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Abstract. We investigate the macroscopic time evolution and stationary states
of a mean field discrete voltage neuron model, or equivalently, a generalized
contact process in R

d. The model is described by a coupled set of nonlinear
integral-differential equations. It was inspired by a model of neurons with discrete
voltages evolving by a stochastic integrate and fire mechanism. We obtain a
complete solution in the spatially uniform case and partial solutions in the general
case. The system has one or more fixed points and also traveling wave solutions.
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1. Introduction

We consider the mean-field (hydrodynamic) limit of a (novel) stochastic lattice system
inspired by neuronal integrate-and-fire models [7]. On the microscopic level the system
consists of variables S(z , t) associated to lattice site z ∈ Ω ⊂ Z

d, at time t ∈ R+. S(z , t)
can take integer values 0, 1, . . . , k. These can be thought of as discrete values of the
voltage of a neuron at site z .

A sketch of the microscopic dynamics is as follows: when none of the S(z , t) are
in state k, the system is in a static state. When S(z , t) = k, site z is in the active, or
firing, state. It will exit the active state and return to state 0 with probability dt in the
time interval (t, t+ dt). While site z is in the active state, any other site w �= z , with
S(w , t) = j, j < k, will jump from j to j + 1 at a rate kλJγ(z ,w). When multiple sites
are active, we linearly sum their effects on the jump rates of other sites. The function
Jγ(z ,w) has the Kac form [8],

Jγ(z,w) = γdJ(γ(z−w)) = γdJ(γ(w− z)) � 0 (1)

with
∫
RdJ(r)dr = 1, and γ > 0 a scaling parameter for the coupling. We will be interested

in the limit γ → 0.
The case k = 1 is similar to a popular two-state neuron system known as the stochas-

tic Wilson–Cowan model [9, 17]. The case k > 1 introduces multiple inactive states
0, . . . , k − 1, in which a site exerts no influence on its neighbors, and it must traverse
sequentially through the states to reach the active state k, which is followed by a reset
at rate 1 to the state 0. This setup is inspired by integrate and fire neuron models, where
the firing of other neurons is required to drive the membrane potential of a particular
neuron from a resting potential to a threshold level in order for it to become active itself.
Less tractable than two-state neuron models, many results for integrate and fire mod-
els are given by numerical simulation (e.g. [3, 13, 14]), although there are some results
proved, in particular for non-spatially-dependent networks in the mean field limit [2].
[5, 6] have shown rigorous results in the hydrodynamic limit of a network of integrate
and fire neurons with continuous membrane potentials and stochastic firing thresholds.
In these models, individual neuron firings produce infinitesimal jumps in membrane
potential of all other neurons. In contrast, neurons in the model studied in this paper
have fixed firing thresholds, and neuronal firings produce discrete jumps in membrane
potential.
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The k = 1 case is also an example of a standard contact process [11, 12], where the
value of S(z , t) can be interpreted as the state of an infection of an individual at z , with
S(z , t) = 0 corresponding to being healthy and S(z , t) = 1 to being infectious. Under
this interpretation, the case k > 1 is a generalization of the standard contact process,
where a healthy individual requires several exposures to infectious individuals in order
to become infectious themselves. As with a standard contact process, we are interested
in understanding under what conditions the activity is self-sustaining, how the activity
spreads throughout the system, and what are the temporal dynamics of the system.

We will be interested in the macroscopic equations on the scale x = γz in the mean
field limit γ → 0. We shall not discuss here the derivation of the macroscopic equations
from the microscopic models. That will be done in a different publication [4]. Here we
shall discuss the solution of the resulting macroscopic equations for different values of
k. Numerically, solutions approach either (1) stationary solutions in which no neurons
are firing, or (2) a spatially homogeneous stationary solution with neurons in the firing
state. We will call the states in case (1) the ‘extinct’ states and in case (2) the sustaining
stationary states. We find these stationary states rigorously and show that they are
linearly stable. Under the biological interpretations of the system, the stability of the
stationary states is important for showing that they can physically exist, as biological
systems are naturally subject to perturbation.

2. Macroscopic equations

The γ → 0 limit of the microscopic model yields the following equations on the macro-
scopic spatial scale for the v j(x , t), the fraction of the population density at position x
in state j, j = {0, 1, . . . , k},

∂v0(x, t)

∂t
= vk(x, t)− v0(x, t)λkRk(x, t) (2)

∂vj(x, t)

∂t
= [vj−1(x, t)− vj(x, t)]λkRk(x, t), j = 1, . . . , k − 1 (3)

∂vk(x, t)

∂t
= −vk(x, t) + vk−1(x, t)λkRk(x, t), (4)

where x ∈ Λ ⊂ R
d is a cubical box of sides L, with periodic boundary conditions and

uniform density equal to one, and

Rk(x, t) =

∫
Λ

J(x− y)vk(y, t)dy. (5)

We assume that J(r) has a range less than L/2. In the spatially uniform state, when
v j(y , t) is independent of y , then, by (5) and (1), Rk = v k.

The terms in equations (2)–(4) can be interpreted as follows. As neurons transition
from state k to 0 at rate 1, the v k terms in equations (2) and (4) correspond to the
gain at state 0 and loss at state k. The rate at which neurons at x jump from state j
to j + 1 is equal to λkRk(x , t), which is equal to the integral over y of the fraction of
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neurons in the firing state weighted by the coupling kernel J , and scaled by λk. The loss
from these jumps at state j and gain at state j + 1 is reflected by the remaining terms
of equations (2)–(4).

It follows from equations (2)–(4) that starting with v j(x , 0) � 0,
∑k

j=0vj(x, 0) = 1,
then

k∑
i=0

vi(x, t) =
k∑

i=0

vi(x, 0) = 1, vi(x, t) � 0, for all t � 0. (6)

It is clear from the above equations that if v k(x , 0) = 0 for all x then v i(x , t) =
v i(x , 0) and the system remains in its initial state forever. This is not very interesting
and we shall assume from now on that v k(x , 0) > 0 for some values of x . It is still
possible however that v k(x , t)→ 0 as t→∞. We shall call that ‘extinction’.

Using (6) we can replace v k(x , t) in (2) and (3) by

vk(x, t) = 1−
k−1∑
j=0

vj(x, t)

leading to a closed set of equations for v j(x , t), j = 0, . . . , k − 1 with

Rk(x, t) =

∫
Λ

J(x− y)

[
1−

k−1∑
j=0

vj(y, t)

]
dy.

3. Stationary states

Consider now the stationary solutions of (2)–(4). We see that in addition to the Rk = 0
solution corresponding to v k = 0, there is a stationary solution Rk(x, t) = R̄(x) > 0 of
the form

v̄j(x) =
1

λkR̄(x) + k
, j � k − 1 (7)

while

v̄k(x) =
λR̄(x)

1 + λR̄(x)
, (8)

and R̄(x) satisfies the equation

R̄(x) = λ

∫
J(x− y)

R̄(y)

λR̄(y) + 1
dy. (9)

Equations (7)–(9) have the spatially uniform solution

R̄ = v̄k =
λ− 1

λ
and v̄j =

1

λk
, j < k, (10)
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Figure 1. Solutions of (27) for the k = 2 spatially uniform case, indicating in black
the initial conditions (v0(0), v1(0)) which go to the extinct states v 2 = 0 as t→∞.
The extinct states are indicated by the dashed line. The sustaining stationary state
v̄0 = v̄1 = 1/(2λ) is shown by a red dot: it attracts all initial states in the white
region below the dotted line.

which is a physical sustaining stationary solution with v̄k > 0, for λ > 1. For λ � 1 the
only physical stationary solution is v̄k = 0.

Note that equation (9) for the stationary R̄(x) is independent of k. Thus if there
exists a non-vanishing, spatially dependent stationary state R̄(x), then it will be so for
all k. We will show in section 6 that for k = 1, the only stationary nonzero v k is the
spatially uniform one. Hence this will be true for all k.

The stationary state v̄ = (v̄0, . . . , v̄k) given in (10) is linearly stable (as shown in
section 5), so if we start close enough to v̄ then the system will always approach v̄ as
t→∞. On the other hand there are, as shown in section 4 for k > 1, initial uniform
states v j(0) with v k(0) > 0 such that v k(t)→ 0 as t→∞. Initial states v j(x , 0) close
to v j(0) would also have v k(x , t)→ 0 as t→∞ for all x ; see figure 1 and section 7.

4. Solution of the macroscopic equations in the spatially uniform case

The macroscopic equations in the spatially uniform case take the form

https://doi.org/10.1088/1742-5468/ac4985 5
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dv0

dt
= vk − (kλvk)v0 (11)

dvj

dt
= (kλvk)[vj−1 − vj ], j = 1, . . . , k − 1 (12)

dvk

dt
= −vk + (kλvk)vk−1 (13)

where v j(t) = fraction of neurons in state j = 0, 1, . . . , k.
To simplify equations (11)–(13), we introduce the variable r(t) defined by the

equations

dr

dt
= kλvk, r(0) = 0.

Writing vj(t) = ṽj(r(t)), valid as long as v k > 0, we get

dṽ0

dr
= −ṽ0 + q0, q0 =

1

kλ
, (14)

dṽj

dr
= ṽj−1 − ṽj, j = 1, . . . , k − 1, (15)

dṽk

dr
= ṽk−1 + qk, qk = −q0 = − 1

λk
. (16)

The autonomous equations for j = 0, 1, . . . , k − 1 can be rewritten in vector form

dṽ

dr
= Aṽ + q, ṽ(0) = v(0) (17)

where ṽ = (ṽ0, ṽ1, . . . , ṽk−1)
T, q = (q0, 0, . . . , 0)

T, and A is a k × k square matrix
with i, j ∈ {0, 1, . . . , k − 1}. A has −1’s along the diagonal and +1’s along the first
subdiagonal:

A = −I+Bk, Bk =

⎛
⎜⎜⎜⎜⎝
0 0 0 . . . 0 0
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎠ . (18)

Note that in successive powers of Bk, the +1’s move to lower subdiagonals:

(Bk)i,j = δi−1,j , (B
2
k)i,j = δi−2,j , . . . , (B

k−1
k )i,j = δi−k+1,j, and Bl

k = 0 for l � k.

Equation (17) has the solution

ṽ(r) = eArṽ(0) +

∫ r

0

esAq ds. (19)

Using equation (18), and the fact that Bk
k = 0, we have that

eAr = e−r 1 e−Br = e−r

[
1+ rBk +

r2

2
B2

k + · · ·+ rk−1

(k − 1)!
Bk−1

k

]
.
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Each term within the square brackets corresponds to a distinct subdiagonal, so the
matrix eAr is 0 above the diagonal and constant along each subdiagonal. Let Hj be the
value in the jth subdiagonal: explicitly,

Hj(r) = e−r r
j

j!
,

for j = 0, . . . , k − 1. Then (19) can be expanded to give an explicit solution for ṽj in
terms of r.

ṽj(r) =

j∑
i=0

Hj−iṽi(0) +
1

kλ

∫ r

0

Hj(s)ds, j = 0, . . . , k − 1, (20)

We also have

ṽk(r) = 1−
k−1∑
j=0

ṽj(r) (21)

= 1−
k−1∑
j=0

j∑
i=0

Hj−i(r)ṽi(0)−
1

kλ

∫ r

0

k−1∑
j=0

Hj(s)ds.

Clearly ṽi → v̄i = (λk)−1 for i < k, and ṽk → v̄k = (λ− 1)/λ as r →∞. Recalling now
that dr/dt = kλvk, we get

dr

dt
= k

(
λ− 1− λ

k−1∑
j=0

j∑
i=0

Hj−i(r)

[
vi(0)−

1

λk

])
= φ(r), (22)

which is an autonomous ODE, emphasized by introducing the notation φ(r) on the
right. The behavior of r(t) can then be determined by analyzing φ(r).

Starting with v k(0) > 0, we see that φ(0) > 0, and so r(t) is monotone increasing,
and satisfies

t =

∫ r

0

ds

φ(s)
(23)

so we have either

(a) there exists r0 the smallest positive solution to φ(r) = 0, such that t→∞ as r → r0,
or

(b) the integral is finite, in which case r →∞ as t→∞. This will certainly be the case
if φ(r) > 0 for all r > 0.

In case 1, since φ(r) = dr/dt = kλvk, we see that v k → 0 as t→∞; that is, in this
case the system goes to an inactive state with the firings dying out. In case 2, we see by
equation (22) that as t→∞,

vk(t)→
φ(∞)

λk
= 1− k

λk
= v̄k,

https://doi.org/10.1088/1742-5468/ac4985 7
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and by equation (20) for j < k, that

vj(t)→ ṽj(∞) =
1

kλ
= v̄j,

so the system goes to the unique sustaining stationary state.

4.1. Illustrative examples

The k = 1 case. In this case,

dr

dt
= λv1(t) = λ

(
1− e−rv0(0)−

1

λ

∫ r

0

e−sds

)
= φ(r). (24)

If 0 � v 0(0) < 1, then it can be checked that the right-hand side of equation (24)
is bounded below by a positive constant for all r � 0. Therefore the system always
approaches the sustaining steady state solution if v 1(0) > 0. More explicitly, we have in
this case, v 0(t) = 1− v 1(t), so v 1(t) satisfies the autonomous equation

dv1(t)

dt
= (λ− 1)v1(t)− λv2

1(t), (25)

whose solution is

v1(t) =
v1(0)

λ
λ−1

v1(0) +
(
1− λ

λ−1
v1(0)

)
e−(λ−1)t

→ v̄1 =
λ− 1

λ
as t→∞. (26)

Thus for k = 1 any initial state with v 1(0) �= 0 will approach, as t→∞, the sustaining
stationary state exponentially, as long as λ > 1.

Thinking of the process as a mean field model of infection, with v 1 representing the
infected fraction of the population the model predicts as in the standard contact process
a persistent percentage of infected individuals for λ > 1, the percentage increasing with
λ. For λ < 1, v 1(t)→ 0, there is no epidemic, as everyone gets eventually cured.

The k = 2 case. Unlike the k = 1 case, here it is possible to start the system with
v 2(0) > 0 and still have the firing die out, v 2(t)→ 0 as t→∞.

Writing the solution (20) for k = 2, we get,

ṽ0(r) + ṽ1(r) =
1

λ
[1− e−r]− 1

2λ
r e−r + v0(0)e

−r[1 + r] + v1(0)e
−r.

This yields

φ(r) = 2λ[1− ṽ1(r)− ṽ0(r)] (27)

= 2(λ− 1)(1− e−r) + r e−r[1− 2λv0(0)] + 2λ e−r[1− v1(0)− v0(0)].

Clearly if v0(0) <
1
2λ

then φ(r) > 0 for all r > 0 and the system will go to the sustaining
stationary state. For v 0(0) close to 1, there exists r0 > 0 for which φ(r0) = 0, in which
case the system goes to an inactive state with the firing dying out, i.e. v 2 → 0 as t→∞.
The region in the v 0(0), v 1(0) plane for which this occurs shrinks as λ increases, as
demonstrated numerically in figure 1. We expect similar behavior for k > 2. In fact it is
easy to see from (22) that if vi(0) � 1

λk
for all i � k − 1 then φ(r) > 0.

https://doi.org/10.1088/1742-5468/ac4985 8
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5. Linear stability of the sustaining state

Let us consider now the linear stability of the sustaining stationary states for general k

v̄j =
1

λk
, j < k, v̄k = 1− 1

λ
.

Let vj(x, 0) = v̄j + fj(x, t). Then setting

vj(x, t) = v̄j + fj(x, t),

The conditions

k∑
j=0

fj(x, t) = 0,

1− v̄j � fj(x, t) � −v̄j

are satisfied for all t � 0 if they are satisfied for t = 0.
Setting (λ− 1)k = α, we obtain to first order in the fj,

∂f0
∂t

(x, t) = −αf0(x, t) +

∫
J(x− y)[fk(x)− fk(y)]dy (28)

∂fj
∂t

(x, t) = α[fj−1(x, t)− fj(x, t)], j = 1, . . . , k − 1. (29)

Taking the Fourier series in x ,

f̂j(ξ, t) =
1

Ld

∫
Λ

fj(x, t)e
−2πiξ·x dx, j = 0, . . . , k − 1, (30)

where ξ = (ξ1, . . . , ξd) ∈ (L−1
Z)d, gives

∂f̂0
∂t

(ξ, t) = −αf̂0(ξ, t) + f̂k(ξ, t)
(
1− Ĵ(ξ)

)
(31)

∂f̂j
∂t

(ξ, t) = α[f̂j−1(ξ, t)− f̂j(ξ, t)], j = 1, . . . , k − 1. (32)

Letting β(ξ) = (1− Ĵ(ξ))/α, we can write the above equations in vector form

∂f̂

∂t
(ξ, t) = α(A− β(ξ)M)f̂, M =

⎛
⎜⎜⎝
1 1 . . . 1
0 0 . . . 0
...

...
...

...
0 0 . . . 0

⎞
⎟⎟⎠ , (33)

where M is the k × k matrix with ones in the top row and zeros elsewhere.
We will show that for any fixed value of ξ, each eigenvalue of the matrix (A−

βM ) has a negative real part, implying the convergence of f̂(ξ, t) to 0 as t→∞. The
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characteristic polynomial of the matrix, computed by cofactor expansion along the top
row, is

p(x) = (−1− β − x)−
k∑

k=2

(−1)j(−β)(+1)j−1(−1− x)k−j (34)

= (−1)k

[
(1 + β + x)(1 + x)k−1 + β

k∑
j=2

(1 + x)k−j

]
.

Letting p(x ) = 0, y = x + 1, and noting that y = 1 is not a solution to the equation,
yields

0 = (y+ b)yk−1 + β
k∑

j=2

yk−j (35)

= yk + β
k∑

j=1

yk−j

= yk + β
1− yk

1− y
,

which simplifies to

yk(y− (1− β)) = β. (36)

We now note that β � 0. This follows from the fact that J is a real-valued function with
J(x ) = J(−x ) � 0 and

∫
Λ
J(x )dx = 1. Therefore applying the absolute value to both

sides of (36) gives

|y|k|y− (1− β)| = β. (37)

We can deduce that |y | �= 1, as otherwise the equation (37) implies y = 1, and we have
remarked that this not a solution to the characteristic equation. Therefore either

(a) |y | < 1, or

(b) |y | > 1.

In case 1, it follows easily that the real part of y is less than 1, and therefore the real
part of x is negative. Case 2 implies that |y − (1− β)| < β, from which it also follows
that the real part of y is less than 1, and that the real part of x is negative. This implies
that f̂j(ξ, t)→ 0 for all fixed ξ, and from this point, we can prove that f converges to 0
uniformly.

Linear stability of the inert state v0= 1. Having shown the linear stability of
the stationary sustaining state we consider now the linear stability of the state v k(t) =

v k(0) = 0. Rather than considering all initial states v j(0),
∑k−1

j=0vj(0) = 1, we consider
here only perturbations around the extreme case v 0(x , t) = 1, v j(x , t) = 0, j > 0.

Let

v0(x, t) = 1 + f0(x, t), f0(x, t) < 0, (38)

https://doi.org/10.1088/1742-5468/ac4985 10
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vj(x, t) = fj(x, t), fj(x, t) > 0, j = 1, . . . , k,

k∑
j=0

fj = 0. (39)

Linearizing in the f’s gives, for k > 1,

∂f0
∂t

(x, t) = fk(x, t)− λk

∫
J(x− y)fk(y, t)dy (40)

∂f1
∂t

(x, t) = λk

∫
J(x− y)fk(y, t)dy (41)

∂fj
∂t

(x, t) = 0, for j ∈ {2, . . . , k − 1}, (42)

∂fk
∂t

(x, t) = −fk =

k−1∑
j=0

fj, implying fk(x, t) = fk(x, 0)e
−t, (43)

so for k > 1 the dead state in the vicinity of v 0(x , t) = 1 is linearly stable, see figure 1.
For k = 1, f1(x , t) � 0,

∂f1
∂t

(x, t) = −f1(x, t) + λ

∫
J(x− y)f1(y, t)dy. (44)

Taking spatial Fourier transforms yields

∂f̂1
∂t

(ξ, t) = (λĴ(ξ)− 1)f̂1(ξ, t), (45)

which has the solution

f̂1(ξ, t) = f̂1(ξ, 0)e
(λĴ(ξ)−1)t. (46)

Since Ĵ(0) = 1 there will be growth at least for small values of ξ, for which f̂1(ξ, 0) > 0,
so the state v 0 = 1 is unstable for λ > 1. In fact as we shall now show for k = 1, any
perturbation of the state v 0(0) = 1, will lead asymptotically to the stable stationary
state v̄0 = λ−1, v̄1 = (λ− 1)/λ.

6. k = 1, general case

In this two-level case, v 1(x , t) = 1− v 0(x , t) is the only unknown function. It satisfies
the equation

∂v1(x, t)

∂t
= −v1 + λ(1− v1(x, t))

∫
J(x− y)v1(y, t)dy. (47)

Define f(x , t) by

f(x, t) = v1(x, t)− v̄1, v̄1 =
λ− 1

λ
. (48)
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Using the fact that
∫
J(x − y)dy =

∫
J(x − y)dx = 1 we get from (47)

∂f(x, t)

∂t
= −(λ− 1)f(x) (49)

+

∫
Λ

J(x− y)[f(y)− f(x)]dy

− λ

∫
Λ

J(x− y)f(y)f(x)dy.

= −
∫

dyJ(x− y)[f(x)− f(y)]− λ

∫
dy J(x− y)f(x)

[
λ− 1

λ
+ f(y)

]

Multiplying (49) by f(x , t) and integrating over x yields

1

2

d

dt

∫
Λ

f2(x, t)dx =− 1

2

∫∫
J(x− y)[f(x)− f(y)]2dx dy (50)

− λ

∫∫
J(x− y)f2(x, t)v1(y, t)dy dx � 0

The inequality is strict for all initial conditions with v 1(x , 0) not identically 0, and shows
that v1(x, t)→ v̄1 as long as v 1(x , 0) > 0.

Traveling wave solution. We consider the time evolution of v 1(x , t) when x ∈ R,
i.e. we let L→∞, and the initial state is one in which v 1(x , 0) goes to the stable solution
v̄1 = (λ− 1)/λ as x →−∞ and to the unstable solution v 1 = 0 as x →∞. Equation (47)
for k = 1 can be considered as a special case of the non-local Fisher-KPP equation, with
the diffusion constant set equal to zero [1]. To get a feeling for the evolution of such an
initial state we first consider the limiting case when the width J(x − y) goes to 0, i.e.

J(x− y) = δ(x− y). (51)

Equation (47) then has the traveling wave solution

u1(x, t) =
λ− 1

λ
[1− tanh[α(x− V t)]] /2, αV = (λ− 1)/2 (52)

Numerical solutions of (47) with

J(x) =
1

2b
θ(b− |x|), θ(x) =

{
1, x � 0,

0, x < 0,

and initial conditions

v1(x, 0) =

⎧⎨
⎩
λ− 1

λ
, for x < 0,

0, for x > 0,

show that v 1(x , t) approaches a form close to (52) with αV ∼ (1− λ)/2 as t→∞; see
figure 2. Similar behavior is found for J(x ) a Gaussian.
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Figure 2. Numerical simulation of k = 1 traveling front solutions. In all plots,
λ = 1.1 and J(x ) = 1 for |x | < 1/2 and 0 otherwise. (A) Traveling front arising
from step function initial conditions. At t = 0, v1(x) = v̄1 for x < 0 and 0 other-
wise. The traveling front is well approximated by a rescaled and shifted hyperbolic
tangent function, shown in red. (B) Fronts developing from initial conditions set
to equation (52) with α = 0.1 and α = 0.05. Front velocity is approx. double for
α = 0.05 compared to 0.1. (C) Dependence of front velocity on α. v 1(x ) is initial-
ized with equation (52) for a range of α, and velocity is computed numerically.
Comparison with velocity given in equation (52) is given by the red dashed line.
Note that for 1/α close to 0, the initial condition is nearly a step function as in (A).

7. Conclusions

We have shown that when λ > 1, the macroscopic equations (2)–(4) have a unique,
linearly-stable stationary state with nonzero firing rates v k(x , t) given by (10), which
we refer to as the sustaining stationary state. For k = 1, the basin of attraction of
the sustaining stationary state includes all initial conditions such that v 1(x , 0) is not
identically 0 for all x . The case k > 1 is qualitatively different: even starting with v k(0) >
0 we can have v k(t)→ 0. We have shown this explicitly for k = 2 and found that there
are linearly-stable extinct states like v(x , t) = (1, 0, . . . , 0).

For k = 2, we have seen in numerical simulations that even for initial conditions with
v(x, 0) = v̄ for x in a small region of R and v(x , 0) = (1, 0, 0) outside of that region
(J the same as in figure 2), the firing (epidemic) can die out and approach an extinct
state. As the size of the region increases, eventually a point is reached where the firing
becomes self-sustaining and spreads throughout the system. We conjecture that there
exists some M > 0, depending on J(x ), such that the initial condition with the region
|x | < M set to v̄ will necessarily converge to v̄ pointwise on the whole domain.

In the one-dimensional case x ∈ R, we showed the existence of traveling wavefront
solutions v(x , t) = v(x − Vt) in the k = 1 case, with an analytic solution in the J =
δ case and numerically for other forms of J . Wavefront solutions have been studied
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extensively in the case of neural models like the mean field Wilson–Cowan equations [15].
It remains to be rigorously shown that traveling fronts exist in the case k > 1. Based on
numerical solutions of the equations, we conjecture that stable traveling wave solutions
exist for k > 1, and that there are qualitative differences with the case k = 1. The
existence of linearly stable extinct states like v = (1, 0 . . . , 0) when k > 1 changes the
properties of traveling fronts with v(−∞) = v̄ and v(∞) = (1, 0, . . . , 0). In particular,
we conjecture that there exists unique traveling waves, with wave velocity proportional
to the width of J .

As the microscopic system described in the introduction has been inspired by inte-
grate and fire models from neuroscience, we are interested in extensions of the model to
include more realistic components of biological neurons and neural networks. In particu-
lar, including sites in the model which have an inhibitory effect on nearby sites will lead
to a richer dynamical landscape. Other models with mixed excitatory and inhibitory
components have been shown to have oscillatory activity, and such models have been
used to study brain rhythms (e.g. [2, 10, 16]). Additionally, the effects of inhibition on
the propagation of traveling fronts in the brain has been examined in [15]. An interest-
ing question is how brain activity is contained and localized to a particular region when
externally driven. We would like to explore this question in our model with the addition
of both inhibition and an external drive component.
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[5] De Masi A, Galves A, Löcherbach E and Presutti E 2015 Hydrodynamic limit for interacting neurons J. Stat.

Phys. 158 866–902
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