Ginzburg-Landau minimizers with prescribed degrees. Capacity of the domain and emergence of vortices

Let Ω be a 2D domain with holes $\omega_0, \omega_1, \ldots, \omega_j, j = 1...k$. In domain $A = \Omega \setminus (\bigcup_{j=0}^k \omega_j)$ consider class \mathcal{J} of complex valued maps having degrees 1 and -1 on $\partial\Omega$, $\partial\omega_0$ respectively and degree 0 on $\partial\omega_j$, j = 1...k.

We show that if $\operatorname{cap}(A) \geq \pi$, minimizers of the Ginzburg-Landau energy E_{κ} exist for each κ . They are vortexless and converge in $H^1(A)$ to a minimizing S^1 -valued harmonic map as the coherency length κ^{-1} tends to 0. When $\operatorname{cap}(A) < \pi$, we establish existence of quasi-minimizers, which exhibit a different qualitative behavior: they have exactly two zeroes (vortices) rapidly converging to ∂A .