collision is independent of the system, i.e. g is constant.

gl By = f PEHM gp (A.8)

—

(2) The reservoir components are always to the right of the system, ¢ < Q.
Hence at the beginning of a collision p’/m > p'/M, and ¢ has the form

g = (/z)h(p’/m — P'/M) (A9)
where
[1 for e> 0
hie) =
10 for €<0

In the first case Eq. (4.25) is satisfied in addition to Eqs. (4.27), so that
K(z, 2’) has the direct symmetry property of Eq. (1.4). In fact, integration of
Eq. (A.7) yields

- r r 4 ;"lf F ! y i !
Kalg, p;¢,p) = ;—%6@ — q)exp {— 8lU(q)

+ V(q’}]} ‘ £ p‘ SR {“ i flf [(m_j'L M)- s g

g 2m

+ (‘L — m-) p;v’]} exp B[V(q’) + ; ] = Lig, p; ¢, »") exp [BH.(¢', )]

2m? 2m
where
L(q,p'59,p) = Llg, p; ¢’ p)
In the second case g will not satisfy Eq. (4.25) or even Eq. (4.24). The canonical
ensemble will therefore not be a stationary distribution when the system is in
contact with this reservoir. However, since g satisfies Eq. (4.23), the kernel K

will have the time-reversed symmetry property of Eq. (1.3). The actual form
of K is

Kalg, p; 45 0) = h(p' — p)Kwlg, pi ¢, p) (A.11)
Kelg, p; ¢, p)e? """ = K¢, —p'; ¢, —p)e ™ “?

We can find the stationary solution of the integro-differential equation obeyed
by the ensemble density u

3 = FR Pt
b ; Hs s = K { y P34 ( J )
% 1w Hla ) = [ Keola, w3, 9u(d, (A12)

== K(i’)(q’s 'p’! 1, P)#(G’r P)] dq’ d‘p!
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in the special case when the mass of the system equals the mass of a reservoir
particle, m = M, and U(Q) = 0. This solution turns out to be

wslg, p) = C exp {— 8 [‘2%3 + Vig) + g q]} (A.13)

The last term in the exponent produces a probability density gradient that is
the same as would be caused by a constant force directed toward the left. We
may think of this force as the unilateral pressure caused by the reservoir gas,
which is constrained to be only on the right of our system particle. The value
of this pressure is n/8, in accordance with the equation of state of a perfect gas.
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