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1, Introduction

The time evolution of a model binary alloy system following quenching
has been studied in two and in three dimensions (1, 2). The binary alloy
is modeled in these studies as a square (cubic) lattice at each site of
which there is either an A or a B atom. The system evolves at a tempera-
ture T = (kBB)_l through the exchange of A and B atoms on nearest
neighbor sites. The probability per unit time of such an exchange is
e-BAU[l + e-BAU]-l

energy of the system resulting from the exchange. a-l sets our time unit;

assumed to be a where AU 'is the change in the

it will in real systems be strongly temperature dependent. The energy U
is assumed to be of the form

U==4 n. M. (1.1)
<i§j) +

where n. = +1 according to whether there is an A or a B atom present at
site i; J > 0 corresponds to an excess attraction between atoms of the
same type leading to a phase segregation at low temperatures and (i,3J)
indicates that the sum goes over nearest neighbor pairs (using periodic
boundary conditions). Computer simulation of the evolution is carried out

by a Monte Carlo method.

The work reported in (1, 2) described the time evolution of the ener-
gy of the system, and of the structure function, S(k,t), (the'Fourier
transform of the spatial correlation function) after the system is quench-
ed to T.< T, where it undergoes a segregation into two phases. At t = 0,

' S(k,t) ~ 6 but it soon develops a peak as spatial correlations are built

up. One important finding of these studies was the absence of any expon-
ential growth in time of S(k,t): this was generally believed to occur at
early times for small values of k on the basis of the linearized classical
Cahn-Hilliard (3) theory of this process. Instead the peak was found to
grow.more slowly than linearly in t and to shift towards smaller values of
k as the system evolved in time. The "asymptotic" time behavior of the
energy and of S(k,t) were also investigated. These studies gave impetus
to further theoretical analysis of this phenomenon (4-6).

In this note we report new results for the two dimensional system.

These focus upon the groperties and evolution of clusters. A cluster is

e

a group of A atoms linked together by nearest neighbor bonds. When the

-

system with a low concentration of A atoms is quenched from nn infinite
temperature (corresponding to a random configuration) to a low tempera-
ture, the clusters are quickly formed. These clusters are analogous to



flﬁid droplets in a background of dilute vapor. We have studied the
subsequent evolution of the clusters which can be characterized by an
average cluster size E(t), an average cluster energy e(t), etc. By
marking and following the centers of mass of these clusters we have
studied the diffusion constant, and the reaction rates for evaporation,
condensation, and coagulation. In addition to their own intrinsic inter-
est, these studies bear upon current theoretical work, particularly that
of Binder and Stauffer (4). These authors assume that the late stage of

EEEEELEQQIQQ@EEQP is dominated by the diffusion and coagulation of large
clusterg of A atoms. According to the model kinetics, there are random
S e —

iﬁterchanges between the A atoms on the cluster surface and the surround-
ing B atoms. The frequency of these interchanges can be taken, at least
when the clusters are compact enough, to be proportional to the cluster
surface area Z(d_l)/d where £ is the number of A-atoms in tihie cluster and
d is the dimensionality of the system. Each such interchange will shift
the center of mass of the cluster by an amount proportional to 2-1. This
suggests a random walk for the center of a cluster of size & with a difus-

sion constant
D « 2—2 JL(d-l)/d - z-l-l/d (1.2)

Using dimensionality arguments, Binder and Stauffer further éredict that
the size of a cluster should grow asymptotically with time t as

g(t) ~ 37 (3+d) (1.3)

and energy as
u(t) o g1/ o ¢m1/(d43) (1.4)

If one assumes, on the other hand, that the diffusion of a cluster
of A atoms is governed primarily by the diffusion of enclosed droplets of
B atoms (or "bubbles"), different results are obtained. Assuming that the
numbe:ﬂof'such bubbles is proportional to the cluster volume, %, then

-1

PRt I D« §° 9 =3 (1.5)

ﬁ@:i§h§ dimensionality. This impiies (for two dimensions)

u(t) « £1/4

In contrast, the Lifshitz and Slyozov (7) assumptions that cluster growth
As-accomplished primarily by the wvaporation of A atoms from one cluster



and their deposition on another predicts that the cluster radius zl/d will

a/3 =173 for a1l a.

grow as tl/3, or 2 ~n t and u v t

The study of the energy evolution of a system, and the variation of
average properties of clusters can shed light upon the dominating
processes.

In addition to the simulation of quenched systems, in which ensembles
of clusters nucleate naturally, we have undertaken other calculations
which concentrate on steady state behavior of individual clusters. For
these, the system is initialized to have a central cluster of a given size
'in a background of "vapor". The system is then aged until it has lost the
memory of the initial conditions and various properties measured there-
after. This method of simulation alsoc makes it possible to examine the
concept of a critical cluster size which is central to all nucleation
theories. That is, for a given supersaturation and temperature, there is
a size of cluster &* such that larger clusters grow on the average,
smaller ones shrink. A cluster of size 2* is in unstable equilibrium
in a system of macroscopic size. When the domain is chosen suitably small
(within broad limits) a stable system is possible with one cluster of the
critical size in equilibrium with supersaturated vapor. The supersatura-

tion can conveniently be measured by the density of monomers, n less

l ’
its value at the coexistence line, nq.e Existing nucleation theories
predict (in two dimensions)

q

*
2 = (n, - nlc)

1

q=-2 Becker-Doring (8)

- 15/7 Fisher-droplet model (9)

2. Results

By quenching a system with 20% of A atoms from an infinite tempera-
ture to kBT = 23/1.5 and following the evolution of the clusters we have
computed the following guantities: the average cluster size, 1; the
average cluster radius, ;T7§; the average cluster energy, e; the average
energy to volume ratio, €/%. These quantities are observed to obey power

laws as functions of time:

-Imta; 21;2,\lta'; b

Ent ™R (e/2) 7€

with a = 0.36, a' = b =

N} -

a and c¢ = 0.66. Binder and Stauffer predict



a = 0.4 at "low" temperatures while the Lifxhitz~Slyozov theory gives

a v 2/3. The numerical results thus seem to favor the Binder-Stauffer
predictions. The long time behavior of u(t), the system energy as

a function of time, shows an exponent of 0.20 to 0.25 in agreement with
Binder and Stauffer, eg. {l1.8) or with eg. (1.6).

In order to understand this evolution in a more detailed way we have
undertaken several investigations in which cluster behavior is examined
in detail. In one of these we mark and follow individual clusters. In
this way we can observe the competing processes of cluster evaporation,
condensation, and coagulation. In particular the fate of clusters ori-
ginally not close to other clusters was recorded so as to derive the
rates for growth or decay by interactions with vapor, complete dissocia-
tion into vapor and very small clusters, and for coagulation of clusters.
The observations show that the rate at which clusters change their size

‘gx;§£:1ga§§_20% by evaporation and condensation is about four times larger
;EEEE—EEQ—Iatﬁ-Qé_Soagulation so that neither process is negligible dur-

ing the course of observation. The total reaction rate decreases rapidly
-0.6

with time, roughly as t

At the same time, the centers of mass of clusters were computed and
followed in time. Measured this way, the cluster moves diffusively until
there is a coagulation of two clusters or a dissociation of the cluster
into two clusters or into vapor. We have computed the diffusion constant
from the mean square displacement of the centers of mass of all those
clusters which do not change in size by more than five atoms between
successive observations. This describes the motion of the center of
gravity while the cluster remains intact, as envisioned in the coagula-
tion mechanism. In Figure 1, * shows this diffusion constant plotted
against size of the cluster. Even though the fluctuations are very large,
the diffusion constant seems to obey a power law as a function of size.

The second type of simulation mentioned in the introduction yields
values for the diffusion constant that are more precise and are shown by
+ in Figure 1. These points are obtained from the mean square displace-
ments of the cluster after it has reached its stable size following
'aging'. The best fit to these points gives a slope -1.05 inconsistent
with the prediction of Binder and Stauffer, eq. (1.1l), of -3/2, but in
good agreement with eg. (1.5).

In Figure 2 we present the preliminary results for L* vs. (nl- nlc).
Here (nl- nlc) is given for a nominal system of 80%X80 sites. The dashed
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Cluster diffusion constant vs. Critical size, 2*, of a cluster i
size of cluster equilibrium with vapor containing

nl-nlc monomers in excess of coexis-
tence value (for 80x80 system)

line has a slope of -2; the points are in reasonable agreement with such
a slope, but do not rule out the value of -15/7.

3. Conclusions

We have studied the cluster properties and cluster kinetics during
phase segregation. These clusters are characterized by a mean size, mean
energy and a mean surface to volume ratio. These quantities appear to
follow power laws in their time behavior. We have computed the diffusion
constant for the center of mass motion as a function of cluster size. The

~1.05 ;5 consistent with a mechanism of diffusion by b s.

ggclosed in the cluster.
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result D = 2

While some of our results agree well with the predictions of Binder
and Stauffer others do not. This is not surprising since these are based
on the assumption that a single mechanism is dominant in the late stages
of evolution, while we observe many different processes, e.g. recombina-
tion, disassociation, evaporation, condensation, and surface rearrangement
to take place during the entire course of observation. There is thus much
room for further theoretical developments.
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