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Abstract

We prove the existence of a time evolution and of a stationary
equilibrium measufe for the infinite harmonic crystal. ' The ergodic
propertiés of the system are shown to be related in a simple way to
the spectrum of the force matrix; when the spectrum is absolutely
continuous, as in the translation invariant crystal, the flow is

Bernoulli. The quantum crystal is also discussed.

1. Introduction

The ergodic properties of infinite systems are of considerable
interest. They yield information about the expected (average) time
dependent behavior of physical observables when the system is in or
near equilibrium. Unfortunately very little is known at the present
time about such properties for realistic systéms. It seems there-
fore valuable to study the behavior of model systems. These may
shéd some light on which properties of the interactions are releVant
to ergodic behavior. Previous studies along.these lines have dealt
with the ideal gas, the one dimensional hard rod system and the
general noninteracting system in an external field produced by
fixed scatterers (e.g. the Lorentz model) . (For a review see the

article by Goldstein, Lebowitz and Aizenman in this volume.)
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In this note we investigate the time evolution and ergodic
properties of the infinite harmonic crystal. The harmonic crystal
is commonly used by physicists as a model of an ideal solid and is
gquite successful‘in.describing many .features of real solids.
Explicit calculations of the time evolution of specified phase
functions have been carried out for a variety of harmonic. systems
beginning with the work of Newton and Bernoulli .on one dimensional
lattices with nearest neighbor interactions+ (example (a) below).
The deay of time dependent correlationé in these systems (which is
directly related to ergodic properties) has also been studied by
various authors.‘;F 'More recently Titular [3] has studied the
harmonic crystal from the géneral point of view of ergodic theory
and has arrived at some of the: same conclusions that we arrive at
by somewhat different methods.

The outline of this paper is as follows: in Section 2 we
prove the existence of the time evolution of the infinite harmonic
system for a very large class of initial conditions-with.only very
mild restrictions on the force matrix. This time evolution is the
natuyral limit of the finite system time evolution. In Section 3
we prove the existence of an invariant equilibrium (Gaussian)
measure for the infinite system_which is the limit of the finite
system canonical measure. (For this we require:some conditions
on the force matrix which fail for translation invariant forces in
one and two dimension where the measure space has to be modified.)

In Section 4 we investigate the ergodic-theoretic properties

of this dynamical system, and reduce the determination of these

For a general reference see Maradudin, Montroll and Weiss [1].
T See Section 4 of Chapter II of [l] for historical background.

See Sections 7 and 8 of Chapter VII of [1l] and Section III of (2]
for discussion and references to the works of Hemmer, Mazur,

Montroll, Rubin and others.



properties to an analysis of the spectrum of the matrix of inter-
particle forcenconstants. We also show how to medify our general
formalism to apply in one and two dimensions. .In Section 5, we
extend the analysis of Section 4 by investigating the consequences
of translation inﬁariance, and we show that the time evolution flow
Tt for a translation-invariant crystal with finite-range inter-
actions is a Bernoulli flow except in special pathologica; cases.
If, however, the crystal is not translation-invariant then the flow
may not be ergodic, e.g. if there is a particle with a small mass

giving rise to a local mode. In Section 6, we sketch the extension

of our analysis to quantum harmonic crystals.

2. Time Evolution

We begin by investigating the time evolution‘of an infinite
harmonic crystal. Our discussion will apply to arbitrary lattices
and allows for rather general "defects", but at the expense of a
slightly complicated notation.

We can describe a general lattice in the v-dimensional space
$v by specifying the group T of translations carrying the
lattice onto itself. T 1is a discrete subgroup of the additive
group $v; as an abstract group it is .isomorphic to $v. It need
not act transitively.on the lattice, i.e., given two lattice sites,
there need not be a lattice translation carrying one to the other.
If we take the quotient space of ¢v under the action of I, we
obtain a v—dimensional-torus which is called the unit cell (for TI').
If we choose representatives for the elements of the unit<celi in a
straightforward way, we obtain a parallelepiped AO in $v; the
translates of this parallelepiped under I are disjoint and. cover
all of $v. Labelling‘these parallelepipeds by elements of T,

(i.e. A, = A0‘+ a), we obtain "coordinates" for Rv in which a



point g is described by giving an element o of T and a point
£ of AO ; the point g may be expressed in terms of its
"coordinates" by gq = o +.£. To complete the descriptibn'of a
regular lattice, we need to specify the set of lattice sites in the
unit cell AO , 1.e. we must specify a finite subset X0={El,...EJ}

of A then the lattice is precisely the set of points of the

O;
form o + Ei , where o is an arbitrary element 6f T and\ Ei an
arbitrary element of X e

To allow for defects (e.g., for the absence of some of the
particles), we loosen the definition a bit by allowing a different
finite subset X, of AO for each o, so the points of the
"lattice" are then éll points of the form o + Ei; o €T , Ei € Xa'
(For most applicationé, one wiil want to impose some restrictions
on the Xa's, e.g., that they should all be subsets of some fixed
finite set X, but we seem to gain nothing by imposing these
restrictions explicitly at this point. Some of them will appear
implicitly in the assumptions we make later about the forces.)

The points of our (generalized) lattice are supposed to repre-
sent the equilibrium positions of the partidles making up our
crystal. To describe the dynamics, we introduce a position
variable qa,i € $v for each lattice site giving the displacement
of the particle in question from its equilibrium position and a

conjugate momentum variable p . Thus, the position of the parti-

0,1
cle with label (o,i) is o + gi + dy i The equations of motion
) ’
read:
dg . dp . .
a,i _ a,i _
(2.1) My, i dt Po,i ' dt ' Fa,i

where m_ is the mass of the (o0,i) particle and the force F

’ a,i

depends on the qB j’s. We now assume that the 'Fa ; are linear
’ 14

functions of the gq's, and that q ., =0 for all 0,1 represents an



cequilibrium position. (Note that this last assumption places,
implicitly, very strong restrictions on the sort of defects we can
allow if we are deriving our equations from a realistic model of a

crystal.) Thus, we can write

F , = - Z \Y4 qB

O, 8,3 O“i;B,,j 'J

where each V is a v x v (real) matrix.

a,i;B,]
The above may be formally simplified if we think of the
sequence  (q, ;) as a vector ¢ in an infinite-dimensional vector
’
space. Then the equations of motion can be written schematically
as | |
d2

Lo}

!

M—5=-Vg

N

dt

where M is the diagonal matrix with entries m . and V is the
Ly

force matrix. Let us look at two simple examples of the above.

(a) The perfect harmonic chain with nearest neighbor inter-
actions: In this case, we take v =1, T = $,‘ and only one
particle in each unit cell. (We may therefore dispense with the

subscript i.) The potential energy is then given formally by

% g (dyyq ~ qa)2 , Y a positive constant.
(The g 's are now just numbers, since v = 1l.) We méy rewrite this
expression as % (Va,q) , where V is a‘tridiagonal-matrix whose
rows and columns are labelled by %, Vo = 2Yr Vg =-v, for
B =o + 1 and is zero otherwise. ' ‘

From the original formula for V it is clearly positive semi-
definite but not positive definite in the strict sense‘(If all the
qa's are equal, (Vgq,q) = 0. If, however, g # 0 but only finite-
ly many qa's are different from zero, then .(Vg,q) > 0.). The equa-

tions of motion may be written simply as
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d“q |
m e = =JvV,ga = ¥ (agq-29,%q9,_;)
a 2 a,8 98 D1 90 -1
dt B
(b) The two dimensional triangular lattice. Here we take

v = 2; we again take only one lattice site in each unit cell, and

we take the lattice to look like

t1
is generated by El and 52. If we chooée the unit length so
that |g;] = |E,] = 1, we have & = (L,0); &, = ‘(% . g), and
ro={(ng + %nz' gnz)‘ nym, € 41 .

We now associate a particle with each lattice site, and let the

particles interact by a pair potential ¢(r) which is repulsive

for r < 1, has a minimum at r = 1 and vanishes for «r > ro o
ry < Y3 , (the distance between second neighbor sites on the
lattice). The configuration q, = 0 for all o is an equilibri-

um configuration, and the potential energy near this equilibrium
configuration is approximated by

y 2

4‘5 g [((qa+€-qa),£)] + constant ,

where the sum £ is taken over the six "nearest neighbors of 0",
igl, :gz, + (gl—gz) , and where vy = ¢"(1) .

We now return to our general formalism. To specify the
initial conditions, for the solution of (2.1) it is necessary to
specify a momentum p, ; as well as a position dg i for each

’ 14

a,i. If x denotes a sequence (g .+ P ), we define

o,i
la. | v |p, 4l
o,1 (1+]al”)

o,i




for any positive integer k. We let Xy denote the set of
sequences X - such that

Iqu,il v lpa,i,

lim sup = ;

oo i (1+|u|2)k
X, is a Banach space with the norm I'¥,. (Note that we have not
taken x, to be the set of all x with H§Hk < @, Our choice

turns out to be convenient later on; note, however, that if Ixl, <o

then x € . ,q.)

The equation of motion can be written formally as

where

_ 1
(Ax)a:i B (m Pa,ir Zj Vu,i;g,j qBIj) ’

We now assume

(1) inf m, g > 0.
o,i
(2) For each positive integer k, sup ) v, i'é j"(l+|u—8|2)k<W.
[ ] ’

oa,i B,J
The second assumption means that the forces between the unit cells
A, and A, drop off rapidly as |o-B| + ®. In the case where there

is full translation invariance, so

vd,i?B,j - Virj(u—s)

our assumption amounts to the requirement that vi’j(g) goes to
zero more rapidly than any inve;se power of ril as £ goes to
infinity. |

Under these assumptions on the forces and masses, it is

trivial to prove

Proposition 1. For each k, A 1is a bounded linear operator on

X * Hence if X € X there is a unigque global solution x(t)

of the equation



dx
| ag ~Ax oon X .
with x(0) = X1 the solution is given by
tA taA b n
_ - . - _ t n
x(t) = e Xo i e = £ aT AT .

In particular, if (qa i) and (p ) are arbitrary polynomially
14

o, i

bounded sequences, there exist solutions q (t), p. . (t) of the

o, i 0,1
equations
da Lt Lt d . (t N
ca Segl Ted Regllo g a5
a,i 8,3 O,Libs] ']
with qa’i(O) = qa,i; pa'i(O) = pa,i' and the solutions remain

polynomially bounded (in a) for each t.
The uniqueness statement in the above proposition is not as
strong as it sounds. The point here is that what is asserted is

only that there is no other solution of the equations of motion

such that
§(t+6t)—§(t)

St

lim - Ax(t)

S§t+0

k
i.e., no other solution in which the convergence of difference
guotients to derivatives has the right amount of uniformity in o,i.

We can improve this situation somewhat:

Proposition 2. Let x, € ¥, for some k, .and let  x(t) be a
solution of (2.2) with x(0) = X such that for some k', € > 0,
Hg(t)"k, is bounded on 0 < t < e .,
At

Then x(t)€ Xie and x(t) = e X4 for 0 < t < e.
‘ At
This follows in an obvious way from the fact that e X5 € X

i € C v .
if X, Xy X 1 for k' >k
We remark here that for finite range interactions the above

results extend immediately to the case where the initial values x,

nnnnnnnnnn 22 o117 i1 Al 14- v



Although we have dealt directly with the infinite system, the
time evolution we have obtained is the limit of the finite harmonic

system in the region A with the boundary "tied down", i.e., with

31

q. .(t) 0 =p .(t) for a,i € A. We can see this as follows.
0,1 o,i

vLet A be a finite subset of the c¢rystal, and let PA be the

operator on the space of sequences (gq. ., P ) . which puts all

o,i o,i

coordinates belonging to lattice sites o,i outside A equal to zero
and leaves those belonging to lattice sites inside A unchanged.

The equation of motion for the system in A is then

}_{A(t) = PAé PA >_<A(t) '

Q-a|Q-n
ct

But PA converges strongly to 1 on each Xy 1 so
lim x, (t) = x(t)
Ao

for all t and all x, €U x,_.
=0 Kk k

To conclude this section, we establish a number of notational
conventions to be observed for the remainder of this article.
1. We will assume that there is exactly one particle per unit
cell (Bravais lattice), so the lattice may be identified with T.
We may therefore drop the subscript i. It should be kept im mind,
however, that pa and q, are elements of $v, not R, and hence

that there &s another index which we suppress entirely from our

!

notation.
2. We make a canonical transformation
v 1/2 ' -1/2
qq_mu th' pOL mu Pal
and we introduce
-1/2
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Then the equations of motion read

L ]
da o dp'

gt P g i ac - - g Sag 9 8

i.e., in the new variables the system looks like a system of parti-

cles of unit mass with force matrix SaB' We will from now on use

only the variables g'_ , p , 2and will drop the primes.

(o4

3. We will need names for various spaces of sequences (Ea)aEF'

Such sequences will usually be assumed to take values in $v. We

write
20y = B opt § 1E,l < =)
5 ,
s(I) = {(E) ep? sup l&al - (1 + lal)k.< w for all k}
e}
€|
s'(T) = {(E ) ~pt sup ———2— < ® for some k}
o’ o€l (l"‘lul)k
ar) = {(E ) gep: &, = 0 for all but finitely many al.

Occasionally, we will want to consider sequences with values in ¢v

rather than $v; we then use the subscript ¢, e.g., 22¢(F).

3. Equilibrium Statistical Mechanics

The existence of the time evolution was proven without any
posiﬁivity (or even symmetiy).assumption on V. For.physical appli-
cations the matrix V and hence S should be, in an appropriate
sense, positive (otherwise we would certainly not have a crystal).

We shall therefore assume:

(3) The infinite matris, SaB defines a (bounded) strictly posi-

tive operator S on the sequence space 4 (ry i.e.

(¥,S¥) > 0 , for ¥ € 22(I') with the equality holding only if ¥ = 0.

*
It follows from (3) that HA(q,p) > 0 unless q = p = 0.

*'H (q,p) = ilz P 2+ L ) s qvq " a,RB € A is the Hamiltonian of
AVEIE 2 a 2 aBa"B ! !

the_}finite) crystal in the domain A with "tied down" boundary
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L3
The equilibrium canonical ensemble for the finite system (with
temperature set equal to unity in appropriate units) may now be
described economically as the Gaussian measure on the space of

finite sequences (qu’pa)aEA with mean zero and covariance

EA{pa pB} = édB ; EA{qa qB} = (8 )aB ; EA{qa pB}'= 0.
The matrix le is the matrix obtained by restricting Sa 8 to a,B
' 14
in A and inverting the resulting finite matrix. Thus (SA);é is

not at all the same as (S—l)aB for a,B € A, By assumption (3)

zero is not an eigenvalue of the (positive) operator Sy and hence
-1 .
SA exlsts.

Assumption (3) also implies that S_l makes sense as a
(usually unbounded) densely defined self-adjoint operator on RZ(F).

—1/2. We

We denote the positive sequre root of this operator by S
can now pass (formally at least) to the infinite system if we
assume

(4) The vector e(a) € QZ(F) which has 1 in the oth place and
zero elsewhere is in the domain of S"l/2 for all o, and the

sequence of numbers
—1/2 OL)H

is polynomially bounded.

It seems to be hard to Qerify (or disprove) assumption (4) in
realistic situations, except that it can nermally be expected to
fail in one and two dimensions and hold in hlgher dimensions. We
will return to this point later, when we investigate the conse-
quences of assuming that the force matrix V is translation

invariant. It will be seen that (4) can be relaxed.

See Lanford's lectures.
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It seems natural to define the canonical ensemble for the
infinite harmonic crystal to be the Gaussian probability measure
P on the space of pairs (qa,pu) of polynomially bounded

sequences with mean zero and covariance given by

E{pOL pB} = (SOL,B ) E{qO(, qs} = (S_l/z e(oc)’ S-l/z e(B))’ E{pa qB}=O.

We will shortly justify this definition by showing that this
measure is indeed the limit of the finite system canonical ensemble
as A Dbecomes infinitely large. Two questions now suggest them-

selves.

(a) Is the measure P invariant under the time evolution defined

by solving the equations of motion

FE "~ Py v gt - "L Sup 9 ?
(b) If so, what are the ergodic properties of the dynamical system

thus defined?

We will give an affirmative answer to (a), and show how (b)
can be reduced in a certain sense to an analysis of the spectral

properties of S acting on 22(P).

Invariance of the Measure

If (qu(t), pa(t)) denotes the solution of the equations of

motion with initial data (qa,pa), it follows easily from the

proof of Proposition 1 that the solutions can be written in the

form
(l) (2)
q,(t) = gK q6+gKaB()pB
(3.1) (4)
p,(t) = g Ka B(t) qg + Z K,,g(t) pg
where the kernels Kéié(t) are rapidly decreasing in B8 for each

fixed a. Because the {qu,pa} are Gaussian, the random variables
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qa(t) and pu(t) are also Gaussian, Thus, the measure Pt obtained
by evolving the initial measure P +to time t 1is Gaussian with

mean zero and covariance

E{q, (t) qB(t)} , etc.

Since a Gaussian measure is uniquely determined by its mean and

covariance, in order to prove that Pt = P (di.e. that P is invari-

ant), it suffices to prove that
B{q,(t) qg(t)} = Bla, @) ,  ete.

From the fact that the equations of motion are linear and autono-

mous, we see that the quantitiés

d

4 Bla () g8 . SE Bl (8) py(t)} . G Blay(t) py(t)}

can be expressed as linear combinations of the same derivatives at
t = 0. Thus to prove that the derivatives are equal to zero at all

times, it is enough to prove it at t = 0. Now, at t =0

& Blq(t) ag(®)}] = Elp, qg} + Elg, pg} = 0

d I - -
Tt Elp, (t) pB(t)}|t=O = E{ g'SaY a, pgh+ B é SgyPedy = 0
d - b )=

EE E{qu(t)'ps(t)}lt=0 = Eip, pg} g Sgy Ela, a,}

| ~1/2 -1/2
= Sas —\Z(SBY(S /2 o) g7t/ e(Y))-

Now, because of the rapid decrease of SBY in v, Z SBY S—l/ze(Y)

Y
converges in Rz(F), as does | SBY e(Y) = S e(B). Thus, since
Y

s71/2 {5 a closed operator,

) Sﬁy(s—l/ze(a),s—l/ze(Y)) - (57126 () g71/2g o (B))
Y
(S~l/2 e (OL)
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so L
° at

proof that P is invariant under the time-evolution.

E{qa(t) pB(t)}t=0 = daB - GaB = 0 , which completes the

The Thermodynamic Limit

We investigate now the sense in which the Gaussian probability
measure P on the space of polynomially bounded sequences {qa,pa}

is the limit of the finite-system canonical ensembles.

Proposition 3.1. Assume (1).- (4). Then the joint distribution of
any finite set of p's and q's, Py rees Py dg reee1dg with

1 n 1 m
respect to the canonical ensemble in A converges as A+ o to

the joint distribution of the same set of p's and g's with respect

to the infinite-system equilibfium measure P.

Proof: Because of the Gaussian character of all the measures

involved, it suffices to prove that the covariances converge. Since

Ep(pg Pg) = 84p v Ep (P, g) = 0

provided o,8 € A , and since the same formulas hold for the
infinite system equilibrium measure, it is only necessary to prove

that

-1 _‘ -
(3.2) lim (S;) g = (s 1/2 e(u)’ g~1/2 e(B))

Ao

for all a,B. By polarization, it suffices in fact to prove that

. -1 -1/2 -1/2
lim J (8,) . & &, = (s7° g, 87777 &)

A»o o,B CL q \B C
for all & € 4(l) (the set of finite sequences) .

We now fix & € d(T), and consider only A's such that ga =0
for all o & A. We prove (3.2) by proving the following four

statements: *

* The argument is similar to that used in ferromagnetic spin sys-
tems, cf. Lebowitz and Martin-Lof [4].
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(a) If AC A, then (S3UE.E) < (sxia,a)
(b) If «k > 0 , then
((SA+K1A)_IE,E} increases to ((S+Kl)_l£,£) as A increases to «.

(c) ((S+Kl)flg,£) increases to (s'l/zg, s™1/2¢y as « decreases to
zero.

(d) ((SA+ K;A)'lg,g) increases to (SXlE,E) as k decreases to zero.

Here lA is the unit matrix in A, lA + 1 as A increases to
infinity. |

Let us first assume these four statements and verify (3.2).
Combining (b) and (c) shows that
-1 1/2

(s, + k1 "F £,8) < (7% &, 872 £) for al1 « A

Hence, by (d)

(57 €8 < (s71/2 ¢, 8722 £) for all A.

From this bound, and (a), we conclude that

lim (le £,£) exists and is no larger than (S—l/2 £, S_l/2 £)

Ao

On the other hand, let € > 0. By (c) choose Kk 8O that

(s +xD > g,8) > (872, 572 ¢) - 5

then (b) implies that, for sufficiently large A,

-1

(s, + x1 ™ £,8) > (72 6, 572 ) - e
But
((s, + KlA)—l £,8) < (s/';l £,&) by (d) ,
SO
(s;\l £,8) > (s1/2 ¢, sT1/2g)-

for all sufficiently large A, i.e.

(s71/2 ¢,571/2 ¢y

Lim (S;5 £,E) =

Ao
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Thus we have only to prove (a), (b), (c¢), (d). Statements (c)
and (d) are straightforward consequences of the spectral theorem.

_ To prove (a) we consider
( )_l
S, +k 1
Al -Al/A
. . , 2 2
where lAl/A is the projection of &% (Al) onto % (Al/A). For

Kk = 0, this is simply (SA )_l. Moreover, as K increases
1
-1

((SA1+K lAl/A) €,€J

decreases (since A > A_l is operator monotone-decreasing). Finally,

-1
-1
(3.1) lim (s +k 1 £,€]= S £,8
un | {5y ny /) (s}~ &8)

This is true since

((SA +x 1A1/A)'l a,a]

1
f dgexp (-3 ] 8, 4 - < ] a’) (It )2
2 2 u,BEAl oB2a B 2 aGAl/A o a oo,
1 1 2
Jaaow (5 1 sgag-ic L 9
a,BEAl aGAl/A
and letting «k + « simply has the effect of putting g = 0 for

. C . I .
o Al/A. This is also intuitively reasonable, silnce SA1+ lAl/A
is a force matrix with an interaction differing from the original
one by the addition of a restoring force -k q, at each o GAAl/A;

as k - « , the oscillators at these lattice sites become more

and more firmly tied to their equilibrium positions, so in the

1imit they are rigidly fixed. Hence, as K increases from 0 to =,

(SA +K 1A12A]_l E;i]

1

. £,£); in particular,

f £,E)

decreases from (SXlE,E) to (SX
1

_.l —
(87" £,8) < (8]
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To prove (b) we note that (a) implies that

-1

((sy+6 177 &,8)

increases with A, so we want to show

1

lim ((sA + K 1A)" £,8) = ((s + « J.)'l E,é) .

Ao

As a function of (complex) K,

1

g () = ({8, +x 17" &E)

is analytic in the complement of the spectrum of —SA. Since the

spectrum of 8, is contained in [0,Isl], gA(K) is bounded uniform-

ly in A on any closed set which does not intersect the interval

[-Isl,0] on the real axis. Also, expanding (SA + K lA)_l in its

Neumann series for large k shows that

1

lim gA(K) = ((S + Kk 1) E:E]

Ao

. Vitali's theorem then implies

for sufficiently large |k

1

lim g, (k) = ((s + « 1) 7 E,E)

Ao
for all strictly positive k.

This, then, completes the proof of Proposition 3. The argu-
ment actually proves more than is included in the statement of the
proposition: If we drop Assumption (4) but continue to assume
that zero is not an eigenvalue of S, we can still prove that, for

any & € d4(T),
-1 2
(s~ €.8) = & (( é E, ) )
increases to a limit as A increases to «, but that the limit is
infinite if & & D(S—l/z). The interpretation in this case is
simply that the sguare fluctuation of Z Eu d, bécomes infinite
o

with A.
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4, Ergodic Properties

We have seen that the solution mappings to the equations of
motion define a flow 'I't on the space s'(T') ® s'(l') of polynomi-
ally bounded sequences of displacements and mqmenta, and that,
subject to assumptions (3), (4) of Section 3, the thermodynamic
limit of finite-volume ensembles existé and defines a centered
Gaussian probability measuré on s'(I') & s'(I') invariant under the
solution flow. We want next to analyze the ergodic properties of
the dynamical system so constructed. The essential step in doing
this will be the observation that this problem may be recast into a
question about one-parameter groups of orthogonal mappings on
Hilbert space.

As in the preceding section, we let P denote the infinite-
volume equilibrium state as a probability measure on s' (') & s'(I").
We let hl - L2(P) denote the subspace of linear real valued
random variables, i.e., the closure in L2(P) of the set of finite
linear combinations of pa's and qOL'so We have seen that the action
of Tt on Lz(P) carries hl into (hence, onto) itself. Let Ul(t)
denote the one-parameter group of orthogonal transformations on hl
given by the action of Tt° We will proceed by showing first how to
determine most of the ergodic-theoretic properties of Tt from
Hilbert space properties of the orthogonal group Ul(t); we will
then introduce coordinates in hl which enable us to reduce the
study of Ul(t) to the analysis of the spectral properties of S
acting on RZ(F).

To begin, we fit the situation under consideration into a more
general context. Let (X,dC,P) denote a probability space. By a

generating Gaussian_subspace of (x,0C ,P) we mean a closed

subspace hl of L2(P) such that
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(1) Every Y in hl is a centered Gaussian random variable.

(2) h, generates the o-algebra U, i.e., O is the smallest

1
o-algebra with respect to which every Y in hl is measurable.
It follows easily that any finite set of ¥'s in hl is jointly
Gaussian.

Now let (X,0(,P) and (%,OQ,E) be two probability spaces
equipped with generating Gaussian subspaces hl and El respec-
tively, and let U be an orthogonal mapping of ‘hl onto ﬁl (i.e.,
a Hilbert-space isomorphism of hl onto ﬁl). We claim that there
is a unique measure algebra isomorphism T of (%,of,ﬁ) onto

(x,0¢,P) such that

Uv¥Y=Y oT

for all Y € h (If the two measure spaces in question are

1°
Lebesgue spaces [5], then T gives rise to an essentially unique
measure-preserving transformation). The claim is easy to prove if

and hl are finite~dimensional. In the general case, we may

hy

use the finite~dimensional result to construct an isomorphism
between the subalgebra of Cﬁ/ generated by U'k: and the sub-
algebra of {1 denerated by )C, for any finite-dimensional sub-
space %i of hl° By uniqueness, these partial isomorphisms fit
together to define an isomorphism of all of é% onto all of Jt.
Thus, in particular, any orthogonal transformation U of hl
onto itself induces a corresponding automorphism T of (X,00,P),
and any group of orthogonal transformations induces an anti-
isomorphic group of automorphisms. (Not every automorphism T of
(x, 01,p) arises in this way; it is necessary that ¥ oTE€h if
vy € hl.) If U, U' are two orthogonal transformations which are

orthogonally equivalent, i.e., if there exists an orthogonal trans-

formation V such that
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then the induced automorphisms T, T' are isomorphic. A part of
the problem of determining the ergodic properties of the time-
development of the infinite harmonic crystal is contained in the
more general problém of determining the ergodic properties of an
automorphism T induced by an orthogonal transformation U in
terms of the spectral properties of U. The following results give

a fairly complete answer to this general problem.

Proposition 4.1. Let (X,0(,P) be a probability space with a

generating Gaussian subspace hl. Then there is an isomorphism

0 ®
be tween L2(P) and @ (hl) n such that, if U is any orthogonal
n=0 symm
transformation on hl and if T is the induced automorphism of

(x, 0L,P), the action of T on LZ(P) corresponds to

© 00 3]
' n
® U® ... ® U on ® (h) .
n=0\ S y s n=0 17 symm
n times
Proposition 4.2. Let the notation be as in the preceding proposi-

tion. Then

(1) T is ergodic if and only if U, acting on the complexi-
fication (hl)¢ of hl , has no point spectrum.

(2) T is mixing if and only if

weak lim Un =0 .
In| » =

(3) T has Lebesgue speatrum if and only if U, acting on

(hl)¢ has Lebesgue spectrum.

Proposition 4.3. T is a Bernoulli automorphism if and only if U

has Lebesgue spectrum.

Remarks on terminology:
1. As we have defined them, generating Gaussian subspaces are
real Hilbert spaces, not complex Hilbert spaces. To obtain a

cimmla aerectral theorv for orthogonal transformations, we pass to
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a complex Hilbert space, called the complexification of hl
obtained formally as hi ® hl. An orthogonal transformation of hl
extends by complex linearity to a unitary operator on (hl)¢.
2. If U is a unitary operator on a complex Hilbert space, the

spectral theorem implies that there is a unique representation

27
U= f e'® g (ae)
0
where E(df) is a projection-valued measure. We say that U has

Lebesgue spectrum if E(d6) is absolutely continuous with respect

to Lebesgue measure.

The proof of the first half of Proposition 4.1 is a standard
argument about Gaussian random variabies; we will only sketch it.
Since the ¥'s in hl are Gaussian, any polynomial in them is square
square-integrable, and the set of all polynomials is dehse in L2(P).

Let pn denote the closed subspace generated by the polynomials

< ‘1 —
of degree no greater than n, and let hn = P o psn L Then
2 (o]
L (P) = ® hn ’
n=
and our two uses of the symbol hl are consistent. We will con-
]
. n
struct for each n an orthogonal mapping of (hl)Symm onto hn
as follows: Let w_  be the projection onto hn’ For ¥y,.0. ¥
in hl, map
- T I AT MR Mok M (¥ye vve o ¥)

and extend by linearity. A straightforward calculation shows that
the resulting mapping, divided by vn! is an isometry. (See, for
example, Section 6.3 of [6].) Since L applied to the set of all

nth degree monomials is a total set in hn , we have constructed the

®
. . n
desired orthogonal mapping of (hl)Symm onto hn . The state

®

ment that Usgmm goes over to the action of T on hn is immediate
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since

(UWl) 8, (UWz) 8. 8 (UWn) Fﬁv(wl°..;'wn)oT b*»[ﬂn(wl-...'wn)]OT

where the last identity follows from the fact that composition with
T carries over <P onto itself and hence commutes with The

The proofs of statements (2) and (3) of Proposition 4.2 are
straightforward‘from Proposition 4.1 and will be omitted. To prove
(1), first assume that U has an eigenvector ¥ in (hl)¢. Since
(hl)¢ may be regarded as the space of complex-valued functions on
(X, ,P) which are complex linear combinations of elements of hl ,
we may regard ¥ as an elemen£ of Lg;(P)° Then |¥| (the pointwise
absolute value) is invariant under T, SO, if it is not constant,
T is not ergodic. But since the real and imaginary parts of Y are
Gaussian random variables (and therefore unbounded), |¥| cannot
be constant.

Conversely, suppose U has no point spectrum. It is then

easy to see (using the spectral theorem) that U 8...8 U has no

n'times
point spectrum for any n > 0. Since U ®S...®S U is the restric-

tion of U ®...8 U to the symmetric subspace, the symmetric
tensor product also has no point spectrum so it follows from
pProposition 4.1 that T has no eigenfunctions except the constants.
Thus, if U has no point spectrum, T is weakly mixing and hence
ergodic. Note that we have shown that an automorphism which arises
from an orthogonal transformation on a generating Gaussian sub-
space is weakly mixing if it is ergodic. |

To prove Proposition 4.3, we note first that, since a
Bernoulli automorphism has Lebesgue spectrum, statement (3) of
proposition 4.2 implies that T cannot be a Bernoulli automorphism
unless U has Lebesgue spectrum. To prove the converse, we

consider first the special case in which U has Lebesgue spectrum
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"of uniform multiplicity on the unit circle. There then exists a

direct sum decomposition

M= oo

such that U g, = 9,44 for allm (i.e., U is equivalent to a

shift operator). Let Fm be the smallest o-algebra with respect

to which all VY in g, are measurable. Then

(a) the orthogonality of the subspaces g implies that the Fm
are independent (orthogonal centered Gaussian random variables
are independent);

(b) the fact that the g_ span h,, together with the fact that h
m ~° 1 1

generates qu implies

V'Fm=01;
m
(c) the equation U In = gm+l implies

Hence, FO is an independent generator for T, so T is a Bernoulli
automorphism. Since the o-algebra Fo‘is non-atomic, the entropy
of T must be infinite.

To finish the proof we must eliminate the assumption of uni-
form multiplicity of the spectrum of U. Thus, let U be any ortho-
gonal transformation with Lebesgue spectrum on a generating
Gaussian subspace hl. It follows easily from £he spectral theorem
that there exists ﬁ‘on-hl with "complementary spectrum” such that

U®U on hl o hl has Lebesgue spectrum of uniform multiplicity.

We may identify hl ® hl with the generating Gaussian subspace

hy ®5q ®3q @ My
on (X x X, J.® (OL, P ® P). The automorphism of the product space
induced by U ® U is T x T , which is a Bernoulli automorphism

since U ® U has uniform Lebesgue spectrum, Thus, T is a factor
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of a Bernoulli automorphism. But Ornstein has proved

that any factor of a Bernoulli automorphism is again a Bernoulli
automorphism, so T must‘be a Bernoulli automorphism, as desired.
(For a statement and proof of Ornstein's result, see [7].)

The abpve Propositions 4.1 - 4.3 give a nearly complete
description of the ergodic—theoretic properties of the time-develop-
ment £low of the infinite harmonic crystal prévided we can |
determine the spectral properties of the one-parameter unitary
group Ul(t) on hl. While we cannot do this explicitly in general,
we can by introducing appropriate coordinates reduce it to determin-
ing the spectral properties of the operator S on 22(F). We equip
D(S—l/z) C RZ(P) with the norm

el = 18Ty

1/2

1/2

this makes D(S ~/“) into a Hilbert space. Now we map d(I') ® d(T)

onto a dense subspace of hl by sending £ &6 n to Z (ana + napa)'

o
By a straightforward calculation,
2 2 2
[ g (gaqa + nupa)" = ngu_l/2 + lInl
(where the norm on the left means the norm on L2(P)).

Taking into account the following lemma, we may extend this
mapping to an orthogonal mapping of D(Snl/z) 6 22(P) onto hl.

Lemma 4.4. d(I') is dense in D(S_l/z),

Proof: Assume not. Then there exists a non-zero vector ¥ in

0(s7H2) such that (sTH? vy, 72 £) = 0 for all £ in a(D).

~1/2 is a closed operator

/2 e(OL)"

By taking limits, using the fact that S

and the assumed polynomial boundedness of IIS—l

, we see
that this remains true for all £ in s(I'). But S maps d(I') into
s(I'), so replacing £ by S &' we get

- - - 1/2
0= (s /2y, s71/2 g iy = (712 0y, g2 vy = (v,eY)
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for all &' € d(I'). This evidently contradicts the assumption that
¥ # 0. We are thus able to identify hl with D(S—l/z) ® 22(P),
and can carry over the orthogonal group Ul(t) under this identifi-
cation to obtain a one-parameter. orthogonal group on D(S—1/2)®£2(P).
vTo identify the group so obtained, we compute its infinitesimal

generator:

d
L (55,000 + NaPe (8))| = ] tgpy = I Ny Sygdg o (£ al)

t=0 a,B

and hence the infinitesimal generator on d(I') ® d(I') is given by:

(2]

This operator is easily checked to be skew-adjoint and bounded on

2(I‘) so the transformed orthogonal group must be

o ([ ]

We can further simplify matters by identifying D(S—l/z) with RZ(P)

p(s™H2) o2

through the mapping £ F%FS—l/z £ ; this sets up an isomorphism
between hl and RZ(P).Q RZ(F) which carries Ul(t) to the group
1/2
0 -S
generated by ( ] .
sl/2

All these rearrangements were carried out by treating the
Hilbert spaces involved as real. Propositions 4.2 and 4.3, however,
express the ergodic-theoretic properties of Tt in terms of the
spectral properties of the unitary group obtained by complexifying

the underlying Hilbert space. If we allow complex changes of

1/2
coordinates, then the generator 1/2 S ] may be converted
S 0
. 1/2
into 18 01/2 ]. Combining these remarks with Propositions
0 -is

4.2 and 4.3, we get

Proposition 4.5. The time-evolution flow Tt for the infinite

harmonic crystal is
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(1) ergodic if and only if'S, acting on lé(F), has no point
spectrum

(2) a Bernoulli flow if and only if S has Lebesgue spectrum.

Let us now see what happens when assumption'(B) of Section 3
holds, but (4) does not. Abstracting from the above results, we may
describe the infinite system equilibrium state as an orthogonal map-
ping from v(s“l/z)ezz(r) onto a generating Gaussian subspace of a

probability space, with the interpretation that the random variable

corresponding to £ & n is : (Euqa + napa)' The time evolution
flow is induced by the one-parameter orthogonal group on
D(S—l/z) o 22(F) with infinitesimal generator (g -ﬁ). If (£,)

is a sequence which does not belong to D(S"l/2

), the series g £,9,
does not make sense as a random variable.

This description of the equilibrium state and time evolution
flow works perfectly well whether or not the coordinate vectors
(%) re in the domain of 572 nowever, if.e(a) & D(S_l/z), then

the position of the ath particle does not make sense as a random

variable. Indeed, as we have seen, if e(a) & D(S—l/z), then

jl\igl (le)w =@,
i.e., the variance of the position of the oth particle goes to
infinity with A. A'typical situation, exemplified by the one-
dimensional harmonic chain with nearest neighbor interaction, is
that £ € a(r) is in 0(s71/%) if and only if [ £, = 0, i.e., if
a

and only if ) ana may be written as a linear combination of
o

difference variables g, - dg - In this case, the variances of

difference variables approach finite limits as A -+ » even though

the variances of individual positions do not. Moreover, the joint



distribution of the difference variables for the finite system
" canonical ensemble converges to the corresponding distributions

for the infinite system.

5. Translation Invariance

The preceding section shows how to determine the behavior of
the harmonic crystal in the thermodynamic limit provided we know
enough about the operator S. Specifically, we need to know
(1) is 0 an eigenvalue of S ; ‘

(2) are the coordinate vectors e(a) in D(S_l/z);

(3) what is the spectral type of S ?

These equations are hard to answer in general. However, if the
matrix S is translation-invariant, Fourier transformation can be
used to simplify matters somewhat.

We let ? denote the "first Brillouin zone", i.e., the
compact dual group of the disoréte additive group I', and let V
denote the volume of ?. Foﬁrier trans formation gives a unitary

mapping of zé(r) onto Lé(f) sending & to E, where & and E

are related by [1] : ' 7

T “*"\/

Translation invariance means simply that SQB depends only on a-B;

we write S(a-8) for SaB in this case. The operator S becomes

a convolution operator:

(s&), = g S(a-8) £g

which under Fourier transformation becomes a multiplication

operator:

(SE) (p) = S(p) E(p)

with . .
Sp) = eP%s(a) .
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Recall, however, that S(o~B) is a v X v matrix, so the same is
‘true for §(p) and we have not yet completely diagonalized S; to
do this, we would have to diagonalize each §(p). This can only be
done on a case-by-case basis, but there are a number of remarks
which clarify the situation without requiring intricate
computations:

(1) The symmetry and reality of S imply that §(p) is self~-
adjoint for each p and that'g(—p) = g(p). Since S(o) is
assumed to be rapidly decreasing in o, §(p) is an infinitely
differentiable function of p.

(ii) In order that S be positive semidefinite it is necessary and
sufficient that §(p) be positive semidefinite for all p;
similarly, S does not have zero as an eigenvalue if and
only if S(p) 4is strictly positive definite for almost all p.

(iii) Assumption 4 of Section 3 holds if and only if
f ap 1) "M < @ .

(iv) In most interesting cases S(0) = 0. This reflects the fact
that a uniform displacement of all the atoms in the crystal
costs no energy. Because S(-p) = §(p), this implies that
each eigenvalue of g(p) vanishes at least as fast as |p|2 as

p approaches 2zero. Thus, we must expect that

f dp 18(p) "M =

in one and two dimensions. This argument does not apply in
three or more dimensions, and it is not hard to check that
the above integral converges at zero for many reasonable
interactions. The problem in showing that the overall
integral is finite is that some eigenvalues may have
"accidental” zeros at non-zero values of p.

The preceding analysis may be applied if the force matrix V

ie +vranclation invariant even if strict translation invariance is
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destroyed by variation of the masses. From the definition of S it

. follows readily that 1g™1/2 g(y2 _ mmllv_l/2 e (02

. Hence, as
long as the masses are bounded, and bounded away from zero, assump-
~tions (3) and (4) hold if and only if they hold with S replaced

by V.

The spectrum of S is almost arbitrary under our assumptions;
we may simply choose any periodic infinitely differentiable matrix-
valued function §(p) which is strictly positive definite every
where and satisfies the qualitative conditions of (i) and construct
S(a) as its inverse Fourier transform. If we take §(p) constant
on some non-empty open set, then S has an eigenvalue with infinite
multiplicity. On the other hand, if S(a) = 0 for all sufficiently
large o (or, more generally, if S(a) decreases exponentially wiﬁh
a), then é(p) is a real-analytic function of p. We claim that, in
this case, either g(p) has at least one p-indepeﬂdent eigenvalue
or else S has Lebesgue spectrum. To see this, we argue as follows:
If g(p) is an analytic function of p then, on the complement of a
closed nowhere dense set of Lebesgue measure zero, the eigenvalues
of S(p) are analytic functions of p. Then if no eigenvalue is
constant, the set where some eigenvalue has zero derivative is
again a closed set of Lebesgue measure zero. By excluding these
closed sets of measure zero, we see that S is unitarily equivalent
to multiplication by a smooth function with nowhere vanishing
derivative on an open set in Euclidean space; such an operator has
Lebesgue spectrum. In concrete cases it is frequently easy
(e.g. by looking at behavior near p = 0) to show that there is no
constant eigenvalue and hence that Tt is a Bernoulli flow.

This is indeed the expected behavior of physically reasonable
models of harmonic crystals with strict translation invariance [1,8].

It is true in particular for those systems for which the time



30

dependence of expectations of the type E(pa(t) pB(O)) has been
calculated explicitly [l1], [2])] (see footnote I in section 1).
Since these systems are Bernoulli (and hence mixing) thexe correla-
tions will go to zero as |t| = «. The rate of decay cannot of
course be obtained from the general theory; the calculations show
it behaves generally as g~ (1/2)V [1,2;9]° The way this inifnite
volume behavior is approached as A + « (for finite A the system is
not even ergodic) is also discussed in these studies.

The situation may be quite different however when the system
does not have strict translation invariance. In this case the
crystal may have localized modes in the neighborhood of the defect
(deviation from regularity) giving rise to a point spectrum for S.
, 1is

An example of this is the case where one of the masses, say mY

(sufficiently) smaller than the other masses, mY < m, = m for all
o # Yy, while V 1is translation invariant. It follows then from
Rayleigh's theorems (Chapter V of [1]) that there will be an
isolated frequency, or discrete eigenvalue of S. (This remains true
if there are a finite number of such mass defects [l1], [2].) Hence

such a system will not be ergodic (as found also by Cukier and Mazur

[10] from explicit calculations in the one dimensional case).

6. Quantum Mechanics of the Harmonic Crystal.

Because the equations of motion are linear the quantum-
mechanical time evolution of the infinite harmonic crystal is

easily deduced from the classical time evolution. Equation (3.1)

gives, in the classical case,
(1) (2)
qa(t) = %‘ KOLB dg + KOLB Pg o+,
and similarly for pa(t)o To get the quantum theory (in the

Heisenberg picture) it is only necessary to substitute a set of
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, operators Q, , P, satisfying the canonical commutation relations
‘for the numerical initial data d, + Py This gives the time evolu-
tion, formally at least, as a one-parameter group of automorphisms
of an algebra of unbounded operators. It is technically preferable
to pass to a one-parameter group of automorphisms of an C* algebra
"of bounded operators" assogiated with representation of the commu-
tation relations. This can be done without difficulty ~- the time
evolution automorphisms become Bogoliubov transformations -- but
we will not give the details [11].

The equilibrium statistical mechanics of the quantum crystal
is also simple to obtain. For a finite crystal A, a straight-
forward calculation shows that the canonical ensemble at inverse
temperature B is a quasi-free state Pa (i.e., the truncated

expectation values of degree greater than two vanish) with two-

point function given by [1]

571/ psy/?
PplQy Q) = 5~ coth —.—2—]

. a.aB

C s/ Bst/2 1T
pA(Pa PB) = ———5———~coth —

| : S 0B
pA(POL QB + QB P(X) = o .

(Note that p(PaQB) can be computed from the third equation and the
commutation relations.) We have put h = 1 in these expressions.
To obtain the equilibrium state for the infinite crystal, we must

let A » o, Let us look first at the expreSsion for pA(PaPB)' The

function 12 1/2
2% Bz
z = 5 coth ( 5 ]
is analytic in a neighborhood of the real line (including z = 0).

We may regard SA as a positive operator on QZ(P) which is zero on
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the orthogonal complement of 22(P). Then S, converges strongly to

S as A » » , and hence

Sl/z le/z
A A
3 coth —
converges strongly to
1/2 1/2
§_§_ coth [ 82 J
Therefore
1/2 1/2
. S S
lim p, (P P,) = [———— coth ]
Ao Ao B 2 ( 2 ) B
The limit for pA(QaQB) involves one more step. ‘The function
-1/2 1/2
z > 2 5 coth (EEE——)
is not analytic on the real axis; it has a pole at the origin.
However, the difference between this function and B-lz-l is

analytic. Hence, by the above argument,
_l —l }

(5)7) 48

lim {p, (0 Q) - B

A>o
exists. If, in addition, Assumption (4) of Section 3 holds, the

results of that section imply that
g"1/2 Sl gm1/2 (8))

[4

. -1 _
lim (SA )aB =

A>oo
so we can conclude that

(0) 5172 - gglr2 ]1/2
(1) each e is in the domain of |=— coth | > )

1/2
-1/2 1/2
() Lim oy (@,95) = [[S — coth (B 0)] &,
(*) ra=1/2 1/2 /2
[S 5— coth (§§§——J] e(B)}.

Thus: the infinite-system equilibrium state is the .quasi-free

state of the canonical commutation relations with two-point function

given by
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5=1/2 ssl/2
p(Q Q,) = coth (—————)] (defined by the right-hand
aB | T2 ) o8
| side of (*))
_ rsl/z '351/2
p(BPg) = |=5— coth (=5 )]as

P(P,Qg + QP ) = 0 .

Calculations similar to those used to prove the invariance of the
classical equilibrium state show that this state of the quantum
system is invariant under the time-development automorphisms.

If Assumption (4) of Section 3 fails, a part of the theory of
equilibrium states for the infinite crystal can be salvaged as
indicated in Section 4 for the classical system. In the resulting
theory, positions of the individual oscillators are not observables,

but appropriate linear combinations of the positions are.
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