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PhD Thesis with Michael Fisher 1978

Ruelle, Fisher, Dyson, Lieb, Lebowitz 1960s: In the thermodynamic limit

F (Ω) = jΩj f∞ + ...

The next term should be a surface free energy term, fsurface .
C & Fisher papers 1977-1980 (Comm. Math. Phys.) for lattice systems

F (Ω) = jΩj f∞ + j∂Ωj fsurface + ...
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Introduction

Classical Stefan problem (Lame and Clapeyron 1831, Stefan 1889)

ut = D∆u in ΩnΓ
lvn = D [ru � n]�+ on Γ
u = 0 ? on Γ

In Classical Stefan model temperature plays dual role. Around 1900 it
became clear to materials scientists that u 6= 0 at interface. But the
Stefan problem dominated mathematics of interfaces separating
phases.

If temperature does not distinguish phases, we need a new variable, φ
(order parameter).
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Oleinik formulation consolidates �rst two eqs:

ut +
l
2

φt = D∆u

where φ is just a step function.

How do we obtain the second variable φ ?
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Idea of �order parameter� in statistical mechanics

Originally proposed by Landau in 1940�s for critical phenomena. Review
article by Hohenberg and Halpern 1977 on �Dynamics of critical
phenomena�Model A, B... Cahn-Hilliard model etc.
Some speculation that perhaps order parameter could be used for ordinary
phase transitions.
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Physical issues

1. Landau �order parameter�based on idea that �correlation length�
diverges to in�nity near critical point.
2. It was shown to be wrong in that region.
3. For an ordinary phase transition, the correlation length is very small,
not in�nite.
4. For an ordinary phase transition, we �cannot hide behind �universality.�
We need to obtain exact answers with exact physical parameters.
5. Even if all of this is OK how to compute with an interface thickness
ε = 10�8 ?
Is it possible that the idea could work well for the opposite region (atomic
correlation length) when it does not work for the intended region
(divergent correlation length)?
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Basic ideas

The entropic part of the free energy involves

fφk ln φk + (1� φk ) ln(1� φk )g

is often approximated in applications by a smooth double well potential,
denoted W (φk ), which takes its minimum values on the bulk (i.e., single
phase) material.

Write a free energy F [φ, u] :=
R

Ω

n
(rφ)2 + w (φ) + uh (φ)

o
with

w double well and e.g., h0 (φ) =
�
1� φ2

�2 or h0 (φ) = 1.
Dynamics ∂φ/∂t = �δF/δφ coupled with heat equation
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Phase Field to Sharp Interface Model

αε2φt = ε2∆φ+ 1
2

�
φ� φ3

�
+ 5ε

8d0
h0(φ)u

(u + 1
2φ)t = ∆u

u := T�TE
l/c , D := K

ρc , d0 := σ
[s ]E l/c

As ε ! 0 does this system converge to the sharp interface problem below?

ut = D∆u in Ω(t)nΓ(t)
vn = Dn̂ � ru]�+, on Γ(t)
u = � d0 (κ + αvn) on Γ(t)
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Sketch of formal asymptotics

Let r be the signed distance from the interface, ρ := r/ε

φ (x , t; ε) = φ0 (x , t) + εφ1 (x , t) + ...

� Φ (ρ, t; ε) = Φ0 (ρ, t) + εΦ1 (ρ, t) + ε2Φ2 (ρ, t) + ...

�∂φ (x , t; ε)
∂t

= εvΦ0
ρ (ρ, t) , ε2∆φ = Φ0

ρρ + εκΦ0
ρ + ...

So the phase equation is roughly

�εvΦ0
ρ (ρ, t) = Φ0

ρρ + εΦ1
ρρ + εκΦ0

ρ

+
1
2

n
Φ0 + εΦ1 �

�
Φ0 + εΦ1�3o+ c

d0
εu
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O(1) balance

Φ0
ρρ +

1
2

n
Φ0 �

�
Φ0�3o = 0 ) Φ0 (ρ) = tanh (ρ/2) (1)

O (ε) balance

LΦ1 := Φ1
ρρ +

1
2

n
1� 3

�
Φ0�2oΦ1 = vΦ0

ρ + κΦ0
ρ +

c
d0
u =: F (2)

Note that Φ0
ρ solves the homogenous equation, LΦ0

ρ = 0, so Fredholm

alternative them implies, LΦ1 = F has a solution only if
�
F ,Φ0

ρ

�
L2
= 0.

This meansZ ∞

�∞

�
vΦ0

ρ + κΦ0
ρ +

c
d0
u
�

Φ0
ρdρ = 0, so (3)

u ' c1d0κ + c2v .

Match "inner solution" Φ with "outer solution" φ.
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Ultimately, we want a rigorous proof that in some norm k�k one hasTrue Solution φε � (φ0 + εφ1 + ...+ εkφk
 � Ck+1εk+1. (4)

Also, we would like to know that the solution to the phase �eld and the
sharp interface problems satisfy

kφε � φ0k � C ε. (5)
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Mathematical issues

Do solutions exist? Is φ even bounded?

Does the interface remain at the same �thickness� etc.

Can we establish (4) and (5) in some suitable norm?

Main analytical thrust of research in the 1980s.
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Computational issues

Real physical thickness of interface is 10�8 cm; capillarity length 10�6

or 10�7 cm; sample 1 cm; radius of curvature 10�4 cm.

Computations would be impossible with these parameters.

Ansatz: If we extract the surface tension from the interface thickness,
then we can increase the interface thickness by a factor of 1000
without in�uencing motion of the interface (C & Socolovsky 1989,
1991).
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φ(x , t; ε) actual ε, and stretched.

Gunduz Caginalp (Institute) Generalized Phase Field December 18, 2011 16 / 43



Other works and perspectives

H. Spohn, Interface motion in models with stochastic dynamics, J.
Stat. Phys. (1993).

G. Giacomin & J. Lebowitz, Phase segregation dynamics in particle
sytems with long range interactions I. Macroscopic limits, J. Stat.
Phys.(1997).

____: Phase segregation dynamics in particle sytems with long
range interactions II. Interface motion, SIAM App. Math. (1998).

N. Dirr, A Stefan Problem with surface tension as the sharp interface
limit of a nonlocal system of phase �eld type, J. Stat. Phys. (2004).
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Discuss three projects (see www.pitt.edu/~caginalp)

(with Christof Eck and Xinfu Chen) Second order asymptotics (in ε)
on the PF eqs;

(with Emre Esenturk) Anisotropy and higher order PF eqs;

(with Xinfu Chen and Emre Esenturk) New perspective in PF: use
potential with non-local interactions and anisotropy to obtain elegant
expressions for interface from microscopic considerations
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Motivations

Interest in the materials community in re�ned computations as
computing advances.

Better understanding of detailed anisotropy needed

Understand relationships between molecular anisotropy, surface
tension, equil shapes and dynamics
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Rubinstein & M. Glicksman (1991); and other experiments
Need for �ne resolution within computing capacity
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Conditions on the interface

Isotropic: Gibbs-Thomson relation

u[s ]E = �σκ

σ is the surface tension,
[s ]E is entropy di¤erence between the phase per unit volume,
κ is the sum of principal curvatures, c is heat capacity and l is latent heat,
u := (T � Tm)c/l is the reduced temperature,
Tm is the equilibrium melting temperature). When there is anisotropy,
surface tension can be written as a function of surface normal, i.e. σ(n̂).
In this case, the equation above needs to be modi�ed.
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Generalization of Phase Field for second order convergence

u :=
T � TE
l/c

, D :=
K
ρc
, d0 :=

σ

[s ]E l/c
.

the sharp interface problem has the form

ut = D∆u in Ω(t)nΓ(t)
vn = Dn̂ � ru]�+, on Γ(t)
u = � d0 (κ + αvn) on Γ(t)
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Let

W (�1) = 0 < W (s) for all s 6= �1, W 00(�1) > 0,

G 0(�1) = 0, G (1)� G (�1) =
Z 1

�1

q
2W (s)ds.

The phase �eld equations corresponding are

ε2 (αεφt � ∆φ) +W 0(φ) = ε 1d0G
0(φ)u

(u + 1
2φ)t = ∆u

where αε := α+ εα1 and α1 is de�ned by

α1 :=
1
d0

R
R
fG (1)� G (Φ(s)g (1+Φ(s)) ds

2
R

R
Φ̇2(s)ds

where Φ is the (unique) solution to

Φ̈�W 0(Φ) = 0 on R, Φ(�∞) = �1,
Z

R
sΦ̇(s)ds = 0.

Gunduz Caginalp (Institute) Generalized Phase Field December 18, 2011 23 / 43



Key Ideas

Previous works used distance from the level set
Γε(t) := fx : φε (x , t) = 0g
We used reference frame the level set corresponding to ε = 0,
i.e.,Γ0(t).
THEOREM. With the conditions above, there exists ε0 > 0 and
C > 0 such that solutions (uε, φε) to the Phase Field equations satisfy

distance fΓε, Γ0g � C ε2 for all 0 < ε < ε0.
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∂t = �v∂r + ∂Γ
t , ∂Γ

t := ∂t +
n�1
∑
i=1
S it∂s i ,

r = N ∂r +rΓ, rΓ :=
n�1
∑
i=1
rS i ∂s i

∆ = ∂rr + ∆R ∂r + ∆Γ, ∆Γ :=
n�1
∑
i=1

∆S i∂s i +
n�1
∑
i ,j=1

rS i � rS j∂s i s j

where rS i (x , t),S it (x , t),∆R(x , t),Rt (x , t) are evaluated at
x = X0(s, t) + rN(s, t), and are regarded as functions of (r , s, t).
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wt = f�v0ε�1 � ∂Γ
t hεgwρ + ∂Γ

t w

rw = fNε�1 �rΓhεgwρ +rΓw ,

∆w = fε�2 + jrΓhεj2gwρρ + f∆R ε�1 � ∆Γhεgwρ

�2rΓhε � rΓwρ + ∆Γw

where rΓ, ∂Γ
t ,∆Γ are again di¤erentiations with ρ �xed.
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Numerical Studies

Are C and ε0 too big or small to be useful?

Take speci�c W , G and α1 that satisfy conditions.

Relative di¤erence between true soln and computed.

Computations show di¤erence goes as ε2.

Several sets of parameters, incuding dendritic.
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Microscopic interactions to macro behavior
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Anisotropy

Two basic approaches we have used.
1. The usual phase �eld equations arise from truncating Fourier expansion
after q2 (so we have second order). (C in Annals 1986) The molecular
anisotropy is largely "averaged out" when we do this. By retaining higher
order Fourier modes, and using higher order di¤erential equations, we can
obtain the classical Gibbs-Thomson-Herring relation (in 2d) at the
interface (Gibbs-Thomson-Herring Condition):

u[s ]E = �(σ+ σ00)κ

and its dynamical generalization.
In 3d things are more complicated.
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A new approach to anisotropy (with or w/o non-local
interactions) in arbitrary spatial dimension

Idea of working directly on the integral form (avoiding higher order DEs).
Include non-local interactions.

How is the information (e.g., anisotropy) in interactions, Jkl ,
communicated to the macro interface.
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1. These ideas lead to a free energy:

F [φ] = ∑
k ,l

1
4
Jkl (φk � φl )

2 +∑
k

W (φk ) +∑
k

uG (φk ).

The free energy in the continuum limit:

F [φ] = 1
4

Z
Jε(x � y)(φ(x)� φ(y))2dxdy

+
Z
W (φ(x))dx +

Z
uG (φ(x)) dx

where Jε(z) = ε�NJ(ε�1z), ε is an atomic length scale; G (φ) represent
the entropy di¤erence per unit volume. For simplicity we assume Ω = Rd

with d � 2.
2. The phase �eld equation can be obtained by the assumption that the
variational derivative of the free energy should be proportional to the time
derivative of the phase �eld, i.e.,

αε2φt = Jε � φ� φ�W 0(φ) + εuG 0(φ)
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The surface tension is the di¤erence per unit area between the free energy
with the interface and without, i.e.,

σ =
F [φ]� (F [�1] +F [1])/2

Area
..

σ(ζ) :=
Z

R

�
W (Q(ζ, z)) +

1
2
Q(ζ, z)(Q(ζ, z)� (j �Q)(ζ, z)

�
dz

=
Z

R

�
W (Q(ζ, z))� 1

2Q(ζ, z)W
0(Q(ζ, z))

�
dz ,

where the second line is obtained by making use of equation

0 = [(j �Q)(ζ, z)�Q(ζ, z)]�W 0(Q(ζ, z))

�1 = lim
z!�∞

Q(ζ, z), Q(ζ, 0) = 0

When ζ = n̂, i.e., the points located on the interface, σ(ζ) = σ(n̂)
corresponds to the surface tension of the interface.
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Notation

Let h(x , t) be the signed distance (positive in the liquid) from the point x
to Γt , the limit interface between liquid and solid at time t. Then, in the
local coordinate system (s 0, h) :=

�
s1, ..., sN�1, h

�
2 RN , one has

x = x0(s 0) + hn̂(s 0),

where n̂ is the unit normal. Thus, with these de�nitions, D2h and
�!r n̂ are

N �N matrices with components
�
D2h

�
ij = ∂hi/∂xj and��!r n̂�

ij
= ∂n̂i/∂xj and are related to each other in the following way

�!rh = n̂T and D2h =
�!r n̂.

Also, the velocity of the interface at an arbitrary point x0 2 Γt be
expressed as

v (x0, t) =
∂h (x0, t)

∂t
.
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Main Theorem

The solution φ of

αε2φt = Jε � φ� φ�W 0(φ) + εuG 0(φ)

(u +
1
2

φ)t = ∆u

admits a formal asymptotic expansion only if the Gibbs-Thomson-Herring
condition (with linear kinetics) is satis�ed, i.e.,

u + α(n̂)v + Trace
n�!r n̂ D2σ(n̂)o = 0.

Using tensor notation this can also be expressed as

u + α(n̂)v +
�!r n̂ : D2σ(n) = 0.
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Constructing the Wul¤ shape

The Wul¤ shape is the shape of a solid under the undercooling
temperature u := �1.

2d example with anisotropy, J (x , y) =: J̄ (r , θ) .
We will compute the Wul¤ shape by (i) utilizing the planar solutions,
(ii) calculating the corresponding surface free energy σ̄ (θ) =: σ (n̂),
and (iii) solving the di¤erential equation

σ̄ (θ) + σ̄00 (θ) = �u [s ]E /κ (θ)
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Let J̄(r , θ) be given by

J̄(r , θ) = f0(r) + δ cos(nθ)f1(r), r =
p
x2 + y2, tan θ =

y
x
,

As an illustration, we choose the following:

n = 6, f0(r) =
e�r

2

π
, f1(r) = �

r6e3�2r
2

27π
.

For n̂ = (cos θ, sin θ) we have
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We integrate J̄ in the direction orthogonal to the normal to obtain j̄

j̄(θ, z) : =
Z ∞

�∞
J̄
�p

z2 + l2, θ + arctan
l
z

�
dl

= ̂(δ cos nθ, z)

where

̂(h, z) = j0(z) + hjn(z)

j0(z) : = 2
Z ∞

0
f0(
p
z2 + l2)dl

jn(z) : = 2
Z ∞

0
f1(
p
z2 + l2) cos(n arctan

l
z
)dl
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In our example, we have (recall δ cos(nθ) is form of anisotropy with n = 6)

j0(z) =
e�z

2

p
π
, j6(z) =

e3�2z
2
(15� 180z2 + 240z4 � 64z6)

1728
p
2 π

.

Increasing δ (amplitude of anisotropy) means equil shape is more like a
hexagon. At at critical value of δ, one obtains sharp vertices of a hexagon.
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Plots of ̂(h, z), Q(h, z) and σ̂(h). Horizontal axis is z in �rst two graphs.
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Thank you!
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