Eddie Cohen, long time tails, and FM quantum phase transitions
Eddie Cohen, long time tails, and FM quantum phase transitions

Eddie history
Eddie Cohen, long time tails, and FM quantum phase transitions

Eddie history

• Divergences
Eddie Cohen, long time tails, and FM quantum phase transitions

Eddie history

• Divergences

• Long time tails \Rightarrow FM QPT?
Eddie Cohen, long time tails, and FM quantum phase transitions

- Eddie history
 - Divergences
 - Long time tails \rightarrow FM QPT?
 - Long range correlations in NESS
Eddie Cohen, long time tails, and FM quantum phase transitions

Eddie history

• Divergences
 • Long time tails \rightarrow FM QPT?
 • Long range correlations in NESS
 • Fluctuation theorems
Eddie Cohen, long time tails, and FM quantum phase transitions

Eddie history

↕

• Divergences
• Long time tails \rightarrow FM QPT?
• Long range correlations in NESS
• Fluctuation theorems

↕

↕
Review of LTT
Review of LTT

- $J_{xy}(t) = \sum v_{ix}(t) v_{iy}(t) + \ldots$
- $C(t) = \langle J_{xy}(t) J_{xy}(0) \rangle$
- $\eta = \int_0^\infty C(t)$
Review of LTT

- \(J_{xy}(t) = \sum v_{ix}(t)v_{iy}(t) + \ldots \)
- \(C(t) = \langle J_{xy}(t)J_{xy}(0) \rangle \)
- \(\eta = \int_0^\infty C(t) \)

Long time decay?

- Simple theory \(\sim e^{-t/\tau} \)
Review of LTT

- $J_{xy}(t) = \Sigma v_{ix}(t)v_{iy}(t) + ...$
- $C(t) = \langle J_{xy}(t)J_{xy}(0) \rangle$
- $\eta = \int_{0}^{\infty} C(t)$

Long time decay?

- Simple theory $\sim e^{-t/\tau}$
- Reality $\sim 1/t^{d/2}$
Review of LTT

- \(J_{xy}(t) = \sum v_{ix}(t)v_{iy}(t) + \ldots \)
- \(C(t) = \langle J_{xy}(t)J_{xy}(0) \rangle \)
- \(\eta = \int_0^\infty C(t) \)

Long time decay?

- Simple theory \(\sim e^{-t/\tau} \)
- Reality \(\sim 1/t^{d/2} \)
FIG. 3 Normalized velocity autocorrelation function \(\rho_D(t) = C_D(t)/(\langle \nu^2(0) \rangle) \) as a function of the dimensionless time \(t^* = t/t_0 \), where \(t_0 \) is the mean-free time. The crosses indicate computer results obtained by Wood and Erpenbeck (1975) for a system of 4000 hard spheres at a reduced density corresponding to \(V/V_0 = 3 \), where \(V \) is the actual volume and \(V_0 \) is the close-packing volume. The dashed curve represents the theoretical curve \(\rho_D(t) = \alpha_D (t^*)^{-3/2} \). The solid curve represents a more complete evaluation of the mode-coupling formula with contributions from all possible hydrodynamic modes and with finite-size corrections included (Dorfman, 1981). From Dorfman et al. (1994).
Question: Why do LTT occur?
Question: Why do LTT occur?

Answer: Because slow or soft modes couple to currents that are not obviously slow.
Question: Why do LTT occur?

Answer: Because slow or soft modes couple to currents that are not obviously slow.

Slow fluctuation: \(\delta u_x(k,t) \approx \exp(-vk^2t) = \exp(-t/\tau(k)) \) \(\tau(k) = \frac{1}{vk^2} \Rightarrow \infty \) as \(k \to 0 \)
Question: Why do LTT occur?

Answer: Because slow or soft modes couple to currents that are not obviously slow.

Slow fluctuation: $\delta u_x(k, t) \approx \exp(-vk^2t) = \exp(-t/\tau(k))$ \hspace{1cm} \tau(k) = 1/vk^2 \Rightarrow \infty \quad \text{as } k \to 0$

MMC theory gives,

$J_{xy}(t) = J_{xy}(0) + \int dk \delta u_x(k, t) \delta u_y(-k, t) \leftarrow \text{product of soft modes}$
Question: Why do LTT occur?

Answer: Because slow or soft modes couple to currents that are not obviously slow.

Slow fluctuation: \(\delta u_x(k,t) \approx \exp(-vk^2t) = \exp(-t/\tau(k)) \)

\(\tau(k) = 1/vk^2 \rightarrow \infty \text{ as } k \rightarrow 0 \)

MMC theory gives,

\[J_{xy}(t) = 0 J_{xy}(t) + \int dk \, \delta u_x(k,t) \, \delta u_y(-k,t) \leftarrow \text{product of soft modes} \]

\[\rightarrow \delta C_{\eta \eta}(t) \sim \int dk \, < |u_x(k,t)| > < |u_y(k,t)| > \sim \int dk \, \exp(-2vk^2 t) \sim 1/t^{d/2} \quad \text{LTT!!!} \]
Question: Why do LTT occur?

Answer: Because slow or soft modes couple to currents that are not obviously slow.

Slow fluctuation: \(\delta u_x(k,t) \approx \exp(-vk^2t) = \exp(-t/\tau(k)) \) \(\tau(k) = 1/vk^2 \Rightarrow \infty \) as \(k \to 0 \)

MMC theory gives,

\[
J_{xy}(t) = J_{xy}(0) + \int dk \delta u_x(k,t) \delta u_y(-k,t) \leftarrow \text{product of soft modes}
\]

\[
\Rightarrow \delta C_{\eta\eta}(t) \sim \int dk \langle |u_x(k,t)|^2 |u_y(k,t)|^2 \rangle \sim \int dk \exp(-2vk^2 t) \sim 1/t^{d/2} \quad \text{LTT!!!}
\]

Universal effects in liquids due to soft or slow modes coupling to........stuff.
• Another example: Heisenberg magnet in FM phase-0rdered in z-direction

• \(S=(\pi_x,\pi_y,\sigma) \)

• \(\sigma=m+\delta\sigma \)
• Another example: Heisenberg magnet in FM phase-ordered in z-direction

• $S=(\pi_x, \pi_y, \sigma)$

• $\sigma = m + \delta \sigma$

• $<|\pi(k)|^2| \sim 1/k^2 \rightarrow \text{GM due to BS and LRO}$

• $<|\delta \sigma(k)|^2|_{\text{simple theory}} \sim \text{const} \rightarrow \text{delta function correlated in space}$
• Another example: Heisenberg magnet in FM phase-ORDERED in z-direction

• \(S = (\pi_x, \pi_y, \sigma) \)

• \(\sigma = m + \delta \sigma \)

• \(\langle |\pi(k)|^2 \rangle \sim 1/k^2 \rightarrow \text{GM due to BS and LRO} \)

• \(\langle |\delta \sigma(k)|^2 \rangle |_{\text{simple theory}} \sim \text{const} \rightarrow \text{delta function correlated in space} \)

• Due to mmc→

• \(\delta \sigma(k) = \delta \sigma^{(0)}(k) + \sum \pi(k-q)\pi(q) + \cdots \)
• Another example: Heisenberg magnet in FM phase-ordered in z-direction

• $S=(\pi_x,\pi_y,\sigma)$

• $\sigma=m+\delta\sigma$

• $<|\pi(k)|^2> \sim 1/k^2 \rightarrow$ GM due to BS and LRO

• $<|\delta\sigma(k)|^2 |_\text{simple theory} \sim \text{const} \rightarrow$ delta function correlated in space

• Due to mmc \rightarrow

• $\delta\sigma(k)=\delta\sigma(0)(k)+\Sigma\pi(k-q)\pi(q)+\cdots$

• $<|\delta\sigma(k)|^2> \sim \text{const} + \Sigma <|\pi(k-q)|^2><|\pi(q)|^2> \sim 1/k^{4-d} \rightarrow$ singular in all $d<4$
• What does this have to do with QPT??
• What does this have to do with QPT??

Focus on FM transition in clean metallic systems where the PM<->FM transition happens at low T
• What does this have to do with QPT??

Focus on FM transition in clean metallic systems where the PM<->FM transition happens at low T

Experiment: Without fail, at low enough T (with a non-thermal control variable, say pressure) the PT changes from 2nd order to first order!!!
• What does this have to do with QPT??

Focus on FM transition in clean **metallic** systems where the PM<->FM transition happens at low T

Experiment: Without fail, at low enough T (with a non-thermal control variable, say pressure) the PT changes from 2nd order to first order!!!

\rightarrow There appears to be a universal mechanism that causes a tri-critical point to exist in ALL metallic FM (and Ferrimagnets!!)
• What does this have to do with QPT??

Focus on FM transition in clean **metallic** systems where the PM<->FM transition happens at low T

Experiment: Without fail, at low enough T (with a non-thermal control variable, say pressure) the PT changes from 2nd order to first order!!!

→ There appears to be a universal mechanism that causes a tri-critical point to exist in ALL metallic FM (and Ferrimagnets!)
I. Quantum Ferromagnetic Transitions: Experiments
I. Quantum Ferromagnetic Transitions: Experiments

- Metallic ferromagnets whose T_c can be tuned to zero:
I. Quantum Ferromagnetic Transitions: Experiments

- Metallic ferromagnets whose T_c can be tuned to zero:
 - UGe$_2$, ZrZn$_2$, (MnSi) (clean, pressure tuned)
I. Quantum Ferromagnetic Transitions: Experiments

- Metallic ferromagnets whose T_c can be tuned to zero:
 - UGe$_2$, ZrZn$_2$, (MnSi) (clean, pressure tuned)
 - Clean materials all show tricritical point, with 2nd order transition at high T, 1st order transition at low T:
I. Quantum Ferromagnetic Transitions: Experiments

- Metallic ferromagnets whose T_c can be tuned to zero:
 - UGe$_2$, ZrZn$_2$, (MnSi) (clean, pressure tuned)
 - Clean materials all show tricritical point, with 2$^{\text{nd}}$ order transition at high T, 1$^{\text{st}}$ order transition at low T:

 ![UGe$_2$ graph](image)

(Pfleiderer & Huxley 2002)
I. Quantum Ferromagnetic Transitions: Experiments

- Metallic ferromagnets whose T_c can be tuned to zero:
 - UGe$_2$, ZrZn$_2$, (MnSi) (clean, pressure tuned)
 - Clean materials all show tricritical point, with 2nd order transition at high T, 1st order transition at low T:

(Pfleiderer & Huxley 2002)
(Uhlarz et al 2004)
I. Quantum Ferromagnetic Transitions: Experiments

- Metallic ferromagnets whose T_c can be tuned to zero:
 - UGe$_2$, ZrZn$_2$, (MnSi) (clean, pressure tuned)
 - Clean materials all show tricritical point, with 2$^\text{nd}$ order transition at high T, 1$^\text{st}$ order transition at low T:

TABLE I: Systems with low-\(T\) ferromagnetic transitions and their properties. \(T_c\) = Curie temperature, \(T_{ic}\) = tricritical temperature. \(\rho_0\) = residual resistivity. FM = ferromagnet, SC = superconductor. N/A = not applicable; n.a. = not available.

<table>
<thead>
<tr>
<th>System</th>
<th>Order of Transition</th>
<th>(T_c/\text{K})</th>
<th>magnetic moment/(\mu\text{B})</th>
<th>tuning parameter</th>
<th>(T_{ic}/\text{K})</th>
<th>wings observed ((\rho_0/\mu\Omega\text{cm}))</th>
<th>Disorder</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{MnSi}^{27})</td>
<td>1st</td>
<td>29.5 (^{28})</td>
<td>0.4 (^{28})</td>
<td>hydrostatic pressure (^{18})</td>
<td>(\approx 10) (^{18})</td>
<td>yes (^{25}) (0.33) (^{25})</td>
<td>weak helimagnet, exotic phases (^{25,26})</td>
<td></td>
</tr>
<tr>
<td>(\text{ZrZn}_2^{27})</td>
<td>1st</td>
<td>28.5 (^{29})</td>
<td>0.17 (^{29})</td>
<td>hydrostatic pressure (^{29})</td>
<td>(\approx 5) (^{29})</td>
<td>yes (^{29}) (\geq 0.31) (^{30})</td>
<td>confusing history, see Ref. (^{27})</td>
<td></td>
</tr>
<tr>
<td>(\text{Sr}_3\text{Ru}_2\text{O}_7)</td>
<td>1st (^f)</td>
<td>0 (^g)</td>
<td>0 (^g)</td>
<td>pressure (^g)</td>
<td>n.a.</td>
<td>yes (^{31}) (< 0.5) (^{31})</td>
<td>foliated wing tips, nematic phase (^{31})</td>
<td></td>
</tr>
<tr>
<td>(\text{UGe}_2^{33})</td>
<td>1st (^{34})</td>
<td>52 (^{35})</td>
<td>1.5 (^{35})</td>
<td>hydrostatic pressure (^{22,35})</td>
<td>24 (^{36})</td>
<td>yes (^{35,36}) (0.2) (^{22})</td>
<td>easy-axis FM coexisting FM+SC (^{22})</td>
<td></td>
</tr>
<tr>
<td>(\text{URhGe}^{33})</td>
<td>1st (^{37})</td>
<td>9.5 (^{23})</td>
<td>0.42 (^{23})</td>
<td>transverse B-field (^{37,39})</td>
<td>(\approx 1) (^{37})</td>
<td>yes (^{37}) (8) (^{38})</td>
<td>easy-plane FM coexisting FM+SC (^{23})</td>
<td></td>
</tr>
<tr>
<td>(\text{UCoGe}^{33})</td>
<td>1st (^{40})</td>
<td>2.5 (^{40})</td>
<td>0.03 (^{24})</td>
<td>none (^{h})</td>
<td>(> 2.5?) (^{h})</td>
<td>no (^{24}) (12) (^{24})</td>
<td>coexisting FM+SC (^{24})</td>
<td></td>
</tr>
<tr>
<td>(\text{CoS}_2)</td>
<td>1st (^{41})</td>
<td>122 (^{41})</td>
<td>0.84 (^{41})</td>
<td>hydrostatic pressure (^{41})</td>
<td>(\approx 120) (^{41})</td>
<td>no (^{41}) (0.7) (^{41})</td>
<td>rather high (T_c)</td>
<td></td>
</tr>
<tr>
<td>(\text{La}_{1-x}\text{Ce}_x\text{In}_2)</td>
<td>1st (^{42})</td>
<td>22 - 19.5 (^{42}) (^i)</td>
<td>n.a.</td>
<td>composition (^{42}) (> 22?) (^{j})</td>
<td>no</td>
<td>n.a.</td>
<td>third phase between FM and PM? (^{42})</td>
<td></td>
</tr>
<tr>
<td>(\text{Ni}_3\text{Al}^{27})</td>
<td>(1st) (^k)</td>
<td>41 - 15 (^{1})</td>
<td>0.075 (^{35})</td>
<td>hydrostatic pressure (^{43})</td>
<td>n.a.</td>
<td>no (^{44}) (0.84) (^{44})</td>
<td>order of transition uncertain</td>
<td></td>
</tr>
<tr>
<td>(\text{YbIr}_2\text{Si}_2^{n})</td>
<td>1st (^{45})</td>
<td>1.3 - 2.3 (^{9})</td>
<td>n.a.</td>
<td>hydrostatic pressure (^{45})</td>
<td>n.a.</td>
<td>no (^{45}) (\approx 22) (^{7})</td>
<td>FM nature of ordered (\approx 22) phase suspected (^{45})</td>
<td></td>
</tr>
<tr>
<td>(\text{YbCu}_2\text{Si}_2^{n})</td>
<td>n.a.</td>
<td>4 - 6 (^{46})</td>
<td>n.a.</td>
<td>hydrostatic pressure (^{46})</td>
<td>n.a.</td>
<td>no</td>
<td>n.a.</td>
<td>nature of magnetic order unclear</td>
</tr>
<tr>
<td>(\text{URu}_{2-x}\text{Re}_x\text{Si}_2)</td>
<td>2nd (^{47,48})</td>
<td>25 - 2 (^{7})</td>
<td>0.4 - 0.03 (^{48})</td>
<td>composition (^{47})</td>
<td>N/A</td>
<td>N/A (\approx 100) (^{7})</td>
<td>strongly disordered</td>
<td></td>
</tr>
<tr>
<td>(\text{Ni}x\text{Pd}{1-x})</td>
<td>2nd (^{50})</td>
<td>600 - 7 (^{7})</td>
<td>n.a.</td>
<td>composition (^{50})</td>
<td>N/A</td>
<td>N/A</td>
<td>disordered, lowest (T_c) rather high</td>
<td></td>
</tr>
<tr>
<td>(\text{YbNi}_4\text{P}_2)</td>
<td>2nd (^{51})</td>
<td>0.17 (^{51})</td>
<td>(\approx 0.05) (^{51})</td>
<td>none</td>
<td>N/A</td>
<td>N/A (2.6) (^{51})</td>
<td>quasi-1d, disordered</td>
<td></td>
</tr>
</tbody>
</table>
II. Quantum Ferromagnetic Transitions: Theory

1. Conventional (= mean-field) theory

- **Hertz 1976**: Mean-field theory correctly describes T=0 transition for d>1 in clean systems, and for d>0 in disordered ones.
II. Quantum Ferromagnetic Transitions: Theory

1. Conventional (= mean-field) theory

- **Hertz 1976**: Mean-field theory correctly describes T=0 transition for $d>1$ in clean systems, and for $d>0$ in disordered ones.

- Landau free energy density: $f = f_0 - h m + rm^2 + um^4 + w m^6$
 Equation of state: $h = r m + u m^3 + w m^5 + ...$
II. Quantum Ferromagnetic Transitions: Theory

1. Conventional (= mean-field) theory

- **Hertz 1976**: Mean-field theory correctly describes T=0 transition for d>1 in clean systems, and for d>0 in disordered ones.

- Landau free energy density: \[f = f_0 - h m + r m^2 + u m^4 + w m^6 \]
 Equation of state: \[h = r m + u m^3 + w m^5 + \ldots \]

- Landau theory predicts:
 - 2nd order transition at t=0 if u>0
 - 1st order transition if u<0
II. Quantum Ferromagnetic Transitions: Theory

1. Conventional (= mean-field) theory

- **Hertz 1976**: Mean-field theory correctly describes $T=0$ transition for $d>1$ in clean systems, and for $d>0$ in disordered ones.

- Landau free energy density: $f = f_0 - h m + r m^2 + u m^4 + w m^6$
 Equation of state: $h = r m + u m^3 + w m^5 + ...$

- Landau theory predicts:
 - 2^{nd} order transition at $t=0$ if $u>0$
 - 1^{st} order transition if $u<0$

- **Sandeman et al 2003, Shick et al 2004**: Band structure in UGe$_2$ $u<0$
II. Quantum Ferromagnetic Transitions: Theory

1. Conventional (= mean-field) theory

- **Hertz 1976**: Mean-field theory correctly describes T=0 transition for d>1 in clean systems, and for d>0 in disordered ones.

- Landau free energy density: \[f = f_0 - h \, m + r \, m^2 + u \, m^4 + w \, m^6 \]
 Equation of state: \[h = r \, m + u \, m^3 + w \, m^5 + ... \]

- Landau theory predicts:
 - 2\(^{nd}\) order transition at \(t=0 \) if \(u>0 \)
 - 1\(^{st}\) order transition if \(u<0 \)

- **Sandeman et al 2003, Shick et al 2004**: Band structure in UGe\(_2\) \(\rightarrow \) \(u<0 \)

- Problems:
 - Not universal
 - Does not explain the occurrence of a universal tricritical point
II. Quantum Ferromagnetic Transitions: Theory

1. Conventional (= mean-field) theory

- **Hertz 1976**: Mean-field theory correctly describes $T=0$ transition for $d>1$ in clean systems, and for $d>0$ in disordered ones.

- Landau free energy density: $f = f_0 - h m + r m^2 + u m^4 + w m^6$

 Equation of state: $h = r m + u m^3 + w m^5 + ...$

- Landau theory predicts:
 - 2nd order transition at $t=0$ if $u>0$
 - 1st order transition if $u<0$

- **Sandeman et al 2003, Shick et al 2004**: Band structure in UGe$_2$ \rightarrow $u<0$

- **Problems**:
 - Not universal
 - Does not explain the occurrence of a universal tricritical point

- **Conclusion**: Conventional theory not viable
Universal mechanism for tri-critical point in low T metallic FM

Idea: Soft fermion modes couple to the magnetization OP generically causing a fluctuation driven 1st PT.
Universal mechanism for tri-critical point in low T metallic FM

Idea: Soft fermion modes couple to the magnetization OP generically causing a fluctuation driven 1st PT.

Soft modes in FL?
Universal mechanism for tri-critical point in low T metallic FM

Idea: Soft fermion modes couple to the magnetization OP generically causing a fluctuation driven 1st PT.

Soft modes in FL?

• Physically exist because FS and finite DOS at FS exist→ gapless excitations
Universal mechanism for tri-critical point in low T metallic FM

Idea: Soft fermion modes couple to the magnetization OP generically causing a fluctuation driven 1st PT.

Soft modes in FL?

- Physically exist because FS and finite DOS at FS exist-\to gapless excitations
- In general can be related to a BS and a Goldstone theorem mode.
Universal mechanism for tri-critical point in low T metallic FM

Idea: Soft fermion modes couple to the magnetization OP generically causing a fluctuation driven 1st PT.

Soft modes in FL?

- Physically exist because FS and finite DOS at FS exist-> gapless excitations
- In general can be related to a BS and a Goldstone theorem mode.
- Massive (not soft) electron degrees of freedom couple to these soft modes....If $Q=$non soft mode and $q=$soft electron mode \rightarrow
Universal mechanism for tri-critical point in low T metallic FM

Idea: Soft fermion modes couple to the magnetization OP generically causing a fluctuation driven 1st PT.

Soft modes in FL?

- Physically exist because FS and finite DOS at FS exist\textrightarrow gapless excitations

- In general can be related to a BS and a Goldstone theorem mode.

- Massive (not soft) electron degrees of freedom couple to these soft modes....If $Q=\text{non soft mode}$ and $q=\text{soft electron mode} \Rightarrow$

- $Q=Q^{(0)} + \sum qq + \cdots \leftrightarrow \text{mmc term}$
Universal mechanism for tri-critical point in low T metallic FM

Idea: Soft fermion modes couple to the magnetization OP generically causing a fluctuation driven 1st PT.

Soft modes in FL?

• Physically exist because FS and finite DOS at FS exist-> gapless excitations

• In general can be related to a BS and a Goldstone theorem mode.

• Massive (not soft) electron degrees of freedom couple to these soft modes....If Q=non soft mode and q=soft electron mode ➔
 • $Q = Q^{(0)} + \sum q q + \cdots \leftarrow \text{mmc term}$
 Just like,
 • $J_{xy} = J_{xy}^{(0)} + \sum u_x u_y + \cdots \leftarrow \text{mmc term}$
Universal mechanism for tri-critical point in low T metallic FM

Idea: Soft fermion modes couple to the magnetization OP generically causing a fluctuation driven 1st PT.

Soft modes in FL?

- Physically exist because FS and finite DOS at FS exist→ gapless excitations
- In general can be related to a BS and a Goldstone theorem mode.
- Massive (not soft) electron degrees of freedom couple to these soft modes....If Q=non soft mode and q=soft electron mode →
- \(Q=Q^{(0)}+\sum qq+\cdots \leftarrow \text{mmc term} \)
 - Just like,
 - \(J_{xy}=J_{xy}^{(0)}+\sum u_x u_y+\cdots \leftarrow \text{mmc term} \)
 - \(\sigma=\sigma^{(0)}+\sum\pi\pi+\cdots \leftarrow \text{mmc term} \)
• Question: How do the conduction electrons couple to the magnetization that may in general be caused by other electrons \(\rightarrow \) Zeeman coupling:
• Question: How do the conduction electrons couple to the magnetization that may in general be caused by other electrons \(\rightarrow \) Zeeman coupling:

\[\delta S \sim \int dx \ m(x) \cdot \sum Q_{nn}(x) \]

\[Q_{nn}(x) \sim \psi_\alpha^\dagger(x,n)\sigma_{\alpha\beta}\psi_\beta(x,n) \]
• Question: How do the conduction electrons couple to the magnetization that may in general be caused by other electrons → Zeeman coupling:

 • $\delta S \sim \int dx \, m(x) \cdot \Sigma \, Q_{nn}(x)$

 • $Q_{nn}(x) \sim \psi_\alpha ^\dagger (x,n) \sigma_{\alpha\beta} \psi_\beta (x,n)$

 • → Due to mmc
• Question: How do the conduction electrons couple to the magnetization that may in general be caused by other electrons → Zeeman coupling:

• $\delta S \sim \int dx \ m(x) \cdot \Sigma Q_{nn}(x)$

• $Q_{nn}(x) \sim \psi_{\alpha}^\dagger(x,n)\sigma_{\alpha\beta}\psi_{\beta}(x,n)$

• → Due to mmc

• $\delta S \sim \int dx \ m(x) \cdot q(x)q^\dagger(x)$
• Question: How do the conduction electrons couple to the magnetization that may in general be caused by other electrons\(\rightarrow\) Zeeman coupling:

\[\delta S \sim \int dx \ m(x) \cdot \sum Q_{nn}(x) \]

\[Q_{nn}(x) \sim \psi_\alpha^\dagger(x,n)\sigma_{\alpha\beta}\psi_\beta(x,n) \]

\[\rightarrow \text{Due to mmc} \]

\[\delta S \sim \int dx \ m(x) \cdot q(x)q^\dagger(x) \]

• Using the soft electronic CF (structurally like)

\[<|q(k,\omega)|^2| \sim [k+|\omega|]^{-1} \]
• Question: How do the conduction electrons couple to the magnetization that may in general be caused by other electrons → Zeeman coupling:

 \[\delta S \sim \int dx \, m(x) \cdot \sum Q_{nn}(x) \]

 \[Q_{nn}(x) \sim \psi_\alpha^\dagger(x,n)\sigma_{\alpha\beta} \psi_\beta(x,n) \]

• → Due to mmc

 \[\delta S \sim \int dx \, m(x) \cdot q(x)q^\dagger(x) \]

• Using the soft electronic CF (structurally like)

 \[< |q(k,\omega)|^2 > \sim [k + |\omega|]^{-1} \]

• Integrate out soft electronic modes to obtain a generalized MFT,
2. Renormalized mean-field theory.

- In general, conventional theory misses effects of fermion soft modes:

 - Contribution to f_0:
 \[
 \int d\mathbf{k} \int d\Omega \ln((k + \Omega)^2 + m^2)
 \]

 - Contribution to eq. of state:

 - Renormalized mean-field equation of state:
 \[
 \frac{d}{dm} \int d\mathbf{k} \int d\Omega \ln[(k + \Omega)^2 + m^2] \sim m \left\{ \begin{array}{ll}
 \text{const.} - m^{d-1} & (1 < d < 3) \\
 \text{const.} + m^2 \ln m & (d = 3)
 \end{array} \right.
 \]

 \Rightarrow $h = tm + vm^3 \ln m + um^3$ (clean, $d=3$, $T=0$)

 - $v>0$

 Transition is generically 1st order! (TRK, T Vojta, DB 1999)

Physics? - Free energy gain by making soft fluctuations massive.

\Rightarrow Coleman-Weinberg mechanism
II. Quantum Ferromagnetic Transitions: Theory

2. Renormalized mean-field theory

- External field h produces tricritical wings: (DB, TRK, J. Rollbühler 2005)
2. Renormalized mean-field theory

- External field h produces tricritical wings: (DB, TRK, J. Rollbühler 2005)

- $h>0$ gives soft modes a mass, $\ln m \rightarrow \ln (m+h)$

\[Hertz \text{ theory works (at } T=0)! \]
2. Renormalized mean-field theory

- External field h produces tricritical wings: (DB, TRK, J. Rollbühler 2005)

- $h>0$ gives soft modes a mass, $\ln m \to \ln (m+h)$

 Hertz theory works (at $T=0$)!

- Mean-field exponents: $\beta=1/2$, $\delta=3$, $z=3$

- Magnetization at QCP: $\delta m_c \sim -T^{4/9}$
II. Quantum Ferromagnetic Transitions: Theory

2. Renormalized mean-field theory

- External field h produces tricritical wings: (DB, TRK, J. Rollbühler 2005)
- $h>0$ gives soft modes a mass, $\ln m \rightarrow \ln (m+h)$
 Hertz theory works (at $T=0$)!
- Mean-field exponents: $\beta=1/2$, $\delta=3$, $z=3$
- Magnetization at QCP: $\delta m_c \sim -T^{4/9}$

Conclusion: Renormalized mean-field theory explains the experimentally observed phase diagram:
II. Quantum Ferromagnetic Transitions: Theory

2. Renormalized mean-field theory

- External field h produces tricritical wings:
 (DB, TRK, J. Rollbühler 2005)

- $h>0$ gives soft modes a mass, $\ln m \rightarrow \ln (m+h)$
 Hertz theory works (at $T=0$)!

- Mean-field exponents: $\beta=1/2$, $\delta=3$, $z=3$

- Magnetization at QCP: $\delta m_c \sim -T^{4/9}$

Conclusion: Renormalized mean-field theory explains the experimentally observed phase diagram:

Remarks:
- Landau theory with a TCP also produces tricritical wings (Griffiths 1970)
II. Quantum Ferromagnetic Transitions: Theory

2. Renormalized mean-field theory

- External field h produces tricritical wings: (DB, TRK, J. Rollbühler 2005)
- $h>0$ gives soft modes a mass, $\ln m \to \ln (m+h)$
 Hertz theory works!
- Mean-field exponents: $\beta=1/2$, $\delta=3$, $z=3$
- Magnetization at QCP: $\delta m_c \sim -T^{4/9}$

■ Conclusion: Renormalized mean-field theory explains the experimentally observed phase diagram:

■ Remarks:
 - Landau theory with a TCP also produces tricritical wings (Griffiths 1970)
 - So far no OP fluctuations have been considered
2. Renormalized mean-field theory

- External field h produces tricritical wings: (DB, TRK, J. Rollbühler 2005)
- h>0 gives soft modes a mass, ln m -> ln (m+h) Hertz theory works (at T=0)!
- Mean-field exponents: β=1/2, δ=3, z=3
- Magnetization at QCP: $\delta m_c \sim -T^{4/9}$

Conclusion: Renormalized mean-field theory explains the experimentally observed phase diagram:

Remarks:
- Landau theory with a TCP also produces tricritical wings (Griffiths 1970)
- So far no OP fluctuations have been considered
- More generally, Hertz theory works if field conjugate the OP does not change the soft-mode spectrum (DB, TRK, T Vojta 2002)
• Summary and Conclusion
• Summary and Conclusion

• Low T metallic FMs are complex and interesting.
• Summary and Conclusion

• Low T metallic FMs are complex and interesting.

• The T=0 transition is 1st order for generic reasons: A fluctuation-induced 1st order PT.
• Summary and Conclusion

• Low T metallic FMs are complex and interesting.

• The T=0 transition is 1st order for generic reasons: A fluctuation-induced 1st order PT.

• Preempts or replaces usual continuous PT.
• Summary and Conclusion

• Low T metallic FMs are complex and interesting.

• The T=0 transition is 1st order for generic reasons: A fluctuation-induced 1st order PT.

• Preempts or replaces usual continuous PT.

• Crucial for mechanism: Soft fermion modes coupling to magnetization.
• Summary and Conclusion

• Low T metallic FMs are complex and interesting.

• The T=0 transition is 1st order for generic reasons: A fluctuation-induced 1st order PT.

• Preempts or replaces usual continuous PT.

• Crucial for mechanism: Soft fermion modes coupling to magnetization.

• Theory explains existence of generic tri-critical point and magnetic field dependence of phase diagram.
• Summary and Conclusion

• Low T metallic FMs are complex and interesting.

• The T=0 transition is 1st order for generic reasons: A fluctuation-induced 1st order PT.

• Preempts or replaces usual continuous PT.

• Crucial for mechanism: Soft fermion modes coupling to magnetization.

• Theory explains existence of generic tri-critical point and magnetic field dependence of phase diagram.

• Sufficiently strong non-magnetic disorder drives transition 2nd order. Also understood.
TABLE I: Systems with low-T ferromagnetic transitions and their properties. T_c = Curie temperature, T_{ic} = tricritical temperature, ρ_0 = residual resistivity. FM = ferromagnet, SC = superconductor. N/A = not applicable; n.a. = not available.

<table>
<thead>
<tr>
<th>System a</th>
<th>Order of Transition i</th>
<th>T_c/K b</th>
<th>magnetic moment/µB d</th>
<th>tuning parameter</th>
<th>T_{ic}/K</th>
<th>wings observed (ρ_0/µ1cm)g</th>
<th>Disorder</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>MnSi 27</td>
<td>1st 18</td>
<td>29.5 28</td>
<td>0.4 28</td>
<td>hydrostatic pressure 18</td>
<td>≈ 10 18</td>
<td>yes 25</td>
<td>0.33 25</td>
<td>weak helimagnet, exotic phases 17</td>
</tr>
<tr>
<td>ZrZn$_2$ 27</td>
<td>1st 29</td>
<td>28.5 29</td>
<td>0.17 29</td>
<td>hydrostatic pressure 29</td>
<td>≈ 5 29</td>
<td>yes 29</td>
<td>≥ 0.31 30</td>
<td>confusing history, see Ref. 27</td>
</tr>
<tr>
<td>Sr$_3$Ru$_2$O$_7$</td>
<td>1st f</td>
<td>0 g</td>
<td>0 g</td>
<td>pressure g</td>
<td>n.a.</td>
<td>yes 31</td>
<td>< 0.5 31</td>
<td>foliated wing tips, nematic phase 31</td>
</tr>
<tr>
<td>UGe$_2$ 33</td>
<td>1st 34</td>
<td>52 35</td>
<td>1.5 35</td>
<td>hydrostatic pressure 22,35</td>
<td>24 36</td>
<td>yes 35,36</td>
<td>0.2 22</td>
<td>easy-axis FM coexisting FM+SC 22</td>
</tr>
<tr>
<td>URhGe 33</td>
<td>1st 37</td>
<td>9.5 23</td>
<td>0.42 23</td>
<td>transverse B-field 37,39</td>
<td>≈ 1 37</td>
<td>yes 37</td>
<td>8 38</td>
<td>easy-plane FM coexisting FM+SC 23</td>
</tr>
<tr>
<td>UCoGe 33</td>
<td>1st 40</td>
<td>2.5 40</td>
<td>0.03 24</td>
<td>none</td>
<td>> 2.5 h</td>
<td>no</td>
<td>12 24</td>
<td>coexisting FM+SC 24</td>
</tr>
<tr>
<td>CoS$_2$</td>
<td>1st 41</td>
<td>122 41</td>
<td>0.84 41</td>
<td>hydrostatic pressure 41</td>
<td>≈ 120 41</td>
<td>no</td>
<td>0.7 41</td>
<td>rather high T_c</td>
</tr>
<tr>
<td>La$_{1-x}$Ce$_x$In$_2$</td>
<td>1st 42</td>
<td>22 - 19.5 42</td>
<td>n.a.</td>
<td>composition 42</td>
<td>> 22 j</td>
<td>no</td>
<td>n.a.</td>
<td>third phase between FM and PM? 42</td>
</tr>
<tr>
<td>Ni$_3$Al 27</td>
<td>(1st) k</td>
<td>41 - 15 l</td>
<td>0.075 m</td>
<td>hydrostatic pressure 43</td>
<td>n.a.</td>
<td>no</td>
<td>0.84 44</td>
<td>order of transition uncertain</td>
</tr>
<tr>
<td>YbIr$_2$Si$_2$ n</td>
<td>1st 45</td>
<td>1.3 - 2.3 o</td>
<td>n.a.</td>
<td>hydrostatic pressure 45</td>
<td>n.a.</td>
<td>no</td>
<td>≈ 22 p</td>
<td>FM nature of ordered phase suspected 45</td>
</tr>
<tr>
<td>YbCu$_2$Si$_2$ n</td>
<td>n.a.</td>
<td>4 - 6 46</td>
<td>n.a.</td>
<td>hydrostatic pressure 46</td>
<td>n.a.</td>
<td>no</td>
<td>n.a.</td>
<td>nature of magnetic order unclear</td>
</tr>
<tr>
<td>URu$_{2-x}$Re$_x$Si$_2$</td>
<td>2nd 47,48</td>
<td>25 - 2 r</td>
<td>0.4 - 0.03 48</td>
<td>composition 47</td>
<td>N/A</td>
<td>N/A</td>
<td>≈ 100 t</td>
<td>strongly disordered</td>
</tr>
<tr>
<td>NixPd${1-x}$</td>
<td>2nd 50</td>
<td>600 - 7 t</td>
<td>n.a.</td>
<td>composition 50</td>
<td>N/A</td>
<td>N/A</td>
<td>n.a.</td>
<td>disordered, lowest T_c rather high</td>
</tr>
<tr>
<td>YbNi$_4$P$_2$</td>
<td>2nd 51</td>
<td>0.17 51</td>
<td>≈ 0.05 51</td>
<td>none</td>
<td>N/A</td>
<td>N/A</td>
<td>2.6 51</td>
<td>quasi-1d, disordered</td>
</tr>
</tbody>
</table>
Many More BDs Eddie!!!

Helena and Ted