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Abstract. We investigate a kinetic model of a system in contact with
several thermal reservoirs at different temperatures Tα . Our system is a
spatially uniform dilute gas whose internal dynamics is described by the
non-linear Boltzmann equation with Maxwellian collisions. Similarly, the
interaction with reservoir α is represented by a Markovian process that has
the Maxwellian MTα

as its stationary state. We prove existence and unique-
ness of a non-equilibrium steady state (NESS) and show exponential conver-
gence to this NESS in a metric on probability measures introduced into the
study of Maxwellian collisions by Gabetta, Toscani and Wennberg (GTW).
This shows that the GTW distance between the current velocity distribution
to the steady-state velocity distribution is a Lyapunov functional for the sys-
tem. We also derive expressions for the entropy production in the system plus
the reservoirs which is always positive.

1 Introduction

The existence, uniqueness and nature of a non-equilibrium steady state (NESS) of
a system in contact with several reservoirs at different temperatures and/or chemi-
cal potentials continues to be one of the central problems in statistical mechanics,
as is the approach to such a state. There are only a few models in which the iso-
lated system evolves according to classical Hamiltonian mechanics or according
to quantum mechanics for which we have even partial answers to these questions
(Bonetto et al. (2000), Dhar (2008), Lepri et al. (2003), Goldstein et al. (1978)). In
addition to the rather unphysical models corresponding to harmonic crystals and
ideal gases, existence and uniqueness was proven for systems interacting with soft
potentials in contact with thermal walls (Kipnis et al. (1985)). The resulting NESS
is spatially non-uniform, and we have little information about its structure. This is
true to a large extent even for cases in which the system is described mesoscopi-
cally by a one particle distribution f (x, v, t), as in kinetic theory, where correla-
tions between particles are negligible. For information about this important case,
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we refer the reader to Esposito et al. (1994), Arkeryd and Nourri (2000) and ref-
erences in the latter paper’s extensive bibliography. Both papers consider diffuse
boundary conditions at different temperatures, and exitence of an NESS is the main
result.

More is possible to prove for NESS of kinetic systems that are spatially uni-
form. Such a system, with one reservoir, but acted upon by an electric field, is
investigated in Carlen et al. (1995, 1998) and will be discussed later in this paper.

Here we extend this investigation to the case in which the system is coupled to
several thermal reservoirs at different temperatures. Remarkably, we find, for the
first time we believe, a Lyapunov functional for such systems. This is described
in Sections 2 and 3. Then in Section 4 we consider entropy production for such
systems, and in Section 5 we consider the presence of an external electric field.
Finally, in Section 6 we consider the possibility of deriving such kinetic models
from more microscopic descriptions.

1.1 Description of the basic model

As already indicated, we deal in this note with a system described by the one-
particle probability density f (v, t). We are interested in particular in the case in
which the evolution is given by the non-linear Boltzmann equation with pseudo-
Maxwellian molecular collisions, for which the collision kernel is

Q(f,f ) :=
∫
R3

∫
S2

b

(
v − v∗
|v − v∗| · σ

)[
f

(
v′∗

)
f

(
v′) − f (v∗)f (v)

]
dv∗ dσ.

Here dσ denotes the uniform probability measure on the sphere, and

v′ := v + v∗ + |v − v∗|σ
2

and v′∗ := v + v∗ − |v − v∗|σ
2

.

We assume Grad’s angular cut-off with
∫
S2 b(u · σ)dσ = 1 for any unit vector u,

so that
1

2

∫ 1

−1
b(s)ds = 1. (1.1)

Then we can separate Q(f,f ) into its gain and loss terms

Q(f,f ) = Q+(f, f ) − Q−(f, f ),

where

Q+(f, g)(v) :=
∫
R3

∫
S2

b

(
v − v∗
|v − v∗| · σ

)
g
(
v′∗

)
f

(
v′) dv∗ dσ,

(1.2)
Q−(f, g) := f.

Observe that the equilibria canceling this collision operator are given by the
so-called Maxwellian density

Mu,T (v) := 1

(2T π)3/2 exp
(
−|v − u|2

2T

)
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with bulk velocity u ∈ R
3, and temperature T > 0. We denote simply MT = M0,T

when u = 0.
The system is spatially homogeneous, and is coupled to several thermal reser-

voirs, indexed by α, at temperatures Tα . To describe the interaction with the reser-
voirs, we include in the evolution equation a term of the form Q(f,R). The sim-
plest example would have two reservoirs at temperatures T1 and T2 with the same
coupling, in which case

R := 1

2
MT1 + 1

2
MT2 . (1.3)

However, our methods and results do not depend very much on this particular
form of R, and for this reason we leave the distribution R unspecified in much of
our discussion.

It will be convenient to choose the time scale so that the total loss term coming
from both Q(f,f ) and Q(f,R) is simply −f . We can do this whatever the relative
strength of the two collision mechanisms by making an appropriate choice of the
time scale so that in terms of a parameter γ ∈ (0,1), the evolution equation can be
written as

∂f

∂t
= (1 − γ )Q(f,f ) + γQ(f,R), (1.4)

where R be any given probability density on R
3. Of course, if R = MT for some

T , then MT is the unique steady state solution of (1.4). However, if R is given by
(1.3) for T1 �= T2, then we have no simple expression for any steady state.

Without loss of generality, we can scale the energy such that∫
R3

vR(v)dv = 0 and
∫
R3

|v|2R(v)dv = 1. (1.5)

Lemma 1.1. Let f∞ be any steady-state probability density of (1.4). Then, assum-
ing (1.5), we have∫

R3
vf∞(v)dv = 0 and

∫
R3

|v|2f∞(v)dv = 1.

Proof. Let f be a solution of (1.4). For any test function ϕ(v), and any two prob-
ability densities f and g, we have, by a standard computation∫

R3
Q(f,g)ϕ(v)dv =

∫
R3×R3×S2

b(σ · k)f (v)g(v∗)
[
ϕ

(
v′) − ϕ(v)

]
dv dv∗ dσ,

where k := |v − v∗|−1(v − v∗).
For ϕ(v) = v, ϕ(v′) − ϕ(v) = 1

2(v∗ − v + |v∗ − v|σ). Decomposing σ = (σ ·
k)k + σ⊥, we have that∫

R3×R3×S2
b(σ · k)f (v)f (v∗)

[
ϕ

(
v′) − ϕ(v)

]
dv dv∗ dσ

=
[
1 − 1

2

∫ 1

−1
sb(s)ds

]∫
R3×R3

(
v∗ − v

2

)
f (v)g(v∗)dv dv∗.
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Therefore,

d

dt

(∫
R3

f (t, v)v dv

)
= γ

∫
R3

Q(f,R)v dv

= −γ

2

[
1 − 1

2

∫ 1

−1
sb(s)ds

]∫
R3

f (t, v)v dv.

By (1.1), [1 − 1
2

∫ 1
−1 sb(s)ds] > 0, and so the first moment relaxes to zero expo-

nentially fast.
Likewise, for ϕ(v) = |v|2,

ϕ
(
v′) − ϕ(v) = |v∗|2 − |v|2

2
− σ · (v + v∗).

Decomposing σ as before,∫
R3×R3×S2

b(σ · k)f (v)f (v∗)
[
ϕ

(
v′) − ϕ(v)

]
dv dv∗ dσ

=
[
1 − 1

2

∫ 1

−1
sb(s)ds

]∫
R3×R3

( |v∗|2 − |v|2
2

)
f (v)g(v∗)dv dv∗.

Therefore,

d

dt

(∫
R3

f (t, v)|v|2 dv

)
= γ

∫
R3

Q(f,R)v dv

= −γ

2

[
1 − 1

2

∫ 1

−1
sb(s)ds

](∫
R3

f (t, v)|v|2 dv − 1
)
.

It follows that (
∫
R3 f (t, v)|v|2 dv − 1) relaxes to zero exponentially fast. In any

steady state, these moments must have the limiting value. �

1.2 The fixed-point equation

Because we have fixed the time scale so that the total loss term is simply f , the
steady-state equation can be written as

f = (1 − γ )Q+(f, f ) + γQ+(f,R).

We now follow a method introduced in Carlen et al. (2000) to solve this equation.
Define the function � from the space of probability densities on R

3 into itself
by

�(f ) = (1 − γ )Q+(f, f ) + γQ+(f,R) (1.6)

so that the steady-state equation is simply

f = �(f ). (1.7)
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We shall show that � is contractive in the Gabetta–Toscani–Wennberg metric
(Gabetta et al. (1985)), which is the metric defined as follows: Let f and g be
two probability densities on R

3 with finite second moments such that the first and
second moments are identical. Let f̂ and ĝ denote their Fourier transforms. Then

dGTW(f, g) := sup
ξ �=0

|f̂ (ξ) − ĝ(ξ)|
|ξ |2 .

The following contraction lemma gives us existence and uniqueness of steady
states for (1.4).

Lemma 1.2. For all probability densities f and g with the same first and second
moments as R,

dGTW
(
�(f ),�(g)

) ≤
(

1 − γ

[
1

2
− 1

4

∫ 1

−1
sb(s)ds

])
dGTW(f, g).

In particular, if b is even,

dGTW
(
�(f ),�(g)

) ≤
(

1 − γ

2

)
dGTW(f, g).

Proof. Recall the Bobylev formula (Bobylev (1975, 1988)),

Q̂+(f, g)(ξ) =
∫
S2

f̂ (ξ+)ĝ(ξ−)b

(
σ · ξ

|ξ |
)

dσ, (1.8)

where

ξ± = ξ ± |ξ |σ
2

. (1.9)

Note that |ξ+|2 + |ξ−|2 = |ξ |2.
Then we decompose

Q̂+(f, f ) − Q̂+(g, g) = Q̂+(f − g,f ) + Q̂+(g, f − g)

and we deduce

dGTW
(
Q+(f, f ),Q+(g, g)

) = sup
ξ �=0

|Q̂+(f − g,f ) + Q̂+(g, f − g)|
|ξ |2

≤ sup
ξ �=0

∫
S2

|f̂ − ĝ|(ξ+)|ĝ|(ξ−)

|ξ |2 b

(
σ · ξ

|ξ |
)

dσ

+ sup
ξ �=0

∫
S2

|ĝ|(ξ+)|f̂ − ĝ|(ξ−)

|ξ |2 b

(
σ · ξ

|ξ |
)

dσ.
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Next, using the definition of dGTW(f, g) and the fact that ‖ĝ‖∞ ≤ 1,∫
S2

|f̂ − ĝ|(ξ+)|ĝ|(ξ−)

|ξ |2 b

(
σ · ξ

|ξ |
)

dσ

=
∫
S2

|f̂ − ĝ|(ξ+)|ĝ|(ξ−)

|ξ+|2
|ξ+|2
|ξ |2 b

(
σ · ξ

|ξ |
)

dσ

≤ dGTW(f, g)

∫
S2

|ξ+|2
|ξ |2 b

(
σ · ξ

|ξ |
)

dσ.

Likewise,

sup
ξ �=0

∫
S2

|ĝ|(ξ+)|f̂ − ĝ|(ξ−)

|ξ |2 b

(
σ · ξ

|ξ |
)

dσ ≤ dGTW(f, g)

∫
S2

|ξ−|2
|ξ |2 b

(
σ · ξ

|ξ |
)

dσ.

Then since |ξ+|2 + |ξ−|2 = |ξ |2, we have that

dGTW
(
Q+(f, f ),Q+(g, g)

) ≤ dGTW(f, g).

Next, by essentially the same calculation,

dGTW
(
Q+(f,R),Q+(g,R)

) ≤
∫
S2

|f̂ − ĝ|(ξ+)|R̂|(ξ−)

|ξ+|2
|ξ+|2
|ξ |2 b

(
σ · ξ

|ξ |
)

dσ

≤ dGTW(f, g)

∫
S2

|ξ+|2
|ξ |2 b

(
σ · ξ

|ξ |
)

dσ.

Since |ξ+|2 = 1
2(|ξ |2 + |ξ |(ξ · σ)),∫

S2

|ξ+|2
|ξ |2 b

(
σ · ξ

|ξ |
)

dσ = 1

4

∫ 1

−1
(1 + s)b(s)ds.

Altogether, by the triangle inequality, we have

dGTW
(
�(f,f ),�(g, g)

) ≤
(
(1 − γ ) + γ

[
1

4

∫ 1

−1
(1 + s)b(s)ds

])
dGTW(f, g),

which gives the result. �

Theorem 1.3. Suppose that R satisfies (1.5). Then there is a unique steady-
state solution f∞ of (1.4). Moreover, if we define a sequence by f0 = R and
fn = �(fn−1) for all n ∈N, then f∞ = limn→∞ fn, and

dGTW(fn, f∞) ≤ λn

1 − λ
dGTW

(
�(R),R

)
, (1.10)

where

λ =
(
(1 − γ ) + γ

[
1

4

∫ 1

−1
(1 + s)b(s)ds

])
< 1.
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Proof. This is a direct consequence of the previous lemma and the contraction
mapping theorem. Recall from the proof that

dGTW(fn+1, fn) ≤ λndGTW
(
�(R),R

)
.

Then by the triangle inequality we obtain the final estimate. �

We remark that the equation (1.10) allows the effective computation of f∞.
Once can certainly evaluate it numerically, especially when b is even so that λ =
1 − γ /2.

2 Exponential convergence

Since for small h, and any two solutions f and g of (1.4),

f (t + h) − g(t + h) = h
[
�

(
f (t)

) − �
(
g(t)

)] + (1 − h)
[
f (t) − g(t)

] + o(h),

it follows from our contraction estimate in the previous section that provided f (0)

and g(0) have the same first and second moments as R,

d

dt
dGTW

(
f (t), g(t)

)

≤ −
[
1 −

(
(1 − γ ) + γ

[
1

4

∫ 1

−1
(1 + s)b(s)ds

])]
dGTW

(
f (t), g(t)

)
.

In particular, taking g(t) = f∞, we see that dGTW(f (t), f∞) decreases to zero
exponentially fast.

We can dispense with the requirement that the initial data f (0) has the same
first and second moments as R by using the correction technique introduced in
Carlen et al. (1999). Let us describe briefly this argument. Let us denote

λ0 := 1

2

[
1 − 1

2

∫ +1

−1
sb(s)ds

]
> 0,

λ1 :=
[
1 −

(
(1 − γ ) + γ

[
1

4

∫ 1

−1
(1 + s)b(s)ds

])]
> 0.

We define (in Fourier variables)

M̂[f ] := χ(ξ)
∑

|α|≤2

(∫
R3

vαf (v)dv

)
ξα

α! ,

where we use the standard notation for multi-indices α = (α1, α2, α3) ∈ N
3,

|α| = α1 + α2 + α3, vα = v
α1
1 v

α2
2 v

α3
3 , α! = α1!α2!α3!, and where χ is a compactly

supported smooth function that is equal to one around ξ = 0. Then if we consider
two solutions f and g with possibly different momentum and energy, we write
D = f − g −M[f − g], S = f + g, and obtain

∂tD = (1 − γ )Q(D,S) + (1 − γ )Q(S,D) + γQ(D,R) − W
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with

W := [
∂tM[f − g] + (1 − γ )Q

(
M[f − g], S)

+ (1 − γ )Q
(
S,M[f − g]) + γQ

(
M[f − g],R)]

,

and one checks by similar moment estimates as above that

∣∣Ŵ (ξ, t)
∣∣ ≤ C|ξ |2

( ∑
|α|≤2

∣∣∣∣
∫
R3

vα[
f (v, t) − g(v, t)

]
dv

∣∣∣∣
)

≤ C′|ξ |2e−λ0t

for some constants C,C′ > 0. We then perform the same contraction estimate as
before since D is now the Fourier transform of a centered zero-energy function,
and obtain

sup
ξ∈R3

|D̂(ξ, t)|
|ξ |2 ≤ sup

ξ∈R3

|D̂(ξ,0)|
|ξ |2 e−λ1t + C′′e−min(λ0,λ1)t

for some constant C1. Finally, we deduce by taking g = f∞ that f is converging
to the equilibrium f∞ with exponential rate, measured in the distance

d ′
GTW(f, g) = sup

ξ∈R3

|f̂ (ξ) − ĝ(ξ) − M̂[f − g](ξ)|
|ξ |2 + ∣∣M[f − g]∣∣,

which writes d ′
GTW(f, f∞) ≤ C′′′e−min(λ0,λ1)t for some constant C′′′ > 0.

3 Diffusive thermal reservoirs

In some physical situations, it is more appropriate to model the interaction of a
system with reservoirs by an Ornstein–Uhlenbeck continuous time process rather
than the discrete time collision model that we have considered above. This leads
to a kinetic equation of the form

∂

∂t
f (v, t) = Q(f,f ) + ∑

α

ηαTα

∂

∂v

[
MTα

∂

∂v

(
f

MTα

)]
. (3.1)

The constant ηα sets the strength of the interaction with the αth reservoir.
Note that in this setting, the evolution equation for several reservoirs reduces to

the evolution equation for a single reservoir, since

∑
α

ηαTα

∂

∂v

[
MTα

∂

∂v

(
f

MTα

)]
= ηT

∂

∂v

[
MT

∂

∂v

(
f

MT

)]
,

where

η = ∑
α

ηα and T = 1

η

∑
α

ηαTα.
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The effective evolution equation

∂f

∂t
= Q(f,f ) + ηT

∂

∂v

[
MT

∂

∂v

(
f

MT

)]
(3.2)

is then easy to analyze since in this case the unique stationary state is MT , and the
relative entropy with respect to MT , that is,

∫
R3 f [logf − logMT ]dv decreases to

zero exponentially fast. Likewise,[
3T −

∫
R3

v2f (v, t)dv

]
= e−2ηt

[
3T −

∫
R3

v2f (v,0)dv

]
.

In fact, more is true: This evolution also has the contractive property proved in
the previous section for (1.4), now using a different metric, but one that is equiva-
lent to the GTW metric (Gabetta et al. (1985)), namely the 2-Wasserstein metric.

A theorem of Tanaka (Tanaka (1973, 1978/1979)) says that the evolution
described by the spatially homogeneous Boltzmann equation for Maxwellian
molecules is contractive in this metric. (We do not describe this metric here, other
than to say that like the GTW metric, it metrizes the topology of weak conver-
gence of probability measures together with convergence of second moments, and
we refer to the book Villani (2003) for the definition and the proof of this fact.)

As Otto has shown (Otto (2001)), the evolution described by

∂f

∂t
= ηT

∂

∂v

[
MT

∂

∂v

(
f

MT

)]

is exponentially contractive in the 2-Wasserstein metric: If f and g are any two
solutions of this equation

dW2

(
f (·, t), g(·, t)) ≤ e−η(t−s)dW2

(
f (·, s), g(·, s)).

Together with Tanaka’s theorem for the equation with the collision operator Q only
and a splitting argument (i.e., a non-linear Trotter product argument), one easily
establishes that this same estimate is valid for solutions of (3.2) and therefore (3.1).
In particular, it follows that for all solutions f (v, t) of (3.1),

dW2

(
f (·, t),MT

) ≤ e−ηtdW2

(
f (·,0),MT

)
(3.3)

≤ e−(n/T )t

(
1

2

∫
v2f (v,0)dv + T

)
,

where we have used a simple estimate (see Villani (2003)) for dW2(f (·,0),MT )

in the last inequality.
In conclusion, for the diffusive reservoirs, we have not only a “free energy type”

Lyapunov functional, namely the relative entropy with respect to MT , but also a
different one that is similar in nature to the one we found in the previous section
for (1.4).
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4 Entropy production for thermal reservoirs

We now consider the entropy production when the reservoirs are thermal. More
precisely, we assume that the time evolution of f (v, t) is given by

∂f

∂t
= Q(f,f ) + ∑

α

∫
R3

[
Kα

(
v, v′)f (

v′) − Kα

(
v′, v

)
f (v)

]
dv′. (4.1)

The Markovian rates Kα(v, v′) describe collisions with the thermal reservoir at
temperature Tα = β−1

α resulting in a transition from v′ to v, and Q(f,f ) is a
general Boltzmann type collision operator, not necessarily of the Maxwellian type.
We assume detailed balance for each reservoir; that is,

∀α, K
(
v, v′)MTα

(
v′) = K

(
v′, v

)
MTα(v). (4.2)

Equations (4.1) and (4.2) thus include (1.4) and (1.3) as special cases. However,
the exponential approach proved for the latter may not hold in this more general
case. In fact, even the existence and uniqueness of a stationary state for (4.1) and
(4.2) is not guaranteed; see, for example, Carlen et al. (1995, 1998). On the other
hand, the analysis below applies to the broader class of models for which there is
existence and uniqueness of the NESS, and also carries over to the case in which
f and the Kα depend on position x ∈ R

3, though we shall not pursue this here.
The rate of change of the system’s Boltzmann gas entropy is given by

Ṡ = − d

dt

∫
R3

f logf dv = σB + ∑
α

σα − σR, (4.3)

where σB is the usual rate of change of the entropy due to the Boltzmann collision
term, which is non-negative and equal to zero if and only if f is a Maxwellian.
The σα are given by

σα := 1

2

∫
R3

∫
R3

Kα

(
v, v′)Mα

(
v′)[να(v, t) − να

(
v′, t

)]
log

να(v, t)

να(v′, t)
dv dv′

(4.4)
≥ 0,

where

να(v, t) = f (v, t)

Mα(v)
.

Finally, σR is the rate of production of entropy in the reservoirs

σR := ∑
α

βαJα (4.5)

with

Jα(t) := 1

2

∫ ∫
Kα

(
v, v′)f (

v′, t
)[

v′2 − v2]
dv dv′ (4.6)
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being the flux of energy into the αth reservoir at time t .
The total rate of entropy production in the system plus reservoirs is given by

σ = Ṡ + ∑
α

βαJα ≥ 0. (4.7)

In the stationary state, Ṡ = 0, and

σ = ∑
α

βαJ α = σB + ∑
α

σα ≥ 0, (4.8)

where the bars denote quantities computed in the stationary state f∞.
There is equality in (4.8) if and only if σB = 0 and σα = 0 for each α, and this is

the case if and only if the stationary state is a Maxwellian, and all of the reservoirs
have the same temperature.

In the case of equal temperature βα = β for all α, σ in (4.7) is given by

σ = d

dt
[S − βE] = −β

d

dt
F,

where E = 1
2〈v2〉 is the average energy of the system and F is a kind of free energy.

F is thus a Lyapunov functional achieving its minimum when f = MT . In fact, it
is just the relative entropy of f with respect to MT .

When the βα are unequal, σ is not a time derivative, and the only Lyapunov
functionals we know are dGTW(f, f∞) (or dW2(f, f∞) in the case of diffusive
reservoirs), and only in the case in which the time evolution is given by (1.4).

In the stationary state, we must of course have
∑

α J α = 0. Hence if we have
only two reservoirs, then

σ = (β1 − β2)J 1 ≥ 0; (4.9)

that is, heat flows from the hot to the cold reservoir.
We note that when the system is coupled to reservoirs (with equal or unequal

temperatures), then S need not be monotone non-decreasing as is evident from the
fact that we can start from an initial state with an entropy that is higher than that of
the stationary sate; for example, a Maxwellian with a sufficiently high temperature.
It is only when σR ≤ 0 that Ṡ must be non-negative.

The above considerations remain valid when the Boltzmann collision kernel
Q(f,f ) is replaced by the modified Enskog collision kernel which is generally
considered to be a good approximation for a moderately dense gas; see Goldstein
and Lebowitz (2003) and references provided there.

As noted above, in some physical situations it is more appropriate to model the
interaction of a system with reservoirs by an Ornstein–Uhlenbeck continuous time
diffusion process rather than a discrete time jump process as in (4.1). Our analysis
of entropy production allows for a more general class of diffusive reservoirs than
did our discussion of the contraction property. In particular, we can allow velocity
dependent diffusion coefficients. Similarly, the collision term may be modified
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when the system is not a dilute gas. We shall therefore write a general kinetic
equation in the form

∂f

∂t
= Q(f ) + ∑

α

∂

∂v

[
ηα(v)TαMTα

∂

∂v

(
f

MTα

)]
(4.10)

requiring only that Q(f ) conserve the energy, momentum and mass of f , and that

−
∫
R3

Q(f ) logf dv ≥ 0

with equality if and only if f = MT for some T . The above analysis can now be
repeated with σα replaced by

σ ′
α :=

∫
R3

f ηα(v)Tα

∣∣∣∣ ∂

∂v

(
f

MTα

)∣∣∣∣2 dv.

5 Systems driven by an electric field

In the systems considered so far in this paper, a non-equilibrium steady state has
been maintained by at least two reservoirs with energy flowing out of some and into
others. A different sort of model is investigated in Carlen et al. (1995, 1998) which
concerns a weakly ionized plasma with energy supplied by an electric field E, and
removed into a reservoir by a damping mechanism. In this model, the probability
density f (v, t) evolves according to

∂f

∂t
= 1

ε
Q(f ) − E · ∂

∂v
f + ν[f̃ − f ] + ∂

∂v

[
D(v)M

∂

∂v

(
f

M

)]
. (5.1)

In (5.1), E is a constant electric field, ε is a small parameter setting the rate of
internal collisions, f̃ is the spherical average of f (hence radial, but with the same
energy distribution as f ), ν is a constant, and M is a centered Maxwellian with
T = 1. See (2.1-4) in Carlen et al. (1995).

When E = 0, the unique equilibrium is M , and the free energy F is a Lyapunov
function. Also when D(v) = D independent of v, and ν = 0, the NESS is given by
the shifted Maxwellian M(v − u) where u = ET/D. In this case

F = 1

2

〈|v − u|2〉 − βS

serves as a Lyapunov function governing convergence to the NESS.
However, when D(v) has certain properties, E �= 0 and ν > 0, it is shown in

Carlen et al. (1995, 1998) that for all ε sufficiently small, there is a range of the
parameters for which there are multiple stable stationary solutions of (5.1). This
means in particular that there does not exist any global Lyapunov function for (5.1)
for general parameters.
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Finally, we have in this stationary state that

σ = βj · E where j =
∫
R3

vf∞(v)dv

is the steady-state current.

6 Microscopic models

We have investigated here the approach to the NESS and some properties of that
state for models in contact with several thermal reservoirs at different tempera-
tures. We showed that there exist in some cases Lyapunov functionals even when
we do not know the NESS in explicit form. It would be nice to show that these
models correspond to N -particle microscopic models in some suitable scaling lim-
its.

A plausible conjecture is the following: Suppose that the dynamics of the iso-
lated system is given by a Hamiltonian microscopic dynamics, and it yields, in
some suitable limit, a Boltzmann equation for the single particle distribution; for
example, hard-sphere collisions under the Boltzmann–Grad scaling limit (Lanford
(1976), Gallagher et al. (2014), Pulvirenti et al. (2014)). Adding stochastic inter-
actions with thermal reservoirs should then lead, in a suitable limit, to (4.1).

However, this is beyond our current reach, even for the case in which the system
is in contact with a single reservoir. If one drops the requirement that the micro-
scopic dynamics be Hamiltonian, the situation is much better. Such a microscopic
derivation was proven recently by Bonetto, Loss and Vaidyanathan (2014) when
the isolated system dynamics is given by the Kac stochastic collision model and
there is a single thermal reservoir. One may expect a similar result to be valid for
the Kac system in contact with several reservoirs.
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