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Notion

There is no rigorous de�nition of a scale-free graph.

People are interested in these properties

I The degree distribution has polynomial tail i.e.

#{vertices v with degree k}
#vertices

∼ k−γ .

I The graph has small diameter with respect to its size

(for example, polylogarithmic).

I The graph is random.

Such graphs are supposed to model various real-life

graphs, such as the internet, telephone call graphs, social

networks, protein interaction networks and predator-prey

networks.
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Internet topology, Cheswick & Burch



CCCP

Scale-free
graphs

Notion

Examples

Our model

De�nition

Properties

Discussion

d = 2
d > 6

Small world papers citation graph, Lin Freeman 2004
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C. elegans protein interaction network, Li, et al., 2004
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Predator-pray interactions, Martinez 1991.
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In this talk we will discuss a new and unusual model for

scale-free networks.

We do not claim it has any relevance

to real life. It is meant to re�ect on emerging notions of

universality.

To understand what is �universality� we need to consider

the main examples analyzed so far.

We will focus on cases which have been analyzed

rigorously. We are most interested in the diameter, the

spectral gap and the mixing time of random walk.

We are equally interested in �nite and in�nite graphs,

mutatis mutandis.
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Preferential attachment

I Every new vertex is connected to m random existing

vertices vi, with probability proportional to deg(vi)
(Barabási & Albert, 1999). For this model γ = 3
(Bollobás, Riordan, Spencer & Tusnády 2001).

I The diameter is almost surely ≈ logn
log logn (Bollobás &

Riordan 2004) except in the tree case m = 1 where it

is log n (Pittel 1994).
I When m ≥ 2 the spectral gap of the random walk is

constant (Mihail, Papadimitriou & Saberi 2006).
I One can generalize and ask that the probabilities to

proportional to deg(vi) + δ for some δ > −m. In this

case γ = 3 + δ
m (Cooper & Frieze 2003) so always

γ > 2.
I In this case, if γ > 3 then logn

log logn ≤ diam ≤ log n and

is conjectured to be log n. If γ < 3, then
diam ≤ log logn (van der Hofstad & Hooghiemstra,

2007 preprint).
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The con�guration model

I Pick your γ of choice. Choose degrees randomly

independently with the required tail. Then choose a

graph among all graphs with the desired degree

sequence randomly uniformly.

I If 3 < γ then the diamter is log n (van der Hostad,

Hooghiemstra & van Mieghem 2005).

I If 2 < γ < 3 then the typical distance between two

vertices is log log n (van der Hofstad, Hooghiemstra &

Znamenski 2007) though the diameter is log n at least

when P(deg = 1) > 0 (Fernholz & Ramachandran

2007).

I If 1 < γ < 2 then the diameter is either 2 or 3 (van

den Esker, van der Hofstad, Hooghiemstra &

Znamenski 2005). This is due to having vertices with

degree > the total number of vertices.
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Long-range percolation

I Take a grid in Zd. Unlike in usual percolation, d = 1
is very interesting.

I To avoid questions of connectivity and phase

transition, do not remove the edges of the grid.

Instead, add an edge between every x and every y
with probability (β + o(1))|x− y|−s, all independent.

I There is little point in talking about γ � if s ≤ d
then all vertices have in�nite degree. If s > d then

the degrees decay exponentially.

I If s < d then the diameter is
⌈

d
d−s

⌉
(Benjamini,

Kesten, Peres & Schramm 2004). The reasons are

similar to those of the con�guration model case.

I If s = d then the diameter of the cube {1, . . . , n}d is
logn

log logn (Coppersmith, Gamarnik & Sviridenko 2002).
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Long-range percolation contd.

I Put an edge between every x and every y with

probability (β + o(1))|x− y|−s, all independent.
I If s < d then the diameter is

⌈
d
d−s

⌉
(Benjamini,

Kesten, Peres & Schramm 2004). The reasons are

similar to those of the con�guration model case.

I If s = d then the diameter of the cube 1, . . . , nd is
logn

log logn (Coppersmith, Gamarnik & Sviridenko 2002).

I If d < s < 2d then the diameter is logK+o(1) n where

K = log2(2d/s) (Biskup 2004). The mixing time is

slow, ns−1+o(1) (Benjamini, Berger & Yadin 2008).

I In the case s = 2d it is conjectured that the diameter

is nθ(β) � this is the only case where β matters.

Partial results in the case d = 1 are in Benjamini &

Berger 2001 and CGS02.

I If s > 2d the diameter is n (BB01, d = 1) and the

mixing time n2 (BBY08).
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Quick summary

γ model diam Mixing

�1� LRP1, s < d
⌈

d
d−s

⌉
C???

�1� LRP, s = d logn
log logn

(1, 2) conf.2 2 or 3

(2, 3) conf. �log log n�
(2, 3) PA3 ≤ log logn

3 PA logn
log logn ≤ log n

> 3 conf. log n
> 3 PA ≤ log n
�∞� LRP, d < s < 2d (log n)K ns−1+o(1)

1Long-range percolation, pxy ≈ |x− y|−s
2The con�guration model
3Preferential attachment

It seems like some kind of weak universality is at

play.
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Percolation reminder

I Take the lattice Zd, and keep every edge with

probability p, deleting it with probability 1− p,
independently. The critical p is de�ned by

pc = inf{p : ∃ an in�nite cluster a.s.} .

I At pc the model has polynomially decaying

correlations. The most relevant exponent is

P(|C(~0)| > n) ≈ n−1/δ

which satis�es
91
5

= δ2 > δ3 > · · · > δ6 = δ7 = · · · = 2 .

Only the cases d = 2 and d > 6 have been proved

rigorously, and only for some lattices. d = 2 is due to

Kesten 1987, Lawler Schramm & Werner 2001 and

Smirnov 2001. d > 6 is due to Hara & Slade 1990 and

Barsky & Aizenman 1991.
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No edges are removed, edges are only colored in two colors.
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Take a black cluster and replace it with a single vertex.
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Connect it to all edges which used to connect to the

cluster.
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Note that this can create loops and multiple edges.
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Repeat for all clusters.
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Which p?

I Formally, for every edge, independently and with

probability p, identify its two end points. Call the

resulting graph CCPp.

I If p > pc then the in�nite cluster becomes a point

with in�nite degree. This is similar to �γ < 2 models�

in that the distance between typical points is

constant and the random walk mixes in a constant

number of steps.

I If p < pc the contracted clusters are small and the

graph would look like essentially like the original

lattice. Rigorously, we believe this case would be

amenable to the same techniques used to analyze

random walk on the supercritical cluster.

I Hence we will focus on p = pc, in which case we will

call the graph CCCP.
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Results

I We have γ = 2 + 1
δ so γ = 2 5

91 when d = 2 and γ = 5
2

when d > 6.

I In d = 2 the typical distance between x and y is

≈ log |x− y|. In d > 6 it is ≈ log log |x− y|. Note
that universality would suggest that both should be

log log.
I In d = 2 we show that the speed is polynomial in the

sense that

E(|R(t)|) ≤ tK .

In the graph metric this translate to

E(dist(~0, R(n))) ≈ log t .

The exact value of K is related to other exponents

which are known only numerically.



CCCP

Scale-free
graphs

Notion

Examples

Our model

De�nition

Properties

Discussion

d = 2
d > 6

Results

I We have γ = 2 + 1
δ so γ = 2 5

91 when d = 2 and γ = 5
2

when d > 6.
I In d = 2 the typical distance between x and y is

≈ log |x− y|. In d > 6 it is ≈ log log |x− y|.

Note

that universality would suggest that both should be

log log.
I In d = 2 we show that the speed is polynomial in the

sense that

E(|R(t)|) ≤ tK .

In the graph metric this translate to

E(dist(~0, R(n))) ≈ log t .

The exact value of K is related to other exponents

which are known only numerically.



CCCP

Scale-free
graphs

Notion

Examples

Our model

De�nition

Properties

Discussion

d = 2
d > 6

Results

I We have γ = 2 + 1
δ so γ = 2 5

91 when d = 2 and γ = 5
2

when d > 6.
I In d = 2 the typical distance between x and y is

≈ log |x− y|. In d > 6 it is ≈ log log |x− y|. Note
that universality would suggest that both should be

log log.

I In d = 2 we show that the speed is polynomial in the

sense that

E(|R(t)|) ≤ tK .

In the graph metric this translate to

E(dist(~0, R(n))) ≈ log t .

The exact value of K is related to other exponents

which are known only numerically.



CCCP

Scale-free
graphs

Notion

Examples

Our model

De�nition

Properties

Discussion

d = 2
d > 6

Results

I We have γ = 2 + 1
δ so γ = 2 5

91 when d = 2 and γ = 5
2

when d > 6.
I In d = 2 the typical distance between x and y is

≈ log |x− y|. In d > 6 it is ≈ log log |x− y|. Note
that universality would suggest that both should be

log log.
I In d = 2 we show that the speed is polynomial in the

sense that

E(|R(t)|) ≤ tK .

In the graph metric this translate to

E(dist(~0, R(n))) ≈ log t .

The exact value of K is related to other exponents

which are known only numerically.



CCCP

Scale-free
graphs

Notion

Examples

Our model

De�nition

Properties

Discussion

d = 2
d > 6

Results cntd.

d = 2 d > 6 Universality

dist(x, y) log |x− y| log log |x− y| log log |x− y|
dist(0, R(t)) log t t

I In d > 6 we show that

E(|R(t)|) ≈
√
t log t.

Again, this means that

E(dist(0, R(t)) ≈ log log t

Despite the high degrees and the hyperfast

connectivity, the random walk is slow.
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More geometry

d = 2 d > 6 Universality

dist(x, y) log |x− y| log log |x− y| log log |x− y|
dist(0, R(t)) log t log log t t

I CCCP in d > 6 satis�es the same isoperimetric

inequality as Zd,

|∂A| ≥ c|A|(d−1)/d ∀A �nite,

and no better.

I The spectral gap of the Laplacian on a ball of radius

R is between 1
R2 and logR

R2 . This precision is not

enough to determine whether CCCP is Liouville or

not!
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We will now discuss the geometric picture more and
give some heuristic arguments and proof sketches.
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Surrounding clusters, d = 2

I In d = 2 there are clusters surrounding ~0 in every

scale.
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Faux-simulation
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Surrounding clusters, d = 2

I In d = 2 there are clusters surrounding ~0 in every

scale.

Typically the cluster at scale r will touch the

cluster at scale 2r.
I This shows that dist(x, y) ≈ log |x− y| since you need

to traverse each such cluster, and that's all you need

to do.
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Random walk, d = 2

I Let's compare the number of internal and external

edges for a surrounding cluster in scale r.

We return

to the geometric picture and we see this is related to

the arm exponents. An internal edge requires one

black arm and therefore there are ≈ r91/48 of them.

An external edge requires one black arm and two

white arms and hence there are ≈ r4/3. This is
enough to show that the Euclidean speed is

polynomial.
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Random walk, d = 2

I Let's compare the number of internal and external

edges for a surrounding cluster in scale r. We return

to the geometric picture and we see this is related to

the arm exponents. An internal edge requires one

black arm and therefore there are ≈ r91/48 of them.

An external edge requires one black arm and two

white arms and hence there are ≈ r4/3. This is
enough to show that the Euclidean speed is

polynomial.

I We remark that globally the random walk is transient

(even though it gets stuck at heavy vertices for a long

time).

This can be demonstrated by constructing an

explicit �ow with �nite energy.
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Connectivity, d > 6

I When d > 6, two typical clusters in scale r are
connected by

⌈
d
2

⌉
− 3 hops.

Heuristically this can be

seen because a cluster is 4 dimensional. Each point

on its boundary (which is also 4 dimensional) has

probability ≈ r−2 to belong to a large cluster so the

clusters reachable by one hop form a 6 dimensional

object. And by k hops a 4 + 2k dimensional object.

When the object becomes d− 4 dimensional or more,

it will intersect any other cluster.

I The formal proof used the 2-point function and

diagrammatic bounds.

I Since a ball of radius r typically intersects a much

larger cluster � of scale rd/2−2 � we get a

doubly-exponential increasing sequence, so

dist(x, y) ≈ log log |x− y|.
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doubly-exponential increasing sequence, so

dist(x, y) ≈ log log |x− y|.
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Random walk, d > 6

I The argument used in d = 2 no longer holds because

even large clusters are uniformly transient

I Consider the environment viewed from the particle.

From δ = 1/2 we see that the second moment of a

single step only grows logarithmically. The techniques

of De Masi, Ferrari, Goldstein & Wick 1989 should be

applicable to this case as well.
I Because CCCP is a quotient of Zd, it must satisfy

|∂A| ≥ c|A|(d−1)/d ∀A ⊂ CCCP .

To see that this cannot be improved, we need to

demonstrate Fölner sets. Examine the set

{x ∈ B(r) : x = ∂B(r)} .

Because P(x↔ ∂B(r)) ≈ r−2 (K & Nachmias, in

preparations), we see that the number of points

removed is surface order, rd−1.
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Spectral gap, d > 6
I The isoperimetric inequality shows that the spectral

gap is ≥ 1/r2 (Cheeger's inequality).

I To see that the spectral gap is ≤ log r
r2

, examine the

function f below.

This is not well de�ned on CCCP

(because it is not constant on the clusters), so de�ne

g(C) = the average of f on C

for every cluster C. A similar calculation to the above

shows that the energy of ∇f is ≈ log r
r2

giving an

upper bound on the spectral gap. We believe this is

the right answer.

f(~0) = 1

x ∈ ∂B(0, r)
f(x) = 0



CCCP

Scale-free
graphs

Notion

Examples

Our model

De�nition

Properties

Discussion

d = 2
d > 6

Spectral gap, d > 6
I The isoperimetric inequality shows that the spectral

gap is ≥ 1/r2 (Cheeger's inequality).
I To see that the spectral gap is ≤ log r

r2
, examine the

function f below.

This is not well de�ned on CCCP

(because it is not constant on the clusters), so de�ne

g(C) = the average of f on C

for every cluster C. A similar calculation to the above

shows that the energy of ∇f is ≈ log r
r2

giving an

upper bound on the spectral gap. We believe this is

the right answer.

f(~0) = 1

x ∈ ∂B(0, r)
f(x) = 0



CCCP

Scale-free
graphs

Notion

Examples

Our model

De�nition

Properties

Discussion

d = 2
d > 6

Spectral gap, d > 6
I The isoperimetric inequality shows that the spectral

gap is ≥ 1/r2 (Cheeger's inequality).
I To see that the spectral gap is ≤ log r

r2
, examine the

function f below. This is not well de�ned on CCCP

(because it is not constant on the clusters), so de�ne

g(C) = the average of f on C

for every cluster C.

A similar calculation to the above

shows that the energy of ∇f is ≈ log r
r2

giving an

upper bound on the spectral gap. We believe this is

the right answer.

f(~0) = 1

x ∈ ∂B(0, r)
f(x) = 0



CCCP

Scale-free
graphs

Notion

Examples

Our model

De�nition

Properties

Discussion

d = 2
d > 6

Spectral gap, d > 6
I The isoperimetric inequality shows that the spectral

gap is ≥ 1/r2 (Cheeger's inequality).
I To see that the spectral gap is ≤ log r

r2
, examine the

function f below. This is not well de�ned on CCCP

(because it is not constant on the clusters), so de�ne

g(C) = the average of f on C

for every cluster C. A similar calculation to the above

shows that the energy of ∇f is ≈ log r
r2

giving an

upper bound on the spectral gap.

We believe this is

the right answer.

f(~0) = 1

x ∈ ∂B(0, r)
f(x) = 0



CCCP

Scale-free
graphs

Notion

Examples

Our model

De�nition

Properties

Discussion

d = 2
d > 6

Spectral gap, d > 6
I The isoperimetric inequality shows that the spectral

gap is ≥ 1/r2 (Cheeger's inequality).
I To see that the spectral gap is ≤ log r

r2
, examine the

function f below. This is not well de�ned on CCCP

(because it is not constant on the clusters), so de�ne

g(C) = the average of f on C

for every cluster C. A similar calculation to the above

shows that the energy of ∇f is ≈ log r
r2

giving an

upper bound on the spectral gap. We believe this is

the right answer.

f(~0) = 1

x ∈ ∂B(0, r)
f(x) = 0



CCCP

Scale-free
graphs

Notion

Examples

Our model

De�nition

Properties

Discussion

d = 2
d > 6Thank you


	Scale-free graphs
	Notion
	Examples

	Our model
	Definition
	Properties

	Discussion
	d=2
	d>6


