#### On Decoherence and Thermalization

I. M. Sigal *University of Toronto*Joint work with Marco Merkli and Gennady Berman

Uses earlier work with M. Merkli, M. Mück,
V. Bach and J. Fröhlich
and results of Jakšić and Pillet

Rutgers, May, 2009



#### Decoherence

Decoherence is reflected in the temporal decay of off-diagonal elements of the reduced density matrix of a quantum system in a given basis due to the interaction with an environment.

Goal: A rigorous analysis of the phenomenon of quantum decoherence for general non-solvable models.

Earlier results: explicitly solvable (non-demolition) models and non-rigorous results the quadratic Markov approximation (Lindblad evolution).



## Model

Consider a quantum system interacting with the environment, also called the "reservoir", with the Hamiltonian

$$H = H_{\rm S} \otimes \mathbb{1}_{\rm R} + \mathbb{1}_{\rm S} \otimes H_{\rm R} + \lambda v,$$

acting on the Hilbert space  $\mathcal{H}=\mathcal{H}_{\mathrm{S}}\otimes\mathcal{H}_{\mathrm{R}}.$ 

We assume that the *systems* in question are *finite dimensional* and the *reservoirs* are described by *free massless quantum fields* (photons, phonons or other massless excitations) with Hamiltonian

$$H_{\mathrm{R}} = \int_{\mathrm{R}^3} a^*(k) |k| a(k) \mathrm{d}^3 k,$$

where  $a^*(k)$  and a(k) are bosonic creation/annihilation operators.



## Interactions

The interaction:

$$v = G \otimes \varphi(g),$$

where G is a self-adjoint matrix on  $\mathcal{H}_{\mathrm{S}}$  and

$$\varphi(g) = \int (a^*(k)g(k) + a(k)g(\bar{k}))d^3k,$$

the field operator on the Fock space  $\mathcal{H}_{\mathrm{R}}$ ,



#### Reservoirs

It is understood that the reservoir is in the thermodynamic limit of infinite volume and positive densities, in a phase without Bose-Einstein condensate (for massive Bosons).

We assume that intially the system is close to a state in which the reservoir is near equilibrium at temperature  $T=1/\beta>0$ .

(There could also be several reservoirs initailly at different temperatures as in the case of a quantum dot attached to leads. Results below can be extended to this case.)



## Reduced Density Matrix

Though we deal with positive densities we think of the state of the total system at time t as a density matrix  $\rho_t$  satisfying the von Neumann equation

$$i\partial_t \rho_t = [H, \rho_t].$$

The reduced density matrix (of the system S) at time t is then formally given by

$$\overline{\rho}_t = \operatorname{Tr}_{\mathbf{R}} \rho_t,$$

where  $Tr_R$  is the partial trace with respect to the reservoir degrees of freedom.

Decoherence is defined- in a chosen basis - as:

$$[\overline{\rho}_t]_{m,n} \to 0$$
, as  $t \to \infty$ ,  $\forall m \neq n$ .

Most often the basis is that of eigenvectors of the system Hamiltonian  $H_{\rm S}$  (the energy basis, also called the computational basis for a quantum register).

#### **Thermalization**

Let  $\rho(\beta, \lambda)$  be the equilibrium state of the interacting system at temperature  $T = 1/\beta$ . We say that the system is thermolized if If

$$\overline{\rho}_t \longrightarrow \overline{\rho}(\beta, \lambda)$$
, with  $\overline{\rho}(\beta, \lambda) := \operatorname{Tr}_{\mathbf{R}} \rho(\beta, \lambda)$ .

In this case, the off-diagonal elements of  $\overline{\rho}_t$  generically will not vanish, as  $t\to\infty$  and the decoherence should be defined as the convergence of the off-diagonals of  $\overline{\rho}_t$  to the corresponding off-diagonals of  $\overline{\rho}(\beta,\lambda)$ .

It is usually assumed tacitely that the latter terms can be neglected (they are, at most, of the order  $O(\lambda)$ ).



## Observables

Averages of observables, A, of the system (operators on the system Hilbert space  $\mathcal{H}_{\mathrm{S}}$ ) are given in terms of the reduced density matrix as

$$\operatorname{Tr}_{S+R}(\rho_t(A\otimes \mathbb{1}_R)) = \operatorname{Tr}_S(\overline{\rho}_t A) =: \langle A \rangle_t.$$

Let  $\{\varphi_j\}_{j\geq 1}$  be an orthonormal basis of  $\mathcal{H}_S$  diagonalizing  $\mathcal{H}_S$ . The reduced density matrix has matrix elements

$$[\overline{\rho}_t]_{m,n} := \langle \varphi_m, \overline{\rho}_t \varphi_n \rangle = \langle P_{n,m} \rangle_t \text{ with } P_{n,m} = |\varphi_n\rangle \langle \varphi_m|.$$

Thus to understand the decoherence and thermalization it suffices to understand behavior of the expectations  $\langle A \rangle_t$ .



## Results 1

Under certain conditions on the interaction, we have:

1) The ergodic averages

$$\langle\langle A \rangle\rangle_{\infty} := \lim_{T \to \infty} \frac{1}{T} \int_0^T \langle A \rangle_t \, \mathrm{d}t$$

exist, i.e., that  $\langle A \rangle_t$  converges in the ergodic sense as  $t \to \infty$ . If the system is thermolized then

$$\langle\langle A \rangle\rangle_{\infty} = \mathrm{Tr}_{\mathrm{S}}(\overline{\rho}(\beta,\lambda)A), \text{ with } \overline{\rho}(\beta,\lambda) := \mathrm{Tr}_{\mathrm{R}}\rho(\beta,\lambda).$$



## Results 2

2)  $\exists$  complex numbers  $\varepsilon$ , lying in the strip  $\{z \in \mathbb{C} \mid 0 \leq Imz < \frac{\pi}{\beta}\}$ , s.t. for any  $t \geq 0$  and for any  $0 < \omega' < \frac{2\pi}{\beta}$ ,

$$\langle A \rangle_t - \langle \langle A \rangle \rangle_{\infty} = \sum_{\varepsilon \neq 0} \, \mathrm{e}^{\mathrm{i} t \varepsilon} R_{\varepsilon}(A) + O\left(\lambda^2 \, \mathrm{e}^{-\frac{t}{2} [\max_{\varepsilon} \{ \mathrm{Im} \, \varepsilon \} + \omega'/2]} \right),$$

where  $R_{\varepsilon}(A)$  are linear functionals of A, given in terms of the initial state,  $\rho_0$ , and the Hamiltonian H.



## Results 3

3) The complex numbers  $\varepsilon$  are the *resonances* of a certain explicitly given operator L, which is a 'perturbation' of the Liouville operator  $L_S := H_S \otimes \mathbb{1}_S - \mathbb{1}_S \otimes H_S$  of the system and 'bifurcate' from the eigenvalues of  $L_S$  as

$$\varepsilon \equiv \varepsilon_e^{(s)} = e - \lambda^2 \delta_e^{(s)} + O(\lambda^4),$$

where

$$e \in \operatorname{spec}(L_S) = \operatorname{spec}(H_S) - \operatorname{spec}(H_S)$$

and  $\delta_e^{(s)}$  are the eigenvalues of a matrix  $\Lambda_e$ , called a *level-shift* operator, acting on the eigenspace of  $L_S$  corresponding to the eigenvalue e.

The  $\varepsilon \equiv \varepsilon_e^{(s)}$  encode properties of irreversibility of the reduced dynamics of S (decay of observables and matrix elements.)



# Two-dimensional systems (Qubits)

Consider a two-dimensional system (qubit), with state space (of pure states)  $\mathcal{H}_{\mathrm{S}}=\mathbb{C}^2$ , and Hamiltonian  $\mathcal{H}_{\mathrm{S}}=\mathrm{diag}(\mathcal{E}_1,\mathcal{E}_2)$ , interacting with the Bose field via

$$v = \begin{bmatrix} a & c \\ \overline{c} & b \end{bmatrix} \otimes \varphi(g),$$

where  $\varphi(g) = \int \varphi(x)g(x)$  is the Bose field operator.

c=0 corresponds to a non-demolition (energy conserving) interaction (v commutes with the Hamiltonian  $H_{\rm S}$  and consequently energy-exchange processes are suppressed).

The property  $c \neq 0$  is necessary for thermalization.



## Decoherence of qubits

Let  $\Delta=E_2-E_1>0$  be the energy gap of the qubit. Then

$$[ au_T]^{-1} = \operatorname{Im} \varepsilon_{\operatorname{diag}}(\lambda) = \lambda^2 \pi^2 |c|^2 \xi(\Delta) + O(\lambda^4)$$

$$[ au_D]^{-1} = \mathrm{I} m arepsilon_{off-diag}(\lambda) = rac{1}{2} \lambda^2 \pi^2 \left[ |c|^2 \xi(\Delta) + (b-a)^2 \xi(0) 
ight] \ + O(\lambda^4),$$
 with  $\xi(\eta) = 4 \coth\left(rac{eta \eta}{2}
ight) |g(\eta)|^2 \eta^2.$ 

Exactly solvable models (non-demolition interactions): Palma, Suominen, Ekert, Shao, Ge, Cheng, Mozyrsky, Privman, and others.



# Quantum registers

Consider the dynamics of N interacting spins-qubits (quantum register) collectively coupled to a thermal environment. The register Hamiltonian is of the form

$$H_{\rm S} = \sum_{i,j=1}^{N} J_{ij} S_i^z S_j^z + \sum_{j=1}^{N} B_j S_j^z,$$

where the  $J_{ij}$  are pair interaction constants that can take positive or negative values, and  $B_j \geq 0$  is an effective magnetic field at the location of spin j.

 $(B_j = \frac{\hbar}{2} \gamma B_j^z$ , where  $\hbar$  is the Planck constant,  $\gamma$  is the value of the electron gyromagnetic ratio and  $B_j^z$  is an inhomogeneous magnetic field, oriented in the positive z direction.)



#### Interaction

Consider a *collective coupling*: the distance between the N qubits is much smaller than the correlation length of the reservoir and consequently each qubit feels *the same* interaction with the latter. The collective interaction between S and R consists of energy conserving and energy exchange parts and is given by the operator

$$v = \lambda_1 v_1 + \lambda_2 v_2 = \lambda_1 \sum_{j=1}^N S_j^z \otimes \phi(g_1) + \lambda_2 \sum_{j=1}^N S_j^x \otimes \phi(g_2).$$

The coupling constants  $\lambda_1$  and  $\lambda_2$  measure the strengths of the energy conserving (position-position) coupling, and the energy exchange (spin flip) coupling, respectively. (Spin-flips are implemented by the  $S_i^x$ .)



## Collective decoherence

We illustrate our results on a qubit register with  $J_{ij} = 0$ . For generic magnetic fields we show

- $\min \varepsilon_{diag} = O(1)$  in N (thermalization).
- $\min \varepsilon_{off-diag} \propto \lambda_1^2 [\sum_{j=1}^N (\sigma_j \tau_j)]^2$  (purely energy conserving interactions,  $\lambda_2 = 0$ ). This can be as large as  $O(\lambda_1^2 N^2)$ .
- $\min \varepsilon_{off-diag} \propto \lambda_2^2 \mathfrak{D}(\underline{\sigma} \underline{\tau})$  (purely energy exchanging interactions,  $\lambda_1 = 0$ ). This cannot exceed  $O(\lambda_2^2 N)$ .

Here  $\underline{\sigma} = \{\sigma_1, \dots, \sigma_N\} \in \{+1, -1\}^N$  and similarly  $\underline{\tau}$  are spin configurations labeling the energy basis of eigenvectors  $\varphi_{\underline{\sigma}} = \varphi_{\sigma_1} \otimes \dots \otimes \varphi_{\sigma_N}$  of  $H_S$  and  $\mathfrak{D}(\underline{\sigma} - \underline{\tau}) := \sum_{j=1}^N |\sigma_j - \tau_j|$  is the Hamming distance between  $\underline{\sigma}$  and  $\underline{\tau}$ .



## Collective decoherence\*

#### The above results show:

- The fastest decay rate of reduced off-diagonal density matrix elements due to the energy conserving interaction alone is of order  $\lambda_1^2 N^2$ , while the fastest decay rate due to the energy exchange interaction alone is of the order  $\lambda_2^2 N$ . Moreover, the decay of the diagonal matrix elements is of oder  $\lambda_1^2$ , i.e., independent of N.
- The same discussion is valid for the interacting register  $(J_{ij} \neq 0)$ .

Earlier results: Altepeter, Hadley, Wendelken, Berglund, Kwiat, Ao, Rammer, Berman, Kamenev, Tsifrinovich, Duan, Guo, Fedorov, Fedichkin, Palma, Suominen, Ekert, Utsunomiya, Master, Yamamoto.



## Idea of the proof

▶ Formulate the problem as an evolution on the Hilbert space  $\mathcal{K} := \mathcal{H}_S \otimes \mathcal{H}_S \otimes \mathcal{H}_R \otimes \mathcal{H}_R$ :

$$\rho_t \Longleftrightarrow \Psi_t = e^{iLt} \Psi \in \mathcal{K},$$

where L is an unbounded and, in general, non-self-adjoint operator on K (Liouville operator);

- ▶ The exponents  $\varepsilon_e^{(s)}$  are the resonances of the generator L;
- ▶ Use spectral deformation (  $L \rightarrow L_{\theta}$ ) and renormalization group (RG) technique to analyze  $L_{\theta}$ .



## Renormalization Group

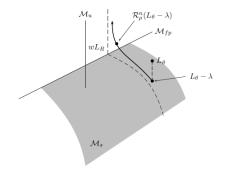
To find the spectral structure of  $L_{\theta}$  we use the spectral renormalization group (RG):

- ▶ Pass from a single operator  $L_{\theta}$  to a Banach space  $\mathcal{B}$  of Liouville-type operators;
- ▶ Construct a map,  $\mathcal{R}_{\rho}$ , on  $\mathcal{B}$ , with the following properties:
  - (a)  $\mathcal{R}_{\rho}$  is 'isospectral';
  - (b)  $\mathcal{R}_{\rho}$  removes the (thermal) reservoir degrees of freedom related to energies  $\geq \rho$ .
- ▶ Relate the dynamics of semi-flow,  $\mathcal{R}_{\rho}^{n}$ ,  $n \geq 1$ , to spectral properties of individual operators in  $\mathcal{B}$ .



## RG dynamics

We show that the flow,  $\mathcal{R}^n_\rho$ , has the fixed-point manifold  $\mathcal{M}_{fp} := \mathbb{C} L_R$ , an unstable manifold  $\mathcal{M}_u := \mathbb{C} \mathbf{1}$ , and a (complex) co-dimension 1 stable manifold  $\mathcal{M}_s$  for  $\mathcal{M}_{fp}$  foliated by (complex) co-dimension 2 stable manifolds for each fixed point.



Stable and unstable manifolds.



## RG and Spectral Properties

```
the stable manifold \mathcal{M}_s \Longrightarrow L_\theta - \lambda is in the domain of \mathcal{R}_\rho^n. \Longrightarrow L^{(n)}(\lambda) := \mathcal{R}_\rho^n(L_\theta - \lambda) \approx wL_R, for some w \in \mathbb{C}, \mathrm{Re}\ w > 0, and n sufficiently large \Longrightarrow Spectral information about L^{(n)}(\lambda). \Longrightarrow Spectral information about L^{(n-1)}(\lambda) (by 'isospectrality' of
```

Adjust the parameter  $\lambda$ , so that  $L_{\theta} - \lambda$  is in a  $\rho^n$ -neighborhood of

<ロ > ←回 > ←回 > ← 直 > 一直 ● の へ ⊙

 $\Longrightarrow$  Spectral information about  $L_{\theta}$ .

 $\mathcal{R}_{o}$