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PhD Thesis with Michael Fisher 1978

Ruelle, Fisher, Dyson, Lieb, Lebowitz 1960s: In the thermodynamic limit
F(Q)=|Q|fo+..

The next term should be a surface free energy term, £ face.

C & Fisher papers 1977-1980 (Comm. Math. Phys.) for lattice systems

F (Q) = |Q| fOO + |aQ| fsurface + ...
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du/dt=DAu

Liquid The Classical Stefan
Problem

Find I'(t) and u(x,t)

du/ot=DAu

Interface I'(t)

lv/D={Mu(Solid)- Mu(Liquid)}- n

u=0



Introduction

o Classical Stefan problem (Lame and Clapeyron 1831, Stefan 1889)

u = DAu in O\T
v, = D[Vu-n]_ onT
u = 0 ?onTl

@ In Classical Stefan model temperature plays dual role. Around 1900 it
became clear to materials scientists that u # 0 at interface. But the
Stefan problem dominated mathematics of interfaces separating
phases.

@ If temperature does not distinguish phases, we need a new variable, ¢
(order parameter).
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@ Oleinik formulation consolidates first two egs:
/
ug + E(Pt = DAU

where ¢ is just a step function.

@ How do we obtain the second variable ¢ 7
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Idea of "order parameter” in statistical mechanics

Originally proposed by Landau in 1940's for critical phenomena. Review
article by Hohenberg and Halpern 1977 on " Dynamics of critical
phenomena” Model A, B... Cahn-Hilliard model etc.

Some speculation that perhaps order parameter could be used for ordinary
phase transitions.
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Physical issues

1. Landau "order parameter” based on idea that " correlation length”
diverges to infinity near critical point.

2. It was shown to be wrong in that region.

3. For an ordinary phase transition, the correlation length is very small,
not infinite.

4. For an ordinary phase transition, we "cannot hide behind 'universality.”
We need to obtain exact answers with exact physical parameters.

5. Even if all of this is OK how to compute with an interface thickness
e=10787

Is it possible that the idea could work well for the opposite region (atomic
correlation length) when it does not work for the intended region
(divergent correlation length)?
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Basic ideas

The entropic part of the free energy involves

{pIng, +(1—¢)In(L—¢,)}

is often approximated in applications by a smooth double well potential,
denoted W (¢, ), which takes its minimum values on the bulk (i.e., single
phase) material.

o Write a free energy F ¢, u] := |, { 24 w(p)+ uh (gb)} with

w double well and e.g., H’ (qb) = (1 —¢ ) or h' (¢) = 1.
@ Dynamics 9¢/dt = —0F /d¢ coupled with heat equation
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Phase Field to Sharp Interface Model

aep, = AP+ 5 (¢ —¢°) + g h (P)u
(u+3¢): = Au

. I-=T ._ K T
u:= //CE, D:= e dy := STel/c

As ¢ — 0 does this system converge to the sharp interface problem below?

ur = DAu in Q(t)\I'(¢t)
vp = Dh-Vu]}, on TI(t)
u=—dy(x+av,) on T(t)
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Sketch of formal asymptotics

Let r be the signed distance from the interface, p :=r/e

o (x. t;e) = ¢°(x,t)+ep (x,t)+ ...
~ ®(p t;e) =D (p,t) +ed! (o, t) + 2D (p,t) + ...

9P (x, t;€) 0 2 0 0
_T:gvcpp (o, t), € A¢:d>pp+£1c<l>p+...

So the phase equation is roughly
—svd>2 (p.t) = ®2p + sCID;p + st)g

1
5 {00+ el — (@0 ed!)’} + Zeu
0
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O(1) balance

1
0
o, + 5

O (¢) balance

(o= (@)} =0 = () =tanh(p/2) (1)

1 2 c
Lot = f, + 2 {1-3 ()"} ! = V) KB+ u=iF (2)

Note that QDB solves the homogenous equation, ﬁq)g =0, so Fredholm
alternative them implies, LP! = F has a solution only if (F, q)g) L 0.
This means

e c

/_oo (vcpg + kD + dou> Podp = 0, so (3)
u ~ cdpx+ opv.

Match "inner solution" @ with "outer solution" ¢.
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Ultimately, we want a rigorous proof that in some norm ||-|| one has
H True Solution ¢, — (§° + e + ... + ek(pkH < Ceet (8)

Also, we would like to know that the solution to the phase field and the
sharp interface problems satisfy

¢ — ¢oll < Ce. (5)
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Mathematical issues

@ Do solutions exist? Is ¢ even bounded?
@ Does the interface remain at the same "thickness” etc.

e Can we establish (4) and (5) in some suitable norm?

Main analytical thrust of research in the 1980s.
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Allen-Cahn equation

o(gzq)t:g A+ (- ‘Dg)

Phase field equations
Phase field with e = 0
CpTy+3 q)t = KAT
CoTy+ £y = KaT g%y = €240 +4 (0 %) + els], (T-Tg)
0= 82A¢+ (0-9%) +i—:s]E T-Tg) 36

I
l
I ' |
: I I “ \ Phase field with Cp = 0= 0 I
l |
: Phase field with C), = 0 ,/ I \‘ “ |
ol 3
: Iq)t KAT 11 \‘ \‘ 0= €A¢)+ ¢q) +ES]ET :
o hd |
11 o’ —eA¢+ (¢-92) + €[s] (T-Tg) I \‘ \‘ :
r ! vy |
' ! ' v\ 2|
l —_——d | v ) Cahn-HHIaard equation I) I
: A T // / Y ) |
L7 I , / P\ elslglg, =~ A1 €280+ 5 (0-0 I
V A ? : / II Surface tension and kinetics | { \ 65K |
\ .
Surface tension w/o kinetics “1 // / C,Ty=KaT “ \ . I v
| zomg ) Iv=KVTen], \ ‘___2—_1——') Motion by mean curvature
Cply+2 Oy =KaT < 7 y o ' \ T=Tg [—0 | y
Iv=KVTen]; "/ [S1c(T=Tg) = ~o (x+ow) -“ i > Ve dx
!
[S]g(T-Tg) = -ox . / \ I
6=~ : o1 \ I
cf/ o ! OQ'cu’ R I
1ef / I
Stefan model * * y *
CpTt=KaT Quasi-static with kinetics Completely quasi-static
Iv=KVTe«n];
o 0=KaT 0 = KAT
~ Iv=KVTen]; Iv=KVT«n];
[SIg(T-Tg) =—o(x+0v) [SJg(T=Tg) = -0k




Computational issues

@ Real physical thickness of interface is 10~8 cm; capillarity length 1070
or 1077 cm; sample 1 cm; radius of curvature 10~* cm.
o Computations would be impossible with these parameters.

@ Ansatz: If we extract the surface tension from the interface thickness,
then we can increase the interface thickness by a factor of 1000
without influencing motion of the interface (C & Socolovsky 1989,

1991).
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0.57]

¢(x, t;€) actual ¢, and stretched.
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Other works and perspectives

@ H. Spohn, Interface motion in models with stochastic dynamics, J.
Stat. Phys. (1993).

o G. Giacomin & J. Lebowitz, Phase segregation dynamics in particle
sytems with long range interactions |. Macroscopic limits, J. Stat.
Phys.(1997).

@  : Phase segregation dynamics in particle sytems with long
range interactions Il. Interface motion, SIAM App. Math. (1998).

@ N. Dirr, A Stefan Problem with surface tension as the sharp interface
limit of a nonlocal system of phase field type, J. Stat. Phys. (2004).
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Discuss three projects (see www.pitt.edu/~caginalp)

o (with Christof Eck and Xinfu Chen) Second order asymptotics (in €)
on the PF egs;

@ (with Emre Esenturk) Anisotropy and higher order PF eqs;

o (with Xinfu Chen and Emre Esenturk) New perspective in PF: use

potential with non-local interactions and anisotropy to obtain elegant
expressions for interface from microscopic considerations
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@ Interest in the materials community in refined computations as
computing advances.

@ Better understanding of detailed anisotropy needed

@ Understand relationships between molecular anisotropy, surface
tension, equil shapes and dynamics
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@ Rubinstein & M. Glicksman (1991); and other experiments
@ Need for fine resolution within computing capacity
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Conditions on the interface

@ Isotropic: Gibbs-Thomson relation

ulslg = —ox

o is the surface tension,

[s]£ is entropy difference between the phase per unit volume,

K is the sum of principal curvatures, c is heat capacity and / is latent heat,
u:= (T — Tp)c/lis the reduced temperature,

T is the equilibrium melting temperature). When there is anisotropy,
surface tension can be written as a function of surface normal, i.e. o(f).
In this case, the equation above needs to be modified.
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Generalization of Phase Field for second order convergence

o
U= e D := , dy :=

the sharp interface problem has the form

us = DAu in Q(t)\I'(t)
vi = Da-Vu], on T(t)
u = —dy(k+av,) on T(t)
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Let
W(£l) = 0< W(s) foralls# +1, W"(£1)>0,

G/(£1) = o, G(l)—G(—l):/lly/QW(s)ds.

The phase field equations corresponding are

€ (acp, — AP) + W'(§) = e4-G'(p)u
(u43¢)e = Au

where &, := « + ex1 and a; is defined by

_ dio Jr{G(1) = G(P(s)} (14 D(s)) ds
2f]1{¢2(5)d5

where @ is the (unique) solution to

O—-W(®)=0 on R, &(+o0)=+1, /de)(s)ds =0.
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Key ldeas

@ Previous works used distance from the level set
Te(t) :=={x:¢,(x,t) =0}
We used reference frame the level set corresponding to ¢ = 0,
i.e.,ro(t).
o THEOREM. With the conditions above, there exists ¢5 > 0 and
C > 0 such that solutions (g, ¢,) to the Phase Field equations satisfy

distance {T';, I} < Ce?  forall 0 < e < ¢.
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n—1
at = —Var + ar, 81; = at + St{asi'
=1

1

n—1 _
V = No,+V', V=) vsa,
i=1

n—1 n—1
A = 9, +AROI,+AT, AT:=)Y AS9+ ) VS .V,
i=1 ij=1

where VS'(x, t), Si(x, t), AR(x, t), R:(x, t) are evaluated at
x = Xo(s, t) + rN(s, t), and are regarded as functions of (r,s, t).
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we = {—we ' =0 h}w, + 0w

Vw = {Ne7! =V hlw, +Viw,

Aw = {e?+ |V h > wyy + {ARe™ — ATh}w,
—2V'h - Viw, + Alw

where Vr, 81;, Al are again differentiations with p fixed.
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Numerical Studies

Are C and gy too big or small to be useful?
Take specific W, G and a4 that satisfy conditions.
Relative difference between true soln and computed.

Computations show difference goes as £2.

Several sets of parameters, incuding dendritic.
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Fitted Line Plot
LogMod2 = 8.676 + 2.007 LogEps
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Microscopic interactions to macro behavior
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Two basic approaches we have used.

1. The usual phase field equations arise from truncating Fourier expansion
after g% (so we have second order). (C in Annals 1986) The molecular
anisotropy is largely "averaged out" when we do this. By retaining higher
order Fourier modes, and using higher order differential equations, we can
obtain the classical Gibbs-Thomson-Herring relation (in 2d) at the
interface (Gibbs-Thomson-Herring Condition):

ulsle = —(c +0")x

and its dynamical generalization.
In 3d things are more complicated.
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A new approach to anisotropy (with or w/o non-local

interactions) in arbitrary spatial dimension

Idea of working directly on the integral form (avoiding higher order DEs).
Include non-local interactions.

How is the information (e.g., anisotropy) in interactions, Ji ,
communicated to the macro interface.
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1. These ideas lead to a free energy:

Flp] = E%Jk/ (‘Pk - ¢/)2 + Z W(‘Pk) + ;“G(‘Pk)-

k,l k

The free energy in the continuum limit:
Flgl = 5 [ 4= 0)(@0) — oly))2drcy
+/W((p(x))dx—|—/uG((p(X))dx

where Jo(z) = ¢ VJ(e71z), e is an atomic length scale; G(¢) represent
the entropy difference per unit volume. For simplicity we assume () = R
with d > 2.

2. The phase field equation can be obtained by the assumption that the
variational derivative of the free energy should be proportional to the time
derivative of the phase field, i.e.,

aelp, = Jex ¢ —p — W (¢) +euG'(¢)
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Liquid

T

Solid ><

Traveling wave in direction of
zeta at point x_0.
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The surface tension is the difference per unit area between the free energy

with the interface and without, i.e.,

_ Flgl - (Fl-1+ F) /2.

Area

Q) ::/{ @ Z))+;O(G,Z)(O(C.Z)—(j*O)(é.Z)}dz

= [ (w -0 W 2)) ¢z,
where the second line is obtained by making use of equation

0=[0U*Q)(¢ 2)— QL 2)] - W(Q(( 2)
+1= Zﬂrjrgoo Q(l,z), Q(Z,0)=0

When { = 7, i.e., the points located on the interface, 0 () = o(h)
corresponds to the surface tension of the interface.
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Let h(x, t) be the signed distance (positive in the liquid) from the point x
to I';, the limit interface between liquid and solid at time t. Then, in the
local coordinate system (s, h) := (sl, o, sV h) € R", one has

x = xo(s") + hn(s"),
where 7 is the unit normal. Thus, with these definitions, D?h and Vn are

N x N matrices with components (D2h)ij = dh;/0x; and

_)
(V h) = 0h;/0x; and are related to each other in the following way
ij

Vh=haT and D2h= VA

Also, the velocity of the interface at an arbitrary point xp € T’y be
expressed as
oh (Xo, t)

v(xp, t) = 3
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The solution ¢ of
ae’p, = Jexp—¢— W(¢)+euG'(¢)
(u+ %gb)t = Au

admits a formal asymptotic expansion only if the Gibbs-Thomson-Herring
condition (with linear kinetics) is satisfied, i.e.,

u+ a(h)v + Trace {?ﬁ D2U(ﬁ)} =0.
Using tensor notation this can also be expressed as

< 2
u+a(P)v+ Vi :Dc(n)=0.
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Constructing the Wulff shape

The Wulff shape is the shape of a solid under the undercooling
temperature v := —1.
@ 2d example with anisotropy, J(x,y)=:J(r,0).

e We will compute the Wulff shape by (i) utilizing the planar solutions,
(ii) calculating the corresponding surface free energy 7 (6) =: o (),
and (iii) solving the differential equation

7 (0) + 0" (0) = —uls]g /x(6)
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Let J(r,0) be given by

J(r,0) = fo(r) + 6 cos(nb)fi(r), r=x2+y2 tanf=7,
x

As an illustration, we choose the following:

_ _ 9,2
r r6e3 2r

T 277t

For 7 = (cos#,sin @) we have
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We integrate J in the direction orthogonal to the normal to obtain j

j(6,z) :/ j(\/zz—l—lz, 0 + arctan I) dl
—00 Z
= J(dcosnb, z)
where

i(h,z) = jo(z)+ hjn(2)
o(z) :2/0 (V22 + 2)di

e /
Jn(z) = 2/ fi (V22 + I?) cos(narctan —)d/
0

V4
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In our example, we have (recall § cos(nf) is form of anisotropy with n = 6)

, e , 372" (15 — 18022 + 240z* — 642°)
wo(z)=—7=, Js(z2) = :
NG 17282 7t

Increasing ¢ (amplitude of anisotropy) means equil shape is more like a
hexagon. At at critical value of J, one obtains sharp vertices of a hexagon.
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Plots of j(h, z), Q(h,z) and &(h). Horizontal axis is z in first two graphs.
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Polar Plot of 5(6)
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Thank you!
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