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Abstract. We describe results of computer simulations of steady state heat
transport in a fluid of hard discs undergoing both elastic interparticle collisions
and ‘pseudo collisions’ which do not conserve momentum. The latter are done
by picking particles at random and randomizing the directions of their veloci-
ties. The system consists of N discs of radius r in a unit square, periodic in the
y-direction and having thermal walls with different temperatures at x = 0 and
at x = 1. We extrapolate results from different N, to N→∞, r→ 0, such that
πr2N = 1/2. We find that in the (extrapolated) hydrodynamic limit N→∞, the
systems’ local density and temperature profiles are those of local thermodynamic
equilibrium (LTE), the corresponding pressure is constant independent of posi-
tion and the heat flux obeys Fourier’s law. The variance of global quantities, such
as the total energy, deviates from its local equilibrium value in a form consistent
with macroscopic fluctuation theory.
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1. Introduction

We continue our investigation, via molecular dynamics (MD), of the nonequilibrium
stationary states of a system of N hard discs of radius r in a unit square [1]. The system
has areal density ρ = Nπr2 = 0.5, periodic boundary conditions in the y-direction and
thermal walls at x = 0 and x = 1 with temperatures T0 and T1 (= 1) respectively for all
computer simulated cases in this paper. We have simulated different N values ranging
from 460 up to 5935 (see appendix for all the technical details about the computer
simulation) in order to do a finite size analysis and obtain the hydrodynamic description
of the system, in the limit, N→∞, r→ 0.

The dynamics of the discs consists of linear displacements at constant velocity and
elastic collisions when two discs meet. Additionally the dynamics has a part that breaks
the bulk momentum conservation of the system dynamics. We introduced such a mech-
anism recently in the context of kinetic equations for the one particle distribution,
f(r, v, t) [2]. There we added to the usual collision term, Qc( f ), such as Boltzmann,
Boltzmann–Enskog and BGK, a linear collision term, QD( f ), which randomizes veloci-
ties but conserves energy. We multiplied this term by a parameter α, leading to a kinetic
equation for f(r, v, t),

∂tf + v · ∇f = QC(f) + αQD(f) (1)

This led to an evolution of f which had only two conservation laws, particle and energy
density, i.e. no momentum conservation. QD( f ) represents particle collisions with fixed
obstacles, as in a Lorentz gas. It corresponds physically to a fluid moving in a porous
medium [3]. Diffusively scaling space and time [4] enabled us to derive rigorously, from
the modified kinetic equations, macroscopic equations for the two conserved quantities
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[5]. We are not aware of such rigorous derivation for the full conservation laws including
momentum.

In this note we describe MD simulations of hard discs with a dynamics which destroys
momentum conservation in a different way from that modeled in reference [2] but has
physically a similar effect. We do not assume here the validity of any kinetic equation
for f. The momentum destroying dynamics is done as follows: following each elastic
collision between a pair of particles in the system we pick γ particles at random from
the remaining (N− 2) particles and randomize the direction of their velocities. We do not
consider the particles involved in the actual collision to exclude dynamic pathologies. We
have simulated γ = 0, 0.3, 1, 5 and 10. γ = 0 corresponds to purely dynamical evolution
as in reference [1] while for γ = 0.3 we wait for ten interparticle collisions before choosing
three particles at random.

In addition to these bulk collisions there are also collisions with the thermal walls.
When a disc hits a thermal wall it gets a new normal component of the velocity with
respect to the boundary. Its value is obtained from a Maxwellian velocity distribution
with the temperature that corresponds to the wall. We use this combined dynamics to
the study of the stationary state. This was previously investigated for the case γ = 0
[1]. We have done simulations for T0 = 1, 3, 5, 7, . . . , 21.

We find that for N→∞ our system satisfies locally the equilibrium equation of state:

Pπr2 ≡ Q = T (x)ρ(x)H(ρ(x)) (2)

where ρ(x), T(x) are the local areal density and the local temperature respectively and
P is the pressure. H is independent of γ and is given by its equilibrium value, see (4).

In addition we observe that the heat current follows Fourier’s law

JH/r ≡ J = −κ(T , ρ ;γ)
dT

dx
x ∈ [0, 1] (3)

where JH is the heat current. P and JH are also observed to be independent of x in the
stationary state. This follows from the uniformity of the system in the y-direction.

The expressions for H(ρ) and κ(T, ρ ; γ) obtained numerically will be compared with
some theoretical approximations. For instance, H(ρ) proposed by Henderson [6] is known
to be a very good approximation for ρ � 0.6:

H(ρ) =
1 + ρ2/8

(1− ρ)2
− 0.043

ρ4

(1− ρ)3
(4)

Observe that based on computer simulations and some theoretical analysis, the 2D
system of hard discs at equilibrium is believed to have a phase transition at ρ � 0.7 [7].

For κ(T, ρ ; γ) we first note that to the extent that (3) holds, i.e. J is a linear func-

tional of the local gradient, J will be proportional to
√
T . Moreover, it will vanish as

the distance between particles and the time between collisions goes to zero as r→ 0 so
it has to be rescaled by r as is done in (3). Thus, in the limit N→∞
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κ(T , ρ ;γ) =
√
TK(ρ ;γ) (5)

For K(ρ ; γ) we use an expression for the conductivity derived in reference [2] from an
approximate solution of the Enskog equation with a momentum destroying collision term
proportional to α: see equation (78) in [2]. We replace the dimensionless parameter αs

there by a function φ(γ). This gives

K(ρ ;γ) =
1 + (3 + 16φ(γ)ρ)ρχ(ρ) + (19 + 9π)(ρχ(ρ))2/4π√

π(χ(ρ) + 4πφ(γ))
(6)

where χ(ρ) = (H(ρ)− 1)/2ρ. φ(γ) is chosen to give accurate results at low densities.
This gives, for the values of γ simulated here, φ(0.3) = 0.09, φ(1) = 0.286, φ(5) = 1.685
and φ(10) = 5.50.

We solve equations (2) and (3) using H and K from equations (4) and (6) respectively
with the boundary conditions

T (0) = T0, T (1) = 1, ρ̄ =

∫ 1

0

dxρ(x) = 0.5 (7)

to obtain expressions for ρ(x) and T(x), J and P. We check these against the results
of the simulations in sections 2 and 3. In section 4 we consider 1/N deviations from
local equilibrium as seen in the energy fluctuations and find that they agree with the
macroscopic fluctuating theory.

2. Local equilibrium

The local equilibrium hypothesis used in the last section assumes that in the hydro-
dynamic description of a macroscopic system we can locally define equilibrium ther-
modynamic observables that obey the equilibrium relations between them. To check
if the equilibrium equation of state (EOS) holds in each stripe parallel to the y-axis
(see appendix) we define the local density for the stripe s, ρ(s) as the number of particle
centers in the stripe:

ρ(s) =
1

N

∑
i : ri∈B(s)

1 (8)

where B(s) is the set of points belonging to the stripe s (see appendix). We then use the
virial theorem to compute the local pressure Qv(s):

Qv(s) = ρ(s)T (s) +
1

2Δ2
Bτ

∑
n : tn∈[0,τ ] ; ri(t)∈B(s)

rij(tn) · pij(tn) (9)

where rij = ri − rj, pij = pi − pj, ΔB is the width of a stripe, and the sum runs over all
particle–particle collisions that occur in the cell s in the time interval [0, τ ] letting τ be
large enough for the right-hand side of equation (9) to be independent of τ .
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Figure 1. H(ρ(s)) = Qv(s)/ρ(s)T(s) vs ρ(s) for s = 4, . . . ,NB − 3 for all the simu-
lated N’s in table A1 and ΔT = T0 − T1 = 0, 2, . . . , 20. Black, red, blue, orange
and magenta points are for γ = 0, 0.3, 1, 5 and 10, respectively. The dotted ver-
tical line is the observed equilibrium phase transition critical value (γ = 0 and
ΔT = 0): ρc � 0.7062. The black solid line is the H(ρ) function corresponding to
the Henderson’s equation of state (see text).

First we checked that the virial pressure Qv is constant all over the system for each
N, temperature gradient and γ’s and we got the average over the stripes. Finally from
such data we extrapolated its value to N→∞. We also checked that this value agrees
with the pressure measured at the thermal walls, by computing the momentum transfer
to the wall.

In order to check the local equilibrium hypothesis we plot H(ρ(s)) = Qv(s)/ρ(s)T(s)
vs ρ(s) for all the stripes s (except the ones near the heat bath boundaries) and for all the
simulations done: γ’s, ΔT’s and N’s. In total there are 17 195 data points represented in
figure 1.We observe in figure 1 that most of the points with local densities � 0.6 follow
the same curve independently of the position of the stripe, the number of particles N, the
temperature gradient ΔT or the randomization intensity γ. We observe that Henderson’s
EOS (4) follows the data almost perfectly for low densities and only deviates when
approaching the expected equlibrium phase transition critical density at ρc � 0.7062 [7].
Moreover, the data lose the scaling property for densities larger than 0.6. We believe
that is due mainly to the small size of the virtual stripes when the particles begin to
crystallize in a hexagonal lattice and the center of the particles tend to be ordered and
aligned [8]. Therefore nearby stripes may contain one or two lines of centers affecting
microscopically the values of the measured densities. Finally we conclude from the data
analysis that our nonequilibrium system has the local equilibrium property in the range
of densities [0, 0.6].

The quality of the data allows us to look in detail at the quality of the Henderson
EOS. We observe that for ρ � 0.6 the Henderson EOS has less than 1% relative error
with the data.
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Figure 2. Thermal profiles for N = 4000, ΔT = 4, 10, 16 and γ = 0 (dark green),
γ = 0.3 (green), γ = 1 (yellow), γ = 5 (red) and γ = 10 (black). Solid lines are the
corresponding fitted functions. Big points at x = 0 show the simulated T0 values.

3. Temperature profiles and Fourier’s law

The local temperature is defined as the average local kinetic energy per particle at each
stripe. That is,

T (s) =
1

2ρ(s)NM

M∑
t=1

∑
i : ri(t)∈B(s)

vi(t)
2 (10)

where M is the number of measurements (M = 105). We assume that a particle belongs
to a stripe if its center is in the stripe. This computational method is efficient but it
does not compute correctly the density behavior near the walls.

As an example, we show in figure 2 the temperature profiles for N = 4000, ΔT = 4,
10 and 16 and different γ values. We see that all the measured profiles are monotone
decreasing functions with positive curvature. We also see that the size effects are larger
as we increase the temperature gradient for a given γ value.

We observe that the extrapolated profiles up to the boundaries do not coincide with
the temperature values used in the simulations. This phenomena is known as thermal
resistance. Kinetic theory arguments predict that this temperature gap goes to zero
as the mean free path which behaves like N−1/2 when N→∞. We have checked this
prediction by fitting the data for each temperature profile to a polynomial with positive
curvature. We extrapolate the fitted functions to the boundary points x = 0 and x = 1
getting T e

0 and T e
1 respectively. We define the relative gap:

Gi(N) =
(Ti − T e

i (N))

Ti

� Gi√
N

(i = 0, 1) (11)

We got the values of Gi versus ΔT by extrapolating G0,1(N)
√
N to N→∞ for the

different values of γ. We confirm the behavior with N−1/2 of Gi(N). We see that for a
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Figure 3. K(s) vs ρ(s) for the virtual boxes s = 2, . . . ,NB − 1 for all the simulated
N’s in table A1 and ΔT = T0 − T1 = 0, 2, . . . , 20. Black, red, blue, orange and
magenta dots are for γ = 0, 0.3, 1, 5 and 10 respectively. The red vertical line is
the observed equilibrium phase transition critical value when γ = 0 and ΔT = 0:
ρc � 0.7062. The solid lines are obtained by fitting the parameters φ(γ) in the
Boltzmann–Enskog expression for the thermal conductivity [see equation (6)] to
the data and by using the Henderson EOS.

given temperature gradient and size N the gap increases with γ. On the other hand, for
any γ value, the thermal resistance increases with the gradient.

To check the validity of Fourier’s law (3) we computed at each stripe

K(ρ ;γ) = − J√
T (x)

(
dT

dx

∣∣∣∣
x=x(ρ)

)−1

(12)

as a function of ρ. If Fourier’s law holds K(ρ ; γ) should be, for each γ, a universal curve
independent of the parameters that define the stationary state: T0, T1 and ρ̄ and the
x used. The derivative of the thermal profile is analytically done over the fitted profile.
The use of fitting functions with positive curvature reduces the dispersion of the values
of the derivatives due to the typical ‘waves’ around the average profile that one obtains
when using an arbitrary polynomial. For the thermal conductivity analysis we have
discarded the points near the thermal walls to minimize the boundary effects.

We draw figure 3 by computing the derivative of the fitted function at the center
of each virtual box, associating to the point the measured average density in the box.
We see there that the data follows quite well a unique curve for each given γ value.
Let us stress that for each γ we are plotting around 3600 data points corresponding to
systems with different thermal gradients and number of particles in each of the stripes
where local variables are defined. Observe that the N dependence is not visible and that
the K decreases with γ as expected. We observe deviations to the unique curve when
approaching the critical density. As we see, we have obtained a reasonable description
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Figure 4. (a) Energy fluctuations σ(e) vs ΔT for γ = 0 (black points), 0.3 (red
points), 1 (blue points), 5 (orange points) and 10 (magenta points). We also plot
the energy fluctuations assuming local equilibrium, σ(e)le, for γ = 0 (gray points),
γ = 0.3 (pink points), γ = 1 (cyan points), γ = 5 (light orange points) and γ = 10
(light magenta points). (b) Same data as left figure but plotted versus ΔT2 to
see the nontrivial curvature of the data sets. (c) Difference between the measured
energy fluctuations and the local equilibrium energy fluctuations. Solid lines are
linear fits to the data.

by K(ρ) of equation (6) for ρ � 0.6. Again the deviations from the theory to the data
increase with γ.

4. Fluctuations

We measured the fluctuations of the energy per particle in the stationary state:

m(eN ) = 〈e2N 〉 − 〈eN 〉2, eN =
1

N

N∑
i=1

e(vi) (13)
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this has the asymptotic behavior:

σ(e) = lim
N→∞

Nm(eN ) (14)

plotted in figure 4(a).
It is well known, for certain exactly solvable models, e.g. SEP, KMP that even

when the system is in LTE in the macroscopic limit (N→∞) the fluctuation in global
quantities deviates from their LTE values [9]. For our system

σle(e) = ρ−1

∫ 1

0

dxρ(x)T (x)2 (15)

This is plotted in figure 4(b).
In figure 4(c) we show δ(e) ≡ σ(e)− σle(e) and observe that δ(e) = b(γ)(ΔT)2

with b(γ) > 0 monotone increasing with γ: b(0) = 0.058(0.002), b(0.3) = 0.109(0.003),
b(1) = 0.161(0.006), b(5) = 0.22(0.02) and b(10) = 0.25(0.01). This is of the same form
as that founded for the exactly solvable models. It is also of the form found by macro-
scopic fluctuation theory (MFT) [10]. The coefficient of (ΔT)2 can be related in MFT
(when there is only a single macroscopic variable) to the compressibility and transport
coefficients. It can be positive or negative. We have not tried to compute b(γ) for our sys-
tem but it is noteworthy that the linear (ΔT)2 dependence holds also for deterministic
systems with γ = 0.

5. Concluding remarks

We have studied via MD simulations the NESS of a system of hard discs with an
imposed nonuniform temperature in the hydrodynamic scaling limit, r→ 0, Nπr2 = 0.5.
The dynamics conserve energy but not momentum. The results provide strong evidence
for the system being in LTE. We also found evidence of long range correlations behaving
as N−1 giving rise to non LTE variances in global quantities.
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Appendix

Starting in an ordered initial configuration we let the system relax towards its stationary
state during 5× 104N particle collisions and then we do measurements for each 102N
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Table A1. N is the different number of particles in the bulk simulated in this paper.
NB is the number of virtual stripes in which we divide the system to measure local
observables.

N NB N NB

460 13 3434 36
941 19 3886 39
1456 23 4367 41
1927 27 4875 43
2438 30 5412 46
2900 33 5935 48

particle collision obtaining M = 105 data. The errors in all magnitudes are 3σ with σ
being the standard deviation of the set of measurements. We have measured global
magnitudes as the energy per particle, eN, the pressure, QN and the heat current JN
that are defined for the simulations:

eN =
1

M

M∑
t=1

1

N

N∑
i=1

e(vi(t))

QN =
πr2

τcol

Nwc∑
n=1

(Δvx)n

JN =
r

τcol

Nwc∑
n=1

(Δe(v))n (16)

where

e(v) =
1

2
(v2i,x + v2i,y) (17)

is the kinetic energy of particle i. Nwc is the number of hard discs collisions with the
walls in the time interval [0, τ col] once the systems reaches the stationary state. (ΔA)n is
the variation of the magnitude A before and after the nth collision with the wall: A = vx
or e(v).

In order to measure local observables such as the density, temperature and the virial
pressure. We divide the system into virtual stripes parallel to the heat bath walls.
We choose their width to be of order 4r. More precisely, the number of stripes is
NB = int(1/2r) and the stripes width l = 1/NB. Observe that NB depends on the particle
radius that also depends on N as is seen in table A1.

For each averaged observable we find a systematic dependence on N and in order to
check the hydrodynamic equations we need to extrapolate to their limit, N→∞ value.
For instance we show in figure A1 the pressure measured at the walls, QN, as an example
of such systematic size dependence. We plot there QN for γ = 1. In order to extrapolate
the data for a given ΔT and γ to the N→∞ limit, it is typically enough to use a second
order polynomial fitting function: aN = a+ a1/N+ a2/N

2. In figure A1 we plot the fits
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Figure A1. Pressure, QN, for γ = 1 and ΔT = T0 − T1 = 0, 2, . . . , 20 (from bottom
to top inside each graph) as a function of 1/N. The points on the 1/N = 0 axis
correpond to the extrapolation of a parabolic least square fit to the data (solid
lines) for each T0. Error bars are smaller than the points size.

Figure A2. Extrapolation of the virial pressure, Qv = limN→∞Qv,N and the pressure
Q = limN→∞QN as a function of ΔT. Big black, red, blue, orange and magenta points
are for Qv and γ = 0, 0.3, 1, 5 and 10 respectively. Small gray, pink, cyan, light
orange and light magenta points are for Q and γ = 0, 0.3, 1, 5 and 10, respectively.

as thin dashed lines. The big points in the figures are the extrapolated Q’s from the
fitted functions for each ΔT values. These limiting values are essential to get a coherent
picture of the system’s behavior. For instance, in the pressure case, we also measured
the local pressure by using the virial expression. First we observe that the data at the
boundaries are distorted by the way we have defined the density measurements. We
discard such boundary data in the analysis. Second, we tried to fit several functions to
the bulk data and we concluded that the best one is the constant function. The virial
pressure is derived from classical mechanics and therefore its constant value along the
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stripes indicates a kind of mechanical equilibrium at the system stationary state. We
again use the fitted values for different N’s to extrapolate the data to N→∞ by using a
second order polynomial in 1/N. Finally, we can compare these asymptotic values with
the pressure Q measured on the walls and we get a very good match.

We see in figure A2 the extrapolated Q and Qv. At a glance we do not see any
systematic deviation. In fact the relative error 100|Q−Qv|/Q runs between 0.01% and
0.4% which is very small and it indicates the good quality of the data obtained in the
computer simulation.
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