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We consider energy transport in the classical Toda chain in the presence of an additional pinning
potential. The pinning potential is expected to destroy the integrability of the system and an
interesting question is to see the signatures of this breaking of integrability on energy transport.
We investigate this by a study of the non-equilibrium steady state of the system connected to heat
baths as well as the study of equilibrium correlations. Typical signatures of integrable systems are a
size-independent energy current, a flat bulk temperature profile and ballistic scaling of equilibrium
dynamical correlations, these results being valid in the thermodynamic limit. We find that, as
expected, these properties change drastically on introducing the pinning potential in the Toda
model. In particular, we find that the effect of a harmonic pinning potential is drastically smaller
at low temperatures, compared to a quartic pinning potential. We explain this by noting that at
low temperatures the Toda potential can be approximated by a harmonic inter-particle potential
for which the addition of harmonic pinning does not destroy integrability.

I. INTRODUCTION

The transport of thermal energy in Hamiltonian sys-
tems is a problem of great theoretical and practical in-
terest [1–4]. In its simplest form, one considers heat flow
in the non-equilibrium stationary state (NESS) of a sys-
tem in contact with two thermal reservoirs at different
temperatures. Very little is known rigorously about this
problem except in the case of harmonic crystals [5] or
hard rods in 1D [6]. These models are special cases of the
larger class of integrable models, whose extensive num-
bers of conserved quantities are expected in general to
lead to ballistic heat transport [7–9]. This means that
if a system of length N (and cross-section A) is put in
contact with heat reservoirs at temperatures TL and TR,
TL > TR, at its left and right ends, then the heat flow
in the stationary state J would be (except for boundary
effects) independent of N . Another distinctive feature of
the NESS of integrable systems is the flat temperature
profile observed in the bulk of the system. These features
are indeed observed for the harmonic chain and the hard
particle gas and also for other integrable models such as
the Toda lattice [7, 10–12].

In contrast, one finds a different picture for generic
nonlinear non-integrable systems such as Fermi-Pasta-
Ulam chains [13–16], the diatomic Toda chain [17] and
the alternate mass hard particle gas [18–20] where, sim-
ulations and various phenomenological theories find in-
stead J ∼ N−α with 0 < α < 1. This appears to be the
case for momentum conserving systems and this is re-
ferred to as anomalous transport. When a non-integrable
system does not conserve momentum, for example, due to
pinning by a one body potential, the transport is gener-
ally expected to be diffusive, also called “normal” since it
satisfies Fourier’s law, with α = 1 and this has been seen
in many simulations [4]. The temperature profiles ob-
served in non-integrable models is also completely differ-
ent from the flat ones in integrable models, here one finds

instead that the temperature changes gradually from the
hot end to the cold end.

Apart from the non-equilibrium setups, signatures of
non-integrability/integrability and anomalous transport
also manifest themselves in the form of dynamical equi-
librium spatiotemporal correlation functions. In fact,
significant theoretical progress in understanding anoma-
lous transport in momentum conserving systems has been
obtained by using the framework of nonlinear fluctuat-
ing hydrodynamics [21–24], which allows one to make
specific predictions for the form of equilibrium correla-
tions of conserved quantities. Using ideas of linear re-
sponse theory, one can then relate anomalous features
in equilibrium correlations to those observed in the non-
equilibrium set-up. For integrable systems, with a large
number of conserved quantities, there is much ongoing
work to develop a hydrodynamic framework [25]. One
expects ’ballistic scaling’ of correlation functions for in-
tegrable systems and this was observed in recent numer-
ical work on the Toda chain [26]. A surprising exception
to this expectation is the recent observation of ballistic
scaling, but also anomalous and diffusive scaling of cor-
relations in different parameter regimes of the integrable
XXZ model [27].

An interesting question is the effect of adding extra
terms to an integrable Hamiltonian which generically one
expects should make the system non-integrable. Several
studies have addressed this question. The pinned Toda
system was studied in [28] where it was found that en-
ergy transfer to high-frequency modes is slow and en-
ergy equipartition is not observed in the studied time
scale. Similar features were observed in the trapped
hard rod system [29], where it was observed that the sys-
tem become chaotic after a characteristic time scale but
fails to thermalize even at extremely large times. For
momentum-conserving systems surprising features (e.g
apparent diffusive transport) has been reported when a
system is taken slightly out of integrability, for example
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in the Fermi-Pasta-Ulam chain at low temperatures [15
and 16] and the alternate mass hard particle gas, at a
mass ratio close to one [12].

The present work addresses the effect of adding a pin-
ning potential to the integrable Toda lattice, that is
expected to make the system non-integrable. The sys-
tem should then become diffusive and we study how this
crossover takes place, by studying the size-dependence
of current and the temperature profile in the NESS as
well as the form of equilibrium dynamical correlation
functions. It has been observed in a few recent studies
that depending on the form of the integrability-breaking
term and other parameters such as temperature, the
crossover can occur at extremely large system sizes. Fol-
lowing some preliminary results by two of the present
authors [30], this was further investigated in [31] which
demonstrated that the crossover to diffusive transport
in the quadratically pinned Toda chain occurs at very
large length scales. This was then attributed to the fact
that solitons are the main energy carriers in this system
and the quadratic pinning potential affects them rather
weakly. In the present study, we confirm the finding in
[31] but propose a somewhat different understanding for
the slow crossover. We show that at low temperatures
and small system sizes, the harmonically pinned Toda
chain, in fact, behaves like a pinned harmonic chain, and
more so at strong pinning. This then also provides some
understanding as to why a quartic pinning leads to a
much faster approach to the diffusive regime.

The plan of the paper is as follows: In Sec. II we define
the model and the various setups that we use to study
transport properties of the system. In Sec. III we dis-
cuss simulation results for the NESS for the quadratic
pinned Toda chain and the quartic pinned Toda chain,
and also present comparisons with a related pinned har-
monic chain. In Sec. IV we present results for equilibrium
dynamical correlation functions, while in Sec. V we com-
pute the Lyapunov exponent for various cases and try to
see possible connections of the slow transition to diffu-
sion with chaotic properties of the system. Finally, we
summarise and discuss our findings in Sec. VI.

II. THE MODEL: SETUPS AND SOME
BACKGROUND

The model we consider is a 1-dimensional chain of N
particles with positions {qi} and momenta {pi} for i =
1, . . . , N , described by the classical Hamiltonian:

H =

N∑
i=1

[
p2i
2

+
ν2

z
qzi

]
+

N∑
i=0

V (qi+1 − qi), (II.1)

where V (r) =
a

b
exp(−br),

the constants a, b, ν > 0, while z is taken to be an even
positive integer. For ν = 0, the system is the usual Toda
chain [33], which is a well-known integrable model for
both periodic and fixed boundary conditions [34 and 35].

Unless otherwise specified, V (r) will refer to the Toda
interaction for the remainder of this work. Although the
purely Toda potential is integrable, an addition of on-site
potential, i.e., ν 6= 0 and z = 2, 4 is expected to break
the integrability of the ν = 0 system when the number
of particles is greater than 2. Indeed, the only obvious
conserved quantities when ν 6= 0 are H itself and the
centre of mass term hc

hc =
1

2

(N+1∑
i=0

pi

)2

+
ν2

2

(N+1∑
i=0

qi

)2

. (II.2)

We study transport properties of the system using the
following probes.

(i) Properties in the NESS — In this setup, the sys-
tem is connected to two heat reservoirs at the boundaries:
We take fixed boundary conditions q0 = 0, qN+1 = 0 and
couple the particles 1 and N of the chain to Langevin
baths with a coupling constant µ, which act as thermal
reservoirs at temperatures TL and TR and induce a non-
equilibrium steady state (NESS). The equations of mo-
tion are now given by

q̇i = pi, 1 ≤ i ≤ N (II.3)

ṗ1 = V ′(q2 − q1)− V ′(q1 − q0)− ν2qz−11 − µp1 + ηL,

ṗi = V ′(qi+1 − qi)− V ′(qi − qi−1)− ν2qz−1i , 2 ≤ i ≤ N − 1,

ṗN = V ′(qN+1 − qN )− V ′(qN − qN−1)− ν2qz−1N − µpN + ηR,

where V ′(r) ≡ dV (r)/dr and ηL, ηR are white Gaussian
noise terms with zero mean and variance 〈ηL(t)ηL(t′)〉 =
2µkBTLδ(t − t′), 〈ηR(t)ηR(t′)〉 = 2µkBTRδ(t − t′). In
this setup, the central quantity of interest are the bulk
temperature (Ti = 〈p2i 〉, i ∈ [1, N ]) and the average heat
current J , which in the NESS is constant in time and
equal to any of the following quantities

Ji = −
〈

1

2
(pi + pi+1)V ′(qi+1 − qi)

〉
i ∈ [2, N − 1],

JL = µ(TL − 〈p21〉), (II.4)

JR = µ(〈p2N 〉 − TR). (II.5)

where 〈·〉 refers to the NESS average, which in simu-
lations is computed by first allowing the system suffi-
cient time to relax to the NESS before time averaging.
In this work, we will present results for the system-size-
dependence of J and the form of the temperature profile
Ti in the NESS for the pinned potentials with the two
cases z = 2 and z = 4.

(ii)Dynamical correlation functions in thermal
equilibrium— The isolated set-up is used to study the
spatiotemporal decay of equilibrium correlations. In this
set-up, one usually considers a periodic ring with the
N particles evolving with the Hamiltonian equations of
motion

q̇i = pi ,

ṗi = V ′(qi+1 − qi)− V ′(qi − qi−1)− ν2qz−1i , (II.6)
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for i = 1, . . . , N and with the periodic boundary con-
ditions qN+i = qi. The local energy is defined as

ei = 1
2p

2
i + ν2

z q
z
i + V (qi+1 − qi). The Hamiltonian dy-

namics exactly conserves the total energy,
∑N
i=1 ei. We

then study the equilibrium spatio-temporal correlations
of energy fluctuations in this system given by

C(k, t) =
1

N

∑
i

[〈e(i+ k, t)e(i, 0)〉 − 〈e〉2] , (II.7)

where we have used translation invariance of the prob-
lem to sum over sites. The spatio-temporal nature
of the spread of these correlations give us information
about the nature of underlying dynamics. It is ex-
pected that at large times, this will have the scaling
form C(k, t) = t−1/2f(k/t1/2) for diffusive systems while
for integrable systems one expects the “ballistic” scaling
form C(k, t) = t−1f(k/t). For systems with anomalous
transport, this function has a more complicated structure
[24]. In our simulations, the system is first equilibrated
by attaching Langevin heat baths (at the same tempera-
ture T ) to all sites of the lattice. After the system reaches
equilibrium we draw random samples to create our equi-
librium initial conditions which are then evolved with
the Hamiltonian dynamics. We average over many such
initial conditions to compute the equilibrium correlation
functions in Eq. (II.7).

(iii)Probing chaotic properties from the Lya-
punov exponent— The Lyapunov exponent studies
how a small fluctuation grows in time. For a Hamiltonian
system evolving with Eq. (II.6), the following quantity
can be used to quantify chaos in the system:

λ(t) =
1

2Nt

N∑
i=1

〈ln
[
∂qi(t)

∂q1(0)

]2
〉 , (II.8)

where the average 〈...〉 denotes an average over initial
conditions q,p chosen from the equilibrium distribution.
To evaluate this, consider a localised infinitesimal per-
turbation of a specified initial condition q,p given by
δq1(t = 0) = Q1(t = 0). Let the resulting change in
the trajectory at time by given by δqi(t) = Qi(t) and
δpi(t) = Pi(t) for i = 1, 2, . . . , N . The equations satisfied
by Q,P are given by

Q̇i = Pi, (II.9)

Ṗi = −ν2(z − 1)qz−2i Qi + V ′′(qi+1(t)− qi(t))(Qi+1 −Qi)
− V ′′(qi(t)− qi−1(t))(Qi −Qi−1).

We solve these equations along with Eqs. (II.6), with
the initial conditions q(0),p(0) chosen from the equilib-
rium distribution and Qi(0) = δi,1, Pi(0) = 0 for all
i = 1, 2, . . . , N . Our quantity of interest is then given by

λ(t) =
1

2Nt

N∑
i=1

〈lnQ2
i (t)〉 . (II.10)
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FIG. 1. Temperature profiles (T -vs x = i/L) for the Toda
chain with harmonic pinning (Parameters a = b = 1, ν = 2,
z = 2, TL = 0.5, TR = 1.5). The temperature gradient is
almost negligible at small system size which is bit unusual,
but at larger system size it develops a small gradient. Also
the current (shown in inset) is not independent of system size
as one would expect in a ballistic, however it changes very
slowly with system size.

At large times, this gives the maximum Lyapunov expo-
nent of the system

λ = lim
t→∞

λ(t). (II.11)

For an integrable system, it can be shown that the Lya-
punov exponent vanishes while for non-integrable sys-
tems they are expected to be positive.

In the following sections, we will numerically study the
above characteristics for three different models.

III. SIMULATION RESULTS FOR THE NESS

We study the non-equilibrium properties of (a) the
quadratically pinned Toda chain at low and high tem-
peratures and (b) the quartic pinned Toda chain. We
also show that the results for case (a) of the quadrati-
cally pinned Toda lattice are similar to those obtained
for a pinned harmonic lattice.
Details of simulations: In the Langevin simulations

with heat baths at two ends of the chain, the dynamics
are integrated with a Brownian velocity-Verlet algorithm
[36] with a time step of dt ≤ 0.005. The system is first
to let to run for time ∼ 107 during which it reaches the
steady state. Then statistics for temperature and current
in steady state is collected for the next ∼ 107 times with
a gap of 10 units.
(a) Quadratically pinned Toda chain: This

corresponds to the case z = 2 in Eq. II.4.
Low temperature: The transport in this system shows
unusual behaviour at low temperatures. In Fig. 1 we
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FIG. 2. Temperature profiles for the Harmonic chain with
harmonic pinning (a = b = 1, ν = 2, z = 2, TL = 0.5,
TR = 1.5). The temperature is flat and there is no gradient
across the system. Also the current (shown in inset) is inde-
pendent with system size as N0, which shows this has ballistic
transport.

show the temperature and current profile at steady
state at low temperature (with TL = 0.5, TR = 1.5) .
For small system size, the temperature profile is almost
flat, which might make one think of ballistic transport.
However, as noted in [31] this is not true and a slight
temperature gradient develops at larger system sizes
with the gradient being extremely small along with large
boundary jumps. This is surprising and reminiscent of a
diffusive system with an extremely long mean free path.
As we will discuss now, this low-temperature behaviour
arises because the system is in some sense close to the
limit of a harmonic chain.

In Fig. 2 we show the temperature and current pro-
files in the quadratically pinned harmonic chain with the
inter-particle coupling term V (r) = 1

2r
2 and z = 2 at low

temperature (with TL = 0.5, TR = 1.5). This system is
known to be integrable and we see expected features of
an integrable system: A flat temperature profile as well
as a current independent of system size. The value of the
current, in this case, can be computed explicitly using the
expressions given in [37] and the simulation results show
very good agreement. For completeness, we quote the
formula for NESS current (for N →∞) in the harmonic
case with V (r) = k

2 r
2 and z = 2 as

J =
TL − TR

4µ3

(
A+ 2kµ2 −

√
A(A+ 4kµ2)

)
, (III.1)

whereA = k2+ν2µ2. We propose that at the low temper-
atures, the quadratically pinned Toda chain [ case (a)] is
in some sense close to the quadratically pinned Harmonic
chain. Due to pinning of the potential, at low enough
temperatures, the lattice vibrations are very small and

ν Tb JToda
b JHarmonic

b

1 1.012 -0.1504 -0.133974
2 1.019 -0.0846 -0.072949
4 1.012 -0.0287 -0.026389
6 1.005 -0.0134 -0.012829

TABLE I. Comparison of bulk temperature defined as Tb =∑N−1
i=2 Ti/(N − 2) and bulk current Jb =

∑N−1
i=2 Ji/(N − 2)

for pinned Toda chain and corresponding pinned Harmonic
chain for system size N = 32, TL = 0.5 and TR = 1.5. At
this system size the bulk temperature for the harmonic case
is very close to T = 1.0, as can also be seen in Fig. (2).

the effect of non-linearity of the Toda potential does not
play a significant role. In Table. (I), we show the aver-
age bulk temperature and the current in the Toda chain
for N = 32 and see that at the strongest pinning case,
the bulk temperature differs from the harmonic case by
about 0.5% and the current by about 4%. The system
size scaling of the current is shown in Fig. (6).

High temperature: At high temperatures (with TL =
19, TR = 21) as shown in Fig. (3), we find that the
diffusive nature is more prominent and we find a much
larger temperature gradient and correspondingly smaller
boundary jumps at the two ends. The current now
shows a significant decay with system size but as seen
in Fig. (6), we are still not in the diffusive J ∼ 1/N
regime. This is consistent with the fact that at the largest
system size we still see boundary jumps in the temper-
ature profile. We also note that at the smallest system
size N = 64, the quantity J/(TL − TR) differs from the
expected value for the harmonic chain (which is indepen-
dent of temperature). In fact this value is much larger
than the harmonic chain value, which is an indication
that, in the high temperature case, the pinned Toda chain
is far from the harmonic limit.

(b) Quartic pinned Toda chain: This corresponds
to the case z = 4 in Eq. II.4. In Fig. 4 we find that
for this case the destruction of integrability is manifest
even at small system size and at low temperatures. The
system goes to a NESS which is characterized by a non-
linear profile with very small temperature jumps and one
also finds that the current scales diffusively as shown in
Fig. 6. The non-linear profile is due to the temperature-
dependent thermal conductivity in the system. The aver-
age thermal conductivity [defined as κ = JN/(TL − TR)]
is then independent of system size and has the numerical
value κ ≈ 0.76. However the fact that the temperature
profile is not linear implies that the thermal conductiv-
ity is a function of temperature and varies significantly
within the range 0.5−1.5. In fact we can find the temper-
ature dependent conductivity from the local derivative
of the temperature profile, thus κ = J/dTdi . This is then
plotted in Fig. 5, and this gives us κ ≈ 0.67 for T = 1.
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FIG. 3. Temperature profiles for the Toda chain with har-
monic pinning (a = b = 1, ν = 2, z = 2, TL = 19, TR = 21).
At high temperatures, there is a noticeable temperature gra-
dient as we increase the system size. Also the current (shown
in inset) decreases with system size as ∼ 1/N .
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FIG. 4. Temperature profiles and currents for the Toda chain
with quartic pinning (z = 4), with all other parameters the
same as in Fig. 1. Note that with increasing N the profile
approaches a smooth curve between TL = 0.5 and TR = 1.5.
Inset: Averaged site-by-site current profile, with the average
current decaying with system size as ∼ 1/N .

IV. SIMULATION RESULTS FOR
EQUILIBRIUM CORRELATION FUNCTIONS

We study the differences in equilibrium correlation
functions in the three different setups.

Details of simulations: The system is first equilibrated
by attaching Langevin baths at all sites for time 1000 and
then the baths are disconnected and the isolated system
is let to evolve while computing necessary observables.
The averages for each observable are taken over 105 ini-
tial conditions. The time-step is dt ≤ 0.005.

0.67

FIG. 5. The thermal conductivity (κ = JN/ dT
dx

) plotted as
a function of temperature [T (x) ∈ (0.5, 1.5)] for the quartic
pinned Toda chain for system size N = 4096. The thermal
conductivity is a function of temperature in this system. The
thermal conductivity at T = 1 can be seen to be κ ≈ 0.67.

N�1

N�1

J
/
(T

L
�

T
R
)

FIG. 6. Current scaling with system size for various setups

(a) Quadratically pinned Toda chain: Consistent
with our findings in the NESS, here we find again that
the evolution of correlation functions in the harmonically
pinned Toda has different behaviour at low and high
temperatures. The spatiotemporal spread of energy
correlations has distinct scaling at low and high temper-
atures.

Low-temperature: At low temperatures, the correla-
tions of the pinned Toda chain is non-diffusive as shown
in Fig. 7 and we find an envelope of oscillatory correla-
tions giving a hint that the transport is close to the har-
monic case. For the overall envelope the scaling of cor-
relations is ballistic. Surprisingly, even at the time when
the correlations have reached the boundary, the ballistic
peaks still survive along with the oscillatory bulk. This
again suggests that at low temperatures the quadratically
pinned Toda is close to the integrable harmonic potential
at short time and small length scales. In Fig. 8 we plot
the energy correlations for the harmonic chain where we
again see ballistic scaling. For the set of parameters cor-
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i/ t
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(a)t = 1200
t = 2400
t = 3200
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0.5 0.0 0.5
i/t

0

1

2

3

tC
(i,

t)

(b)t = 1200
t = 2400
t = 3200
t = 4000

FIG. 7. Energy correlations for system size N = 4096 at
low temperature T = 1 with Toda parameters (a = b = 1,
ν = 2, z = 2) and averaged over ≈ 106 data points with (a)
diffusive scaling of energy correlations. (b) ballistic scaling
for energy correlations. We see that at very large times, the
equilibrium correlations are still very close to ballistic scaling,
although this is not perfect, which is not surprising since we
have seen in the non-equilibrium simulations that we start
seeing significant gradient already at this system size.

responding to the low-temperature harmonic limit of the
Toda chain, we see that the ballistic peaks at the ends are
in similar positions as that of Fig. 7(b) and have roughly
the same structure. It is expected that at much longer
times (requiring much bigger systems), the ballistic peaks
will eventually disappear and a diffusive central peak will
emerge.

High temperature: In the high-temperature case, at
small times we again see the ballistic peaks in the cor-
relations in Fig.(9) but these now quickly disappear and
are replaced by a central peak that scales diffusively. In
Fig. (10) we see that the spatiotemporal correlations have
a much better collapse for diffusive scaling than a ballis-
tic scaling. However, from the simulated system sizes, we
do not yet see a Gaussian central peak. We also note that
the speed of propagation of the ballistic front is twice as
that in the low-temperature case.

(b) Quartic pinned Toda chain: For this case,
as expected, we find that the equilibrium correlations
spread diffusively as shown in Fig. 11. The energy

0.5 0.0 0.5
i/t

0

4

8

12

tC
(i,

t)

t = 1200
t = 2400
t = 3200
t = 4000

FIG. 8. Energy correlations for system size N = 4096 at low
temperature T = 1 for pinned harmonic chain with param-
eters obtained from an expansion of the Toda potential. As
expected we see ballistic scaling and with strong resemblance
with the low-temperature Toda data in Fig. (7). The averag-
ing was over ≈ 106 data points.

2000 1000 0 1000 2000
i

0.0

0.4

0.8

1.2

C(
i,t

)
t = 200
t = 800
t = 1400
t = 2000

FIG. 9. The unscaled correlation functions of energy for Toda
with pinning with parameters (a = b = 1, ν = 2, z = 2). The
system is first prepared in equilibrium at temperature T = 20.
The initial times show a ballistic peaks which vanish at late
times.

correlations are now seen to be Gaussian, with a diffu-
sion constant D ≈ 0.8308. This is in sharp contrast to
the quadratically pinned Toda chain, where even at high
temperatures the spread is non-Gaussian. The thermal
conductivity as computed from the equilibrium correla-
tions is given by κ = DCv, where Cv = N−1∂〈H〉/∂T is
the specific heat capacity. From numerics, we compute
Cv ≈ 0.83 at T = 1. This gives an estimate of κ ≈ 0.689,
which is close to the one obtained from non-equilibrium
simulations (κ ≈ 0.67) at the same temperature.
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40 30 20 10 0 10 20 30 40
i/ t

0

4

8
t C

(i,
t)

(a)t = 1200
t = 1600
t = 2000

1.0 0.5 0.0 0.5 1.0
i/t

0

100

200

300

tC
(i,

t)

(b)t = 1200
t = 1600
t = 2000

FIG. 10. Energy correlations for system size N = 4096 at
high temperature T = 20 with Toda parameters (a = b = 1,
ν = 2, z = 2) and averaged over ≈ 106 data points with (a)
diffusive scaling of energy correlations, (b) ballistic scaling for
energy correlations. We see that there is a better collapse of
data with diffusive scaling though we are not yet in the fully
diffusive limit. Also note the highly non-Gaussian form.

6 4 2 0 2 4 6
i/ t

0.0

0.1

0.2

0.3

t C
(i,

t)

t = 1200
t = 2400
t = 3200
t = 4000
Gaussian

FIG. 11. Energy correlations for system size N = 4096 at
low temperature T = 1 with Toda parameters (a = b = 1,
ν = 2, z = 4) and averaged over 106 data points. The
energy correlations here are purely Gaussian and are very
different from the quadratically pinned Toda at both high
and low temperatures. The fitted Gaussian has the the form

Ae−i2/4Dt/
√

4πDt, with A ≈ 0.805, D ≈ 0.8308.

V. NUMERICAL RESULTS FOR LYAPUNOV
EXPONENT

Finally, we examine the breaking of integrability in the
system by studying the Lyapunov exponent λ which is a
measure of chaos in the system. For integrable models
it is known that λ = 0 while for non-integrable systems
we expect λ > 0. In Fig. 12 we plot λ(t) vs t for the
three different cases while the insets show the same data
in log-log scale.
(a) Quadratically pinned Toda chain: At large

times both at low temperature (T = 1) and high tem-
perature (T = 20), we see in Fig. 12(a), the Lyapunov
index converge to a finite positive value. This shows
conclusively that the system is non-integrable. How-
ever, at low temperatures, the Lyapunov index is much
smaller than at high temperatures, which then explains
its near-integrable behaviour. In Fig. 12(b) we plot λ(t)
for the pinned harmonic chain and unpinned Toda chain
(a = b = 1, ν = 0) which are both integrable. In both
cases, λ(t) ∼ 1/t for large t and so we get a vanishing
Lyapunov exponent. Note that for pinned as well as un-
pinned harmonic chain, λ(t) remains negative at all times
while for the unpinned Toda λ(t) first becomes positive
and then decays to zero as t→∞.
(b) Quartic pinned Toda chain: In this case, as

seen in Fig. 12(c), the Lyapunov index is again positive
and large even at low temperatures which is consistent
with the other strong non-integrability signatures in the
system. The Lyapunov exponent is approximately 0.078
whose value is very close to that of the Lyapunov ex-
ponent in quadratic pinned Toda in high temperatures.
However as we have seen previously, the spatiotemporal
correlations in these two models are very different. In the
quartic pinned Toda, the equilibrium energy correlations
are Gaussian as expected, while for quartic pinned Toda,
the correlations are non-Gaussian and the scaling is still
imperfect at the system sizes studied. This suggests that
the rate of approach to the diffusive transport regime
cannot be directly related to the size of the Lyapunov
exponent.

VI. CONCLUSIONS

Slow relaxation and near-integrable systems have been
gaining interest in recent years. Their peculiar proper-
ties possibly hold key to a better understanding of chaos
and thermalisation. We have studied the slow relaxation
in an unusual candidate, the pinned Toda chain where
for uniform quadratic pinning, the system shows ballis-
tic like behaviour at low temperatures and small system
size and diffusive like behaviour at large temperature or
large system sizes. We studied this by looking at equi-
librium and non-equilibrium transport properties along
with the Lyapunov exponent of the system. We argue
that the near-integrable behaviour of the pinned Toda
chain arises from the fact that, for small system size and



8

low temperatures, the quadratic pinning leads to the sys-
tem behaving effectively as a pinned harmonic chain. The
anharmonicity appears as a weak perturbation leading to
a very large mean free path — hence the cross-over to dif-
fusive behaviour takes place at very large length and time
scales. In contrast, we find that for a Toda chain with
quartic pinning, the integrability breaking and the cross-
over to diffusive transport is much faster, taking place at
small system sizes and low temperatures. For this system
we also find that the thermal conductivity obtained from
the nonequilibrium and equilibrium measurements are in
close agreement.
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