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The Percus-Yevick equation for the Widom-Rowlinson modet is solved exactly in one and three dimensions. In
one dimension the direct correlation function is obtained explicitely. In three dimensions only the thermodynamic
properties have been obtained so far implicitely in terms of elliptic integrals, and there is a maximum density be-
yond which the P.Y. equation has no solution and that before that density is ‘critical density’ at which the homo-

genous state becomes unstable.

Widom and Rowlinson [1] have studied the proper-
ties of a model fluid which is isomorphic to a two
component system in which there are no interactions
between particles of the same species and a hard core
of diameter R between particles of different species.
This model, and some generalizations of it, were prov-
en {2, 3] to undergo phase transitions (in two and
higher dimensions) corresponding to a separation of
the components when the density is sufficiently high.
These results follow from very general arguments and
do not give any other information about this system.
Such information, apart from its inherent symmetry
so nicely exploited by Widom and Rowlinson, has so
far been obtained either from simple mean field theory
or from low density expansions [4,5] (via Padeé approx-
imations) and from some machine computations on re-
lated systems [6]. (Some rigorous inequalities on the
correlation functions of this system have also been ob-
tain recently [7].) In this note we give the results of
the Percus-Yevick (P.Y.) approximation for this sys-
tem which can be thought of as a mixture of hard
spheres with (extremely) non-additive diameters, a type
of system we have studied earlier [8,9]. On the basis
of experience with the P.Y. equation with additive di-
ameters we may expect the results of this approxima-
tion to be quite accurate at low and moderate densities.

The P.Y. equations for the radial distribution func-
tion gij-(r), i,7,=1,2, in this system are [8]
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lg;; () — 1] = C;; () (n
2
+§plf[g,'](r,)” 1] C]] (r“rl) dr’3

C11 "= C22 (r)=0;
(2)

C,(N=Cy1(n=0 forr >R;

8, ) =g, (=0 forr <R. (3)
The Cij (), defined by eq. (1), are the direct correla-
tions of Ornstein and Zernike, p; is the density of
species £, assumed spacially uniform, and the P.Y. ap-
proximation consist in setting, Cy () =0, for all val-
ues of 7at which the interaction between a particle of
species i and one of species f vanishes, as expressed in
eq. (2). We look for a solution of (1—3) such that
8;(r) > 1 as# — e making [ § rlg;; (r)—1|dr <oo,

Given the solution of the P.Y. equation for C;; and
gj; there are different ways of obtaining thermodynam-
ic quantities from these correlation functions. These
ways would all be equivalent if we had the exact func-
tions. They are generally not equivalent for the P.Y.
solution. Thus we may ‘get’ a thermodynamics from
the virial theorem which relates the pressure to the
‘contact’ value of the distribution function. For the
model considered here this has the form

61!9V(p_1,92)=pl+p2 +3 ﬂR3p1p2g12 R) C))]

where = (kT)~1 (we shall set = 1 from now on)
and
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R)= lim )= -im C,, (r 5
s (R)= lim £, ()= —lim C;, () )
the last equality being a consequence of (1) and (2).

Another way of obtaining thermodynamics from
the Cl-/- (¥) is to use the ‘compressibility’ relations

Epr (P dr=

where uf and p® are respectively the chemical poten-
tial of the ith species and the pressure, both obtained
from the compressibility relations.

For the case of hard spheres with additive diameters
it has been found that both the virial and compressibil-
ity relations give quite accurate agreement (2—3%)
with machine computations up to fairly high densities.

Taking Laplace transforms of (1), using the methods
developed in references [8] and [9] the solution of the
P.Y. equation reduces to the solution of a single non-
linear functional equation in the complex s-plane (s is
a Laplace transform variable), When applied to the
Widom-Rowlinson model the results are as follows:

One dimension. Using units in which 2R = | we ob-
tain the following expression for C}, (),

Cpp () = —aly la(1-4r%)2}n, ®)

=61./.—p Cij(r) dr, ij=(1,2), (6)

2 o7 _0p°(py.pp)

T ™

1 .
r<3,n=(py py)2

Jy is the Bessel of zero argument, and g = ngq, (R) is
the solution of the equation ¢ = 1 cos q. This equa-
tion for g will have a unique solution for low densities,
n<ng ~ 2.80. For n > n there is more than one solu-
tion for q. It is however always possible, and the phys-
ics of the situation (continuity of the pressure) dictates
that we simply continue with the low density solution.
The free energy obtained from this solution remains
stable for all value of 5. We compared the values of
pressures along the line of symmetry, ie. py=p,=p/2

" obtained from the P.Y. equation with the exact result,
plp=1+(p/2)/[1+exp (p/2)] [8]. For values of
p < 2, in units in which 2R=1, the agreement is very

' good. However as p - o the exact p/p = | while the
P.Y. equation gives p¥/p — 1 + /4 and p¢/p - 2.

Three dimensions. In this case we have not yet ob-
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tained the complete solution for C', () but the quanti-
ties £15 (R) and [ C, (¥) d7 which are relevant for the
thermodynamics are related to the densities p i and 2
by the following relations: (using units in Wthh mR3

= 1)
815 (R) =2 cos I [(\z, 1), ©)

fCIZ () dr = —sin 11/(p1p2)1/2

where I; and I, are elliptic integrals depending on a
parameter zg.

=f dz/z(zgz3 +4z — V2, (10)
1

I, =f zg dz/(zgz3 +4z — 412,

and zg has to be obtained from the solution of the
equation n=3(pp,)/2 = 12/8 cos 1; so that =0
when zg =00, As z decreases 7 at first increases mo-
notomically reaching a maximum value 1, = 3.0
at zy = 0.094 and then decreases to the value n
~1.72 at zy3 = 0. For n 2 ng there is thus, as in one
dimension, more than one solution of the P.Y. equa-
tion but again the reasonable thing seems to be to fol-
low the low density branch as far as it will go. (The
existence of a maximum density beyond which there
are no solution to the integral equations is very sim-
ilar to that found by Waisman [10] in the solution of
the MSM for a similar system.

We find that before n reaches ny,,, there is a criti-
cal value 1, such that for 2 7 the free energy ob-
tained from the P.Y. equation on the assumption that
the system is uniform is no longer thermodynamically
stable. The value of n, obtained from the compressi-
bility and virial equations are respectively 75 = 1.6736
+0.0005, ng =] 7876+O 005. These values are remark-
ably close to the value nc =1.674+0.003 obtained by
Melnyk, Rowlinson and Sawford [4] from a Padé ap-
proximation calculation based on the first ten virial
coefficients obtained from the P.Y. compressibility
pressure,

We are grateful to Dr. J. Rowlinson for sending us

the results of [4] at an early stage and for other valu-
able comments.
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