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Abstract: We analyze non-perturbatively the one-dimensional Schrödinger equation
describing the emission of electrons from amodel metal surface by a classical oscillating
electric field. Placing the metal in the half-space x � 0, the Schrödinger equation of
the system is i∂tψ = − 1

2∂
2
xψ + �(x)(U − Ex cosωt)ψ , t > 0, x ∈ R, where �(x)

is the Heaviside function and U > 0 is the effective confining potential (we choose
units so that m = e = � = 1). The amplitude E of the external electric field and the
frequency ω are arbitrary. We prove existence and uniqueness of classical solutions of
the Schrödinger equation for general initial conditions ψ(x, 0) = f (x), x ∈ R. When
the initial condition is in L2 the evolution is unitary and the wave function goes to zero
at any fixed x as t → ∞. To show this we prove a RAGE type theorem and show that
the discrete spectrum of the quasienergy operator is empty. To obtain positive electron
current we consider non-L2 initial conditions containing an incoming beam from the left.
The beam is partially reflected and partially transmitted for all t > 0. For these initial
conditions we show that the solution approaches in the large t limit a periodic state
that satisfies an infinite set of equations formally derived, under the assumption that the
solution is periodic by Faisal et al. (Phys Rev A 72:023412, 2005). Due to a number of
pathological features of the Hamiltonian (among which unboundedness in the physical
as well as the spatial Fourier domain) the existing methods to prove such results do not
apply, and we introduce new, more general ones. The actual solution exhibits a very
complex behavior, as seen both analytically and numerically. It shows a steep increase
in the current as the frequency passes a threshold value ω = ωc, with ωc depending on
the strength of the electric field. For small E , ωc represents the threshold in the classical
photoelectric effect, as described by Einstein’s theory.
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1. Introduction

1.1. Physical setting. The emission of electrons from ametal surface induced by the ap-
plication of an external electric field is a problem of continuing theoretical and practical
interest [1–26]. It was first fully analyzed for constant electric field using the “new me-
chanics” by Fowler and Nordheim (FN) in 1928 [27]. They considered the Sommerfeld
model of quasi-free electrons confined to a metal occupying the entire half-space x < 0
by an effective step potential U . The metal is filled with electrons up to a Fermi level
EF , neglecting the small number of thermal electrons at room temperatures. This gives
the work function W := U − EF , i.e. W is the minimum amount of energy necessary to
take an electron out of the metal.

Applying a constant external electric field E for x > 0, see Fig. 1, an electron in the
Fermi sea moving in the positive x-direction, described by a plane wave eikx , k > 0,
can then tunnel out of the metal (we use units in which � = m = e = 1).

To describe this system FN considered the Schrödinger equation

i∂tψ = −1

2
∂2xψ + �(x)(U − Ex)ψ (1.1)
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U − Ex

EF ≡ U − W

V

x

Fig. 1. The potential considered by Fowler and Nordheim. x < 0 corresponds to the region inside the metal
and x > 0 corresponds to the vacuum outside

where �(x) is the Heaviside function, equal to 1 if x > 0 and 0 otherwise. To compute
the stationary current observed after the field has been on for a while, FN made the
Ansatz that ψ(x, t) is a generalized eigenfunction of (1.1)

ψ(x, t) = e− ik2
2 tφE (x) (1.2)

with φE satisfying the equation

k2

2
φE = 1

2
∂2xφE − �(x)(U − Ex)φE . (1.3)

The requirement that there be only one incoming wave from the left, given by
eikx , k > 0, for x < 0 and only outgoing electrons for x > 0, as well as that φE (x) and
its derivative be continuous at x = 0, and that φE (x) be bounded as |x | → ∞, gave
φE (x) = eikx + REe−ikx for x < 0 and an Airy function expression for x > 0.

The FN computation is still the basic ingredient for the analysis of constant field
currents experiments at present [1,4,22,24,27–37]. Their analysis does not consider the
initial state of the system when the field is turned on. To check the validity of the FN
ansatz (1.2) we recently revisited the FN setup by solving (1.1) for general initial values
ofψ(x, 0).We showed that for allψ(x, 0) representing an incoming beam eikx [38] plus
some square integrable function, ψ(x, t) converges to the FN solution when t → ∞.

The asymptotic approach behaves like t− 3
2 . We considered in particular the initial state

corresponding to a solution of (1.3) when E = 0:

ψ(x, 0) = φ0(x) =
{
eikx + R0e−ikx for x � 0

T0e−√
2U−k2x for x > 0

, R0 = ik +
√
2U − k2

ik − √
2U − k2

,

T0 = 2ik

ik − √
2U − k2

. (1.4)

Time-periodic electric field and the photoelectric effect. In the present work, we
consider a setup similar to that of FN, except that the external field E is taken to be
periodic in time with period 2π

ω
. More precisely, we consider solutions of the equation

i∂tψ = −1

2
∂2xψ + �(x)(U − Ex cosωt)ψ, t > 0 (1.5)
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with an initial value ψ(x, 0). Physically, this can represent, depending on ω, a great
variety of situations ranging froman alternatingfield produced by amechanical generator
to one produced by shining a laser on the metal surface. This model is commonly used
by theoreticians and experimentalists alike to study the effect of lasers on metal surfaces
[1,4,22,24,28,29,31–36].

For small values of ω the situation is in some ways similar to the constant field case
with electrons tunneling through the (oscillating) barrier, although the limit ω → 0
in (1.5) is very singular. For larger ω, the situation is expected to be similar to that
of the photoelectric effect, where light shining on a metal surface causes the almost
instantaneous emission of electrons with a well-defined maximum kinetic energy K ,
given by the Einstein formula K = ω − W (recall that � = 1 in our units). Here
of course we do not consider discrete photons, since (1.5) represents the electric field
classically. It is expected however that the discrete jumps will show up as resonances,
see [39]. Something like this is indeed the case for weak fields [40]. For larger fields
one has to add toW the ponderomotive energy E2

4ω2 [40] of the electron in the oscillating
field, see Fig. 3 in the Appendix. There is a vast physical literature on this topic: For a
comprehensive review see [41] and references therein.

1.2. Mathematical setting. Fromamathematical point of view, the existence of solutions
of (1.5) with appropriate physical initial conditions which remain bounded and behave
in a physical way for all x and t is not obvious. In the physics literature, Faisal et al. [28]
considered periodic solutions of (1.5) for general periodic fields E(t) = E(t + 2π/ω)

and, in analogy to the work of FN sought solutions of (1.5) in the form1

ψ(x, t) = e− 1
2 ik

2tφ(x, t) (1.6)

where φ(x, t) is periodic in time and has a single incoming wave eikx for x < 0, k > 0.
The continuity conditions at x = 0 then lead to an infinite set of linear equations for the
time-Fourier coefficients of φ. The existence of solutions for this infinite system was not
proven. What Faisal & al. did was to truncate the infinite set of equations and solve the
truncated system numerically.

In this paper we rigorously analyze the full time evolution of (1.5) both for L2 initial
conditions as well as for an incoming beam eikx as in (1.4) plus other terms which do not
contribute to the long time behavior. We then find that for L2 initial conditions ψ(x, t)
decays pointwise at least at a rateO(t−1/2). For this,wefirst obtain aRAGE-type theorem
for this time-dependent potential. In the case the initial condition contains an incoming
wave as in (1.4) (plus possible L2 perturbations), the solution converges at least at a
rate O(t−1/2) to the ansatz in [28]. It follows from our result that the infinite system of
equations obtained by Faisal & al. has a solution. We limit our analysis to time-periodic
fields of the form in (1.5) but expect our results to extend to general periodic fields.
The fact that the external excitation is of infinite duration is mathematically convenient,
but, as long as the excitation is not too short, the asymptotic behavior of the wave
function should be a good approximation of the outcome. Indeed, numerical simulations
performed under typical choices of parameters show that the system approaches a steady
state after 50 oscillations or so. Similarly, a smooth onset of the excitation, or a smooth
decay should not influence the outcome, except when the total duration of the process
is short.

1 Using the magnetic rather than the length gauge.



Non-perturbative Solution of the 1d Schrödinger Equation

To obtain these results we derive an integral equation (5.2) for ψ(x, 0) := ψ0(x),
which we show to have a unique solution (Lemma11). We also obtain a set of formulas
(3.8), (3.10), (5.6), that recover the full wave function ψ(x, t) from ψ0. The properties
ofψ0, and therefore ofψ , are derived from the integral equation that it solves. By far the
most delicate analysis concerns the long time behavior of the solution of the Schrödinger
equation.

Behind the apparent simplicity of the potential in (1.5) lie a number of significant
mathematical difficulties making the analysis particularly challenging. Among them:
lack of smoothness, and the fact that the Hamiltonian is unbounded in a time dependent
way both in physical domain and in momentum space (owing to the unboundedness of
the potential energy term and lack of continuity). As a result, the classical PDE toolkit
does not apply. To overcome these difficulties, we develop new methods, described in
Sect. 2.1, which we combine with the spectral measure theory of the underlying un-
bounded operators. Preliminary results, without proofs, were given in [38]; that paper
also contains interesting, and rigorously controlled numerical findings about the solu-
tions, see Appendix B.

Another model that could be considered would be one with a smooth transition
between the metal and vacuum (regularizing the Heaviside function), but this would
make some of the explicit calculations in this work dauntingly complicated, and dealing
with smoother interfaces may require new ideas.

The techniques introduced in this paper supersede previous methods of the authors,
and overcome some of the serious difficulties exhibited by systems in external electro-
magnetic fields, notably dealing with potentials which are unbounded in both physical
and Fourier space. These new methods are expected to apply to realistic models of ion-
ization, such as the Coulomb system [42] where the external field is a monochromatic
laser field. This however will be the subject of a subsequent paper.

2. Main Results

Denote

D = H2(R \ {0}) ∩ H1(R) ∩ { f | x f ∈ L2(R)} (2.1)

Theorem 1 .

(a) The Hamiltonians Ht := − 1
2∂

2
xψ + �(x)(U − Ex cosωt)ψ , densely defined on

C∞
0 (R) have self-adjoint extensions on D for each fixed t.

(b) Assuming L2 initial conditions, the Schrödinger evolution in themodel (1.1) is unitary.

Theorem 2. If the initial state ψ(·, 0) := f is in D, then (1.5) has a unique solution
ψ(·, t) ∈ D, and ψ(x, t) is continuously differentiable in t > 0.

Theorem 3. (Long time behavior)

(i) For initial conditions in a dense subset of D we have: for any compact set A ⊂ R

the long time behavior of solutions is2∫
A

|ψ(x, t)|2 dx = O(t−1) as t → ∞ (2.2)

2 Webelieve that the actual behavior below isO(t−3), but this results fromdifficult to calculate cancellations
occurring in algebraically cumbersome expressions.
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(ii) If the initial condition ψ(·, 0) is in D, then

lim
t→∞ ψ(x, t) = 0 (2.3)

uniformly in x in compact sets in R.

Theorem 4 (Wave initial condition). For the initial state (1.4) equation (1.5) has a
unique solution that is bounded, and

ψ(x, t) ∼ e−ik2t/2φ(x, t) as t → ∞
where φ is time-periodic of period 2π/ω.

Remark 5. In the proof of Theorem4 we make an additional simplifying assumption:
U + E2

4ω2 is not an integer multiple of ω, and neither isU + E2

4ω2 − k2
2 . We do this because

these two special cases have a slightly different singularity structure,whichwould require
small changes in the proof, which we will not belabor. The two exceptional cases above
correspond to a marginal situation in which absorbing an integer number of photons
raises the energy of the electron to exactly the ionization value.

Remark 6. In [28], Faisal, Kamiński and Saczuk computed the periodic solutions of the
Schrödinger equation (1.5) with an incoming plane wave. By Theorem 4, the solution
they computed must be the asymptotic solution φ.

The rest of the article deals with proving these results.

2.1. Outline of the mathematical approach. The external potential�(x)(U −Ex cos(ω
t)) is unbounded both in the physical domain and, due to low regularity, in spatial
Fourier space. These issues are at the root of some of the more serious difficulties of
this model. Since non-smoothness is localized at x = 0, it is convenient to work with
one-sided Fourier transforms, by means of which we obtain a left-to-right continuity
integral equation. Existence, uniqueness, regularity and unitarity are derived, by more
or less standard operator theory techniques, in Sect. 4.3 from the Fourier transform of
this equation.

Specific information about the behavior of the system is obtained from the equation
satisfied by ψ(0, t), an equation of the form (5.2) below. The integral operator in this
equation is quite involved. The high complexity of the equations governing the evolution
of many quantities of interest represents another source of technical difficulties.

By far the most delicate task in this model is finding the large time behavior of
the system. The usual Laplace transform methods (see [39,42] and references therein)
cannot be used here because of their daunting algebraic complexity. Instead,we introduce
a number of new methods.

In a nutshell, we rely on “sampling” the wave function at t = tn = n(1 + r) 2π
ω

, n ∈
N, r ∈ [0, 1)which we use as coefficients of a generating function, which is analytic in r
in the open unit disk. This analyticity only requires exponential bounds on the growth of
thewave functionwith respect to time, a type of boundswhich are not difficult to get from
the integral equation it satisfies. This generating function satisfies a sequence of equation
based on compact operators in a family of Banach spaces (a type of decomposition of
the governing equation that also seems new).

The type of singularities of the generating function on the unit circle determine, by
means of asymptotics of Fourier coefficients, the long time behavior of the system (see



Non-perturbative Solution of the 1d Schrödinger Equation

Sect. 6). If these singularities are weaker than poles, then L2 initial conditions result
in decay of the wave function for large time, pointwise in x . The presence of poles
has an equivalent reformulation as the existence of nontrivial discrete spectrum of a
compact operator in (a sequence of) Banach spaces. We show that the discrete spectrum
of the aforementioned compact operators is empty, a property which is equivalent to
the absence of poles of the generating function, hence of bound states of the associated
quasi-energy operator. The analysis of bound states of the quasi-energy operator, always
a nontrivial task, is especially delicate here, and to tackle it we resorted to a new approach
relying on the theory of resurgence and transseries, cf. Sect. 6.3.5, as well as techniques
of determining the global analytic structure of functions from their Maclaurin series
[43], see Sects. 6.3.2–6.3.3.

The proof of Theorem 1 (a) is given in Sect. 4.2; The proof of Theorem 1 (b) is given
in Sect. 4.3. The proof of Theorem 2 is given in Sect. 5 and Theorems 3 and 4 are proved
in Sect. 6.

3. The Spatial Fourier Transform of (1.5)

Before turning to the proofs of the main results, we reduce the Schrödinger equation
(1.5) to a system of integral equations, which are derived by taking one-sided (half-line)
Fourier transforms of ψ , denoted by ψ̂− and ψ̂+ (this is equivalent to taking a pair of
Laplace transforms; see also the paper by Fokas [44]).

Denote ψ0(t) = ψ(0, t) and ψx .0(t) = ∂xψ(0, t). Recall the notation ψ(x, 0) :=
f (x).

We show that these transforms are in L2 when the initial condition is in L2. For the
initial condition (1.4), the calculation is understood in the sense of distributions. After
establishing the main equations we need, the proofs will rely on essentially reversing,
rigorously, these steps.

We calculate ψ− for x < 0 by taking the half-line Fourier transform of (1.5) on R−,
and the solutions ψ+ for x > 0 by taking the half-line Fourier transform on R+. We then
impose the matching condition ψ−(0−, t) = ψ+(0+, t) := ψ0(t) and ∂xψ−(0−, t) =
∂xψ+(0+, t) := ψx,0(t). Then ψ(x, t) = �(−x)ψ−(x, t) + �(x)ψ+(x, t) is a solution
of (1.5). We write

ψ̂(ξ, t) = 1√
2π

∫ ∞

−∞
e−i xξψ(x, t) dx := ψ̂−(ξ, t) + ψ̂+(ξ, t)

where ψ̂± are the half-line Fourier transform of ψ±.

Note 7. As usual, the Fourier F transform of an L2 function f on a noncompact region
R is understood as an L2 limit of Fourier integrals on increasing compact subdomains
RN such that

⋃
N

RN = R. We have

f̂ := F f = 1√
2π

l.i.m
∫
RN

e−iξ x f (x)dx

where we adopted the notation of [45, p.11]: in n dimensions l.i.m. stands for the norm
limit of the integral over a ball of radius R as R → ∞.
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To avoid complicating the notation, when we are not performing operations with
such integrals, we will simply write

f̂ := F f = 1√
2π

∫
R
e−iξ x f (x)dx

By (1.5), ψ̂−(ξ, t) satisfies

i
∂ψ̂−
∂t

= 1

2
ξ2ψ̂− − 1

2
√
2π

ψx,0(t) − iξ
1

2
√
2π

ψ0(t) (3.1)

where ψ0(t) = ψ(0−, t) and ψx,0(t) = ∂xψ(0−, t), whose solution with initial condi-
tion f is

ψ̂−(ξ, t) = e−iξ2t/2
{
C−(ξ) +

1

2
√
2π

∫ t

0
eiξ

2s/2 [
iψx,0(s) − ξψ0(s)

]
ds

}
(3.2)

where

C−(ξ) = 1√
2π

∫ 0

−∞
e−iyξ f (y) dy (3.3)

Similarly, ψ̂+ satisfies

i
∂ψ̂+

∂t
= −i E cosωt

∂ψ̂+

∂ξ
+

(
1

2
ξ2 +U

)
ψ̂+ +

1

2
√
2π

ψx,0(t) + iξ
1

2
√
2π

ψ0(t)

(3.4)

where ψ0(t) = ψ(0+, t) and ψx,0(t) = ∂xψ(0+, t) (since we will impose the matching
conditions we denote the lateral limits at 0 the same, to avoid an overburden of the
notation), with the solution

ψ̂+(ξ, t) = e−i
(u,t)
{
C+(u) +

∫ t

0
ei
(u,s) 1

2
√
2π

[−iψx,0(s) + ξψ0(s)]
}
ds (3.5)

where

u = ξ − E

ω
sinωt,


(u, t) = 1

2
u2t +

(
U +

E2

4ω2

)
t − E

ω2 u cos(ωt) − E2

8ω3 sin(2ωt) (3.6)

and

e
i E

ω2
ξ
C+(ξ) = 1√

2π

∫ ∞

0
e−iyξ f (y) dy (3.7)

Taking the inverse Fourier transform, we obtain that for x < 0 the wave function
ψ := ψ− satisfies

ψ−(x, t) = h−(x, t) +

√
i

2

√
2π

∫ t

0
ds

(
ψx,0(s) +

i x

t − s
ψ0(s)

)
e

ix2
2(t−s)√
t − s

(3.8)
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(note that the last term is a convergent improper integral) where

h−(x, t) = 1√
2π i t

∫ 0

−∞
dy f (y) e

i(x−y)2

2t . (3.9)

For x > 0, ψ := ψ+ satisfies

ψ+(x, t) = h+(x, t) +
1

2
√
2π i

∫ t

0
ds

−iψx,0(s) + E
ω
sinωt ψ0(s)√

t − s
ei F(x,s,t)

+
1

2
√
2π i

∫ t

0
ds ψ0(s)

E
ω2 [cos(ωt) − cos(ωs)] + x

(t − s)3/2
ei F(x,s,t) (3.10)

where

h+(x, t) = 1√
2π i t

e
i x E

ω
sin(ωt)−i(U+ E2

4ω2
)t+i E2

8ω3
sin(2ωt)

∫ ∞

0
dy f (y) e

i

[
x−y− E

ω2
(1−cos(ωt))

]2
2t .

(3.11)

and

F(x, s, t) = x
E

ω
sinωt − i

(
U +

E2

4ω2

)
(t − s) − i

E2

8ω3 [sin(2ωt) − sin(2ωs)]

+

[
x + E

ω2 (cosωt − cosωs)
]2

2(t − s)
(3.12)

From (3.8) and (3.9) we have

ψ−(0, t) = h−(0, t) +

√
i

2
√
2π

∫ t

0
ds ψx,0(s)

1√
t − s

+
1

2
ψ0(t) (3.13)

where

h−(0, t) = 1√
2π i t

∫ 0

−∞
dy f (y) e

iy2

2t (3.14)

From (3.10)–(3.11) we have

ψ+(0, t) = h+(0, t) +
1

2
√
2π i

∫ t

0
ds[−iψx,0(s) +

E

ω
sinωt ψ0(s)] 1√

t − s
ei F0(s,t)

+
1

2
√
2π i

∫ t

0
ds ψ0(s)

E

ω2

cos (ω t) − cos (ω s)

(t − s)3/2
ei F0(s,t) + 1

2ψ0(t) (3.15)

where

h+(0, t) = 1√
2π i t

e
−i(U+ E2

4ω2
)t+i E2

8ω3
sin(2ωt)

∫ ∞

0
dy f (y) e

i(y+ E
ω2

(1−cos(ωt)))2

2t (3.16)

and

F0(s, t) = F(0, s, t) = −
(
U +

E2

4ω2

)
(t − s) +

E2

8ω3 [sin(2ωt) − sin(2ωs)]
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+
E2(cosωt − cosωs)2

2ω4(t − s)
(3.17)

Imposing the condition that ψ−(0, t) = ψ0(t) in (3.13) and that ψ+(0, t) = ψ0(t) in
(3.15) we obtain a system of equations for ψ0 and ψx,0

ψ0(t) = 2h+(0, t) + T +
1√
2π i

∫ t

0
ds ψ0(s) g(s, t) e

i F0(s,t) (3.18)

where

T = 1√
2π i

∫ t

0

[−iψx,0(s)
] 1√

t − s
ei F0(s,t) ds

and

g(s, t) = E

ω

sinωt√
t − s

+
E

ω2

cosωt − cosωs

(t − s)3/2
.

The continuity of ψ and its derivative imply

ψ0(t) = 2h−(0, t) +
√
i/2π

∫ t

0
(t − s)−1/2ψx,0(s)ds (3.19)

which will be used in Lemma10 below to eliminate ψx,0 from the equation ensuring the
continuity of ψ at 0: ψ+(0, t) = ψ−(0, t) = ψ0(t), which in Lemma11 is then shown
to have a unique solution.

4. Proof of Theorem 1

4.1. A few more general results. The unitary transformation ψ 	→ ϕ = Utψ given by

ϕt (x) = e−i x At�(x)ψt (x), where At :=
∫ t

0
dτ Eτ = e1

ω
sin(ωt) (4.1)

maps (1.5) to the magnetic gauge representation,

i∂tϕt (x) = (i∂x − �(x)At )
2ϕt (x) + �(x)Vϕt (x) =: HA;tφt . (4.2)

The quasi-energy operator K is defined on the domain

D(K) =
{
ψ ∈ L2(T × R) ∩ AC(T × R) : ∂tψ ∈ L2(T × R),

∂xψ ∈ L2(T × R), ∂2xψ ∈ L2(T × R), ∂xψ(·, t) ∈ AC(R)
}

(4.3)

where T is the torus R/2πZ, by

K = −i∂t + (i∂x − �(x)At )
2 + �(x)V (4.4)

Let

DA =
{
ψ ∈ L2(R), ∂xψ ∈ L2(R), ∂xψ(·, t) ∈ AC(R), ∂2xψ ∈ L2(R)

}
(4.5)
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Proposition 8. (i) For each t,HA;t is self-adjoint on DA.
(ii) K is self-adjoint on D (see (4.3)).

Proof. We only prove (ii); (i) is similar and simpler. We rely on Rellich’s theorem [46],
which we restate for convenience.

Theorem 9 (Rellich). Let T be selfadjoint. If A is symmetric and T -bounded with
T−bound smaller than 1, then T + A is also selfadjoint.

Here T− bounded means that D(T ) ⊂ D(A) and for any u ∈ D(T ) we have

‖Au‖ ≤ a‖u‖ + b‖Tu‖
and b is the T−bound. We take T = −i∂t − ∂2x , with D(T ) given in proposition 8 and
A = K − T . Clearly A is symmetric. We first note that −i∂x� = −i�∂x − iδ where
δ is the Dirac distribution at zero. It is enough to show that �∂x and δ are T−bounded
with b < 1. Indeed, the time-dependent coefficients are bounded and commute with the
spatial part, and�V is T−bounded with b = 0. The rest is fairly standard. We start with
�∂x and note that ‖�∂xu‖ ≤ ‖∂xu‖, and, for u ∈ D(∂2x ) (the domain in the proposition
with k = 0)

‖∂xu‖2 + ‖u‖2 =
∫
R

(ξ2 + 1)|û|2dξ =
∫ n

−n
(ξ2 + 1)|û|2dξ +

∫
|u|>n

(ξ2 + 1)|û|2dξ

≤ 2n(n2 + 1)‖û‖2 + 1

n2 + 1

∫
R

(ξ4 + 1)|û|2dξ

= 2n(n2 + 1)‖u‖2 + ‖∂2x u‖2
n2 + 1

(4.6)

and the rest is straightforward. We check now that δ is ∂x− bounded with bound one.
Indeed,

|δu| =
∣∣∣∣ 1√

2π

∫
R

û(ξ)dξ

∣∣∣∣
�

4.2. Proof of Part (a). The HamiltoniansHt andHA;t are related by a unitary transfor-
mation; it remains to verify the transformation of domains which is straightforward.

4.3. Proof of Part (b). We prove this result in Fourier space. Consider f ∈ D0 ⊂ D,
a dense set of initial conditions, such that f is C∞, exponentially decaying at infinity,
and f (0) = f ′(0) = f ′′(0) = f ′′′(0) = 0.

We see in (3.5) that the half-line Fourier transform of ψ for x > 0

ψ̂+ = T1 + T2 (4.7)

with

T1 = e−i
(u,t)C+(u), T2 = e−i
(u,t)
∫ t

0
ei
(u,s)g(s, ξ) ds,
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g(s, ξ) = −iψx,0(s) + ξψ0(s) (4.8)

Let c be a constant large enough so that ∂t (
(u, t) + ct) > 0 for all u (such a c satisfies
c > E2

2ω2 − U ). Integrating by parts twice in T2 and using the fact that ∂sg(0, ξ) =
∂ssg(0, ξ) = 0 we obtain

T2 = e−i
(u,t)
∫ t

0

1

i

e−ics g(s, ξ)


s(u, s) + c
∂se

i
(u,s)+icsds

= −i
g(t, ξ)


t (u, t) + c
+ ie−i
(u,t)

∫ t

0
∂s

(
e−ics g(s, ξ)


s(u, s) + c

)
ei
(u,s)+icsds

= −i
g(t, ξ)


t (u, t) + c
e−i
(u,t) + i

∫ t

0

1


s(u, s) + c
∂s

(
e−ics g(s, ξ)


s(u, s) + c

)
∂se

i
(u,s)+icsds

= −i
g(t, ξ)


t (u, t) + c
+

−ic + ∂t g

(
t (u, t) + c)2
− g
t t

(
t (u, t) + c)3

− ie−i
(u,t)
∫ t

0
∂s

[
1


s(u, s) + c
∂s

(
e−ics g(s, ξ)


s(u, s) + c

)]
ei
(u,s)+icsds

:= −i
g(t, ξ)


t (u, t) + c
+ g1(t, ξ) where g1(t, ξ) = O(ξ−3) (ξ → ±∞) (4.9)

Similarly, in (3.2) ψ̂− is a sum of two terms which are, up to multiplicative constants,
T1,− and T2,− which are obtained from T1, T2 above by replacing g with −g and for

(u, t) by ξ2t/2. It follows that we have T2,− + T2 = O(ξ−3).

Integrating by parts twice in T1 and using the fact that f (0) = f ′(0) = 0 we obtain

T1 = e
−i
(u,t)−i E

ω2
ξ
∫ ∞

0
e−iyξ f (y) dy

∣∣
u=ξ− E

ω
sinωt

= −1

ξ2
e
−i
(u,t)−i E

ω2
ξ
∫ ∞

0
e−iyξ f ′′(y) dy

and similarly for T1,−.
Now ψ̂ = ψ̂− + ψ̂+ and we see that ∂t ψ̂, ξ ψ̂, ξ2ψ̂ are in L2(R, dξ) for each t .

Returning to Eq. (1.5), we see that, for any t ,ψt and ∂2xψ are in L2,implying straightfor-
wardly that xψ ∈ L2. Writing now, as usual, the equation for d

dt ‖ψ‖(·, t)‖22 it follows
that ‖ψ‖(·, t)‖2 is conserved. Since the evolution is reversible, it is unitary.

5. Proof of Theorem 2

The proof relies on the following Lemmas, proved below.

5.1. The equation for ψ(0, t). Let D be as defined in (2.1). We use the convolution

( f ∗ g)(s) =
∫ s

0
f (u)g(s − u) du (5.1)
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Lemma 10. Assume the initial condition f satisfies f ∈ D.
Let ψ−(0, t) be given by (3.13) and ψ+(0, t) given by psiplus0).
We have ψ−(0, t) = ψ+(0, t) = ψ0 if and only if (3.19) holds and ψ0 satisfies the

integral equation

ψ0(t) = h(t) + Lψ0(t) (5.2)

with

h(t) = h+(0, t) + h−(0, t) − 1

π

∫ t

0
(h− ∗ s−1/2)G(s, t) ds (5.3)

(see (5.1), in which s−1/2 stands for the function s 	→ s−1/2) and

Lψ0(t) := 1

2π

∫ t

0
(ψ0 ∗ s−1/2)G(s, t) ds

+
E

2ω
√
2iπ

∫ t

0
ds ψ0(s)

1√
t − s

(
sin(ωs) +

cos(ωt) − cos(ωs)

ω(t − s)

)
ei F0(s,t)

(5.4)

Here

G(s, t) = d

ds

[
ei F0(s,t) − 1√

t − s

]
(5.5)

and F0 is given by (3.17). Furthermore,

ψx,0 =
√
2√
iπ

d

dt

[
ψ0(t) ∗ t−1/2 − 2h−(0, t) ∗ t−1/2

]
(5.6)

The proof is given in Sect. 5.2.

Lemma 11. Consider equation (5.2) with h given by (5.3)and L by (5.4) Assume the
initial condition f satisfies f ∈ D.

(i) There exists ν0 > 0 such that, if ν > ν0, then (5.2) is a contraction in the Banach
space

Bν := {ψ0(t) : e−νtψ0(t) ∈ L∞(R+)}. (5.7)

(ii) The functions h− and h+ defined in (3.14) and (3.11) resp. are differentiable for
t > 0.

(iii) The solution ψ0 of (5.2), unique in Bν , is continuously differentiable.
(iv) Moreover, ψ ′

0 := d
dx |x=0ψ is Hölder continuous of exponent 1/4.

Remark. If f is of class Cr then h± are of class Cr .
The proof of Lemma11 is found in Sect. 5.3.

Lemma 12. Assume the initial condition f satisfies f ∈ D and let ψ0, ψx,0 be given by
Lemma11.

(i) The function ψ− given by (3.8) is a solution of (1.5) for x < 0 and satisfies
ψ−(x, 0) = f (x) for x < 0, ψ−(0−, t) = ψ0(t), ∂xψ−(0−, t) = ψx,0(t).
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(ii) The function ψ+ given by (3.10) is a solution of (1.5) for x > 0 and satisfies
ψ+(x, 0) = f (x) for x > 0, ψ+(0+, t) = ψ0(t), ∂xψ+(0+, t) = ψx,0(t).

(iii) The Fourier transform of ψ− is (3.2) and the Fourier transform of ψ+ is (3.5).
ψ−(·, t) and ψ+(·, t)are L2 functions.

The proof is found in Sect. 5.4.

Note 13. If f ∈ L∞(R) formulas (3.8)–(3.11) also hold in the sense of distributions.
This is needed in order to accommodate initial conditions of the form (1.4).

5.2. Proof of Lemma10. Relation (3.19) is precisely the condition that ψ−(0, t) = ψ0.
We will now use this to eliminate ψx,0 from the condition ψ+(0, t) = ψ0.

Equation (3.19) implies

ψx,0 ∗ t−1/2 =
√
2π√
i

[
ψ0(t) − 2h−(0, t)

]
(5.8)

which convolved with t−1/2, and using the fact that t−1/2 ∗ t−1/2 = π , gives∫ t

0
ψx,0(s) ds =

√
2√
iπ

[
ψ0(t) ∗ t−1/2 − 2h−(0, t) ∗ t−1/2

]
(5.9)

Note that this also proves (5.6).
The condition that ψ+(0+, t) = ψ0(t) is equivalent to

ψ0(t) = 2h+(0, t) + T +
1√
2π i

∫ t

0
ds ψ0(s) g(s, t) e

i F0(s,t) (5.10)

where

T = 1√
2π i

∫ t

0

[−iψx,0(s)
] 1√

t − s
ei F0(s,t) ds

and

g(s, t) = E

ω

sinωt√
t − s

+
E

ω2

cosωt − cosωs

(t − s)3/2

Noting that ei F0(s,t) = 1+ (t − s)�(s, t − s) where �(s, z) is entire, and using (5.8),
integrating by parts, then using (5.9), we rewrite T as

T = −i

2
√
iπ

∫ t

0
ψx,0(s)

1√
t − s

ds +
−i

2
√
iπ

∫ t

0
ψx,0(s)

√
t − s

ei F0(s,t) − 1

t − s
ds

= −ψ0(t) + 2h−(0, t) +
−i

2
√
iπ

∫ t

0

[
d

ds

∫ s

0
ψx ′,0(u) du

]
ei F0(s,t) − 1√

t − s
ds

= −ψ0(t) + 2h−(0, t) +
i√
2π i

∫ t

0
ds

d

ds

[
ei F0(s,t) − 1√

t − s

]∫ s

0
ψx,0(u)du

= −ψ0(t) + 2h−(0, t) +
1

π

∫ t

0
(ψ0 ∗ s−1/2) G(s, t) ds

− 2

π

∫ t

0
(h− ∗ s−1/2)G(s, t)] ds (5.11)

Substituting (5.11) in (5.10), we obtain (5.2).
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5.3. Proof of Lemma11. (i) We prove that (5.2) is a contraction in the Banach space
Bν (5.7).

Defining ‖g‖ν := ‖g(s)e−νs‖∞, We bound

e−νt
∣∣∣∣
∫ t

0
(ψ0 ∗ s− 1

2 )G(s, t) ds

∣∣∣∣
� ‖ψ0‖ν

∫ t

0
|G(s, t)|e−ν(t−s)

∫ s

0

e−ν(s−u)

√
s − u

duds. (5.12)

Furthermore,

∫ s

0

e−ν(s−u)

√
s − u

du =
√

πerf(
√

νs)√
ν

�
√

π√
ν

. (5.13)

Now, changing variables,

∫ t

0
|G(s, t)|e−ν(t−s) ds =

∫ t

0
|G(t − s, t)|e−νs ds. (5.14)

We then write

G(t − s, t) = ei F0(t−s,t) − 1 − is∂s F0(t − s, t)

s
3
2

(5.15)

and by (3.17), as s → 0, F0(t − s, t) ∼ const.s, so G(t − s, t) → 0 as s → 0. On the
other hand, for large s, ∂s F0(t − s, t) is bounded, so G(s, t) is as well. Thus

∫ t

0
|G(t − s, t)|e−νs ds = O(ν−1) (5.16)

and ∥∥∥∥
∫ t

0
(ψ0 ∗ s− 1

2 )G(s, t) ds

∥∥∥∥ = O(ν− 3
2 )‖ψ0‖ν . (5.17)

Similarly,

e−νt
∣∣∣∣
∫ t

0
ψ0(s)

1√
t − s

(
sin(ωs) +

cos(ωt) − cos(ωs)

ω(t − s)

)
ei F0(s,t) ds

∣∣∣∣
� ‖ψ0‖ν

∫ t

0
e−ν(t−s)

sin(ωs) + cos(ωt)−cos(ωs)
ω(t−s)√

t − s
ds (5.18)

in which we change variables:

∫ t

0
e−ν(t−s)

sin(ωs) + cos(ωt)−cos(ωs)
ω(t−s)√

t − s
ds

=
∫ t

0
e−νs sin(ωt − ωs) + cos(ωt)−cos(ωt−ωs)

s√
s

ds (5.19)
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and since, as s → 0, sin(ωt − ωs) + cos(ωt)−cos(ωt−ωs)
s ∼ const.s, so the integrand is

bounded as s → 0. For large s, the integrand is obviously bounded above, so∥∥∥∥
∫ t

0
ψ0(s)

1√
t − s

(
sin(ωs) +

cos(ωt) − cos(ωs)

ω(t − s)

)
ei F0(s,t) ds

∥∥∥∥
ν

= O(ν−1)‖ψ0‖ν

(5.20)

Combining this with (5.17), we find that

‖Lψ0‖ν = O(ν−1)‖ψ0‖ν . (5.21)

Therefore, for ν large enough, 1 − L is invertible in Bν , so (5.2) is a contraction.
(ii)To prove that h−(0, t) is differentiablewe split the integral in (3.9) into the integral

from −1 to 0, which is clearly differentiable plus the integral from −∞ to −1, which
we show it is differentiable using L2 limits to integrate by parts as follows. We have

l.i.m
∫ −1

−∞
dy f (y) e

iy2

2t = 1

2
l.i.m

∫ ∞

1
du

f (−√
u)√

u
e
iu
2t

and, integrating by parts twice we find3

1

2
l.i.m

∫ ∞

1
du

f (−√
u)√

u
e
iu
2t = −i t f (−1) e

i
2t − t2e

i
2t ( f (−1) + f ′(−1))

−2t2 l.i.m
∫ ∞

1
du e

iu
2t

d2

du2
f (−√

u)√
u

The first two terms are obviously differntiable for t ∈ (0,∞), so it suffices to consider

the integral term. The second derivative above is a sum of terms of the form: f ′′(−√
u)

u3/2
,

f ′(−√
u)

u2
, f (−√

u)

u5/2
.

Since f ′′ ∈ L2 then the following quantities are finite:
∫ −1

−∞
| f ′′(y)|2 dy =

∫ ∞

1
| f ′′(−√

u)|2 1

2
√
u
du < ∞

hence f ′′(−√
u)

u1/4
is in L2. The other two terms, f ′(−√

u)

u2
, f (−√

u)

u5/2
have faster decay. Then

d2

du2
f (−√

u)√
u

= g3(u)u−5/4 with g3 in L2. Denoting τ = 1/(2t), we need to show that

G3(τ ) := ∫
eiuτ g3(u)u−5/4 du is differentiable in τ . Calculate then

G3(τ + ε) − G3(τ ) =
∫ ∞

1
eiuτ g3(u)u−5/4

(
eiuε − 1

)
du

We have eix = 1 + i x + g1(x) x5/4 where g1 := (eix − 1 − i x)x− 5
4 is a continuous,

bounded function. Therefore

G3(τ + ε) − G3(τ )

iε
=

∫ ∞

1
eiuτ g3(u)u−1/4 du + Iε,

3 The boundary terms vanish since we are dealing with an L2 function which is continuous in R, cf. Note
7, hence it goes to zero along some subsequence {Rn}n∈N where limn→∞ Rn = ∞.
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where Iε = i
1
4 ε1/4

∫ ∞

1
eiuτ g3(u)g1(uε) du

Using the fact that the integral in Iε is theFourier transformof the L2 function g3g1χ[1,∞),
then its L2 norm is bounded by ε1/4‖g3‖ sup |g1| hence Iε goes to 0 in the L2 norm,
hence in L1

loc. It follows that G3 is differentiable in distributions and its derivative is
i
∫ ∞
1 eiuτ g3(u)u−1/4 du, an L2 function (hence L1

loc) implying that G3 is absolutely
continuous, hence differentiable a.e.

Now it follows that G3
′ is continuous a.e. since, using eix = 1 + g2(x) x1/4 where

g2 is a continuous, bounded function, we have

G3
′(τ + ε) − G3

′(τ ) = i
∫ ∞

1
eiuτ g3(u)u−1/4

(
eiuε − 1

)
du

= (iε)1/4i
∫ ∞

1
eiuτ g3(u) du (5.22)

which goes to zero as ε → 0, as Iε did before. We have also shown:

Lemma 14. The function G3 is differentiable and the derivative is Hölder continuous
of exponent 1/4 uniformly in τ .

Indeed the integral in the last term of (5.22) is bounded.

Clearly, h+(0, t) is differentiable if and only if
∫ ∞
0 dy f (y) ei

[y+ E
ω2

(1−cos(ωt))]2
2t is dif-

ferentiable. Let u = [y + E
ω2 (1 − cos(ωt))]2. We need to show differentiability in τ of∫ ∞

E2

ω4
(1−cos(ωt))2

dy f (
√
u − E

ω2 (1 − cos(ωt)))u−1/2 eiτu , for which it suffices to show

that
∫ ∞
c dy f (

√
u − E

ω2 (1− cos(ωt)))u−1/2 eiτu is differentiable, where c is a constant
large enough. The rest of the proof is similar to the one above for h−(0, t).

(iii) To prove regularity of ψ0, note first that, since ψ0 ∈ Bν ⊂ L∞
loc then Lψ0 is

continuous, since integrals of the form
∫ t
0 ψ0(s)(t−s)−1/2 f (s, t)ds withψ0 ∈ L∞

loc and
f continuous are continuous in t . Therefore, since h(t) is differentiable,ψ0 is continuous.

Then, iterating (5.2), it follows that Lψ0 is differentiable, as follows. We have ψ0 =
Lψ0+h where h is differentiable and Lψ0 has the form Lψ0(t) = ∫ t

0 ds ψ0(s)(g1(s, t)+
1√
t−s

g2(s, t)) and we will now show that g1, g2 are analytic in s, t . By (5.4),

g1(s, t) = 1

2π

∫ t

s
du

G(u, t)√
u − s

,

g2(s, t) = E

2ω
√
2iπ

(
sin(ωs) +

cos(ωt) − cos(ωs)

ω(t − s)

)
ei F0(s,t). (5.23)

By (3.17), F0 is analytic, and so g2 is as well. As for g1, we rewrite (5.5) as

G(u, t) = G1(u, t)√
t − u

, G1(u, t) := i∂u F0(u, t)ei F0(u,t) − ei F0(u,t) − 1

2(t − u)
(5.24)

in terms of which
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g1(s, t) = 1

2π

∫ t

s
du

G1(u, t)√
t − u

√
u − s

. (5.25)

Furthermore, by (3.17), G1 is analytic in u, t , and since for n � 0,

1

2π

∫ t

s
du

(t − u)n√
t − u

√
u − s

= �(n + 1
2 )

2
√

πn! (t − s)n (5.26)

we have

g1(s, t) =
∞∑
n=0

1

n!
�(n + 1

2 )

2
√

πn! (t − s)n
∂nG1(u, t)

∂un

∣∣∣∣
u=t

(5.27)

which is analytic in s, t . We then split ψ0(t) = ∫ t
0 ds ψ0(s)(g1(s, s) + 1√

t−s
g2(s, s)) +

h1(t) with h1 := h(t) +
∫ t
0 dsψ0(s)((g1(s, t) − g1(s, s)) + 1√

t−s
(g2(s, t) − g2(s, s))

which is differentiable. We now iterate this formula:

ψ0(t) =
∫ t

0
ds

(
g1(s, s) +

1√
t − s

g2(s, s)

)
[∫ s

0
dσ ψ0(σ )

(
g1(σ, σ ) +

1√
t − σ

g2(σ, σ )

)
+ h1(s)

]
+ h1(t) (5.28)

in which we change the order of integration to find

ψ0(t) =
∫ t

0
dσ ψ0(σ )

[∫ t

σ

ds

(
g1(s, s) +

1√
t − s

g2(s, s)

)
(
g1(σ, σ ) +

1√
t − σ

g2(σ, σ )

)
+ h1(s)

]
+ h1(t). (5.29)

In this integral, g1, g2 are analytic in a neighborhood of R
+ and ψ0 is continuous, hence

the integral is differentiable with continuous derivative. Using Lemma 14, the same
arguments, and the fact that the integral operators preserve Hölder continuity, show (iv)
holds.

5.4. Proof of Lemma12 . We will first prove (iii), and then move on to (i) and (ii).
(iii) For x < 0 we show that the function given by (3.2) is in L2, we take its inverse

Fourier transform and show that the result is (3.8) which is an L2 function.
For the first term in (3.2), note that since f is in L2(R) then by (3.3), so is C− hence

so is the inverse Fourier transform of e−iξ2t/2C−(ξ). We have (see Note7)

l.i.m.
1

2π

∫ N

−N
dξ ei xξ−iξ2t/2l.i.m.

∫ 0

−N
dy e−iyξ f (y)

= l.i.m.
1

2π

∫ 0

−N
dy f (y)

∫ N

−N
dξ ei xξ−iξ2t/2−iyξ

= l.i.m.
1

2π

∫ 0

−N
dy f (y)

√
2π√
i t

e
i(x−y)2

2t (5.30)
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yielding (3.9), and that h−(·, t) is an L2 function.
The second term in (3.2) is 1

2
√
2π

e−iξ2t/2
∫ t
0 ds e

iξ2 s/2 iψx,0(s), is also an L2 function.

Indeed, from (5.6) we haveψx,0(t) = u∗ t−1/2 with u = const(ψ ′
0−2∂t h−(0, ·)) hence,

after changing the order of integration and a substitution we have

∫ t

0
ds eiξ

2s/2 ψx,0(s) =
∫ t

0
dσ u(σ ) eiξ

2σ/2
∫ t−σ

0
dτ eiξ

2τ/2τ−1/2

and the last integral can be explicitly calculated and, for large |ξ |, it is less than const.
|ξ |−1.

The Fourier transform of this second term can be then computed as was done above
for h−, yielding

√
i

2
√
2π

∫ t

0
ds ψx,0(s)

1√
t − s

e
ix2

2(t−s) (5.31)

The third term in (3.2) is also in L2, since integrating by parts we have

∫ t

0
ds eiξ

2s/2 ξψ0(s) = ξ

∫ t

0
ds ei(ξ

2+1)s/2 e−is/2ψ0(s)

= −2iξ

ξ2 + 1

[
eiξ

2t/2ψ0(t) − ψ0(0)

+
∫ t

0
ds eiξ

2s/2
(
i

2
ψ0(s) − ψ ′

0(s)

)
ds

]
(5.32)

which, sinceψ andψ ′ are locally bounded by lemma 11, ismanifestly in L2. To calculate
its inverse Fourier transform we write

−1

4π
l.i.m.
N→∞
ε→0

∫ N

−N
dξ ei xξ e−iξ2t/2ξ

∫ t−ε

0
ds ψ0(s)e

iξ2s/2

= −1

4π
l.i.m.

∫ t−ε

0
ds ψ0(s)

∫ N

−N
dξ ei xξ e−iξ2(t−s)/2ξ

= i

4π
l.i.m.
ε→0

∫ t−ε

0
ds ψ0(s) ∂x

∫ ∞

−∞
dξ ei xξ e−iξ2(t−s)/2

= i

4π

∫ t

0
ds ψ0(s) ∂x

√
2π√
i

1√
t − s

e
ix2

2(t−s) (5.33)

Adding up (5.30), (5.31) and (5.33) we obtain (3.8).
For x > 0, we show that taking inverse Fourier transform in (3.5)–(3.7) we obtain

(3.10), an L2 function.
The inverse Fourier transform in (3.5) is a sum of two tems: I1 + I2 where I1 is the

inverse Fourier transform of e−i
(u,t)C+(u) (where u = ξ − E
ω
sin(ωt)):

I1 = 1

2π

∫ ∞

−∞
dξ eixξ e

−i

(
ξ− E

ω
sin(ωt),t

)
−i E

ω2
ξ
∫ ∞

0
dy e−iyξ f (y) = h+(x, t)
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where the calculation is similar to that of h−, and yields (3.11) (which is an L2 function
since f is).

I2 = l.i.m.
1

4π

∫ N

−N
dξeixξ e−i
(u,t)

∫ t

0
ei
(u,s)[−iψx,0(s) + ξψ0(s)] ds

= 1

4π
eix

E
ω
sinωt l.i.m.

∫ N

−N
du eixue−i
(u,t)

∫ t

0
ei
(u,s)[−iψx,0(s) + (u +

E

ω
sinωt)ψ0(s)] ds

= 1

4π
eix

E
ω
sinωt

∫ t

0
ds[−iψx,0(s) +

E

ω
sinωt ψ0(s)] l.i.m.

∫ N

−N
du eixu−i
(u,t)+i
(u,s) ds

+
1

4π
eix

E
ω
sinωt

∫ t

0
ds ψ0(s) l.i.m.

∫ N

−N
du u eixu−i
(u,t)+i
(u,s) ds =: I3 + I4 (5.34)

To continue the calculations in (5.34), we have

I3 = 1

4π
e
ix E

ω
sinωt−i(U+ E2

4ω2
)t

×
∫ t

0
ds[−iψx,0(s) +

E

ω
sinωt ψ0(s)] e−i E2

8ω3
[sin(2ωt)−sin(2ωs)]+i(U+ E2

4ω2
)s

√
2π√

i
√
t − s

ei
[x+ E

ω2
[cosωt−cosωs]]2
2(t−s) (5.35)

Thus

I3 = 1

2
√
2π i

∫ t

0
ds

−iψx,0(s) + E
ω
sinωt ψ0(s)√

t − s
ei F(x,s,t) (5.36)

where F is given by (3.12).
We evaluate I4 in a way similar to (5.33):

I4 = 1

4π
eix

E
ω
sinωt l.i.m.

∫ t−ε

0
ds ψ0(s)

∫ N

−N
du u eixu−i
(u,t)+i
(u,s) ds

= 1

4π
eix

E
ω
sinωt l.i.m.

∫ t−ε

0
ds ψ0(s) (−i)∂x

∫ N

−N
du eixu−i
(u,t)+i
(u,s) ds

= 1

4π
e
ix E

ω
sinωt−i(U+ E2

4ω2
)t
l.i.m
ε→0

∫ t−ε

0
ds ψ0(s) (−i)e

−i E2

8ω3
[sin(2ωt)−sin(2ωs)]+i(U+ E2

4ω2
)s

×
√
2π√

i
√
t − s

∂x e
i

[x+ E
ω2

[cos(ωt)−cos(ωs)]]2
2(t−s) (5.37)

= 1

2
√
2π i

e
i x E

ω
sinωt−i(U+ E2

4ω2
)t

∫ t

0
ds ψ0(s) (−i)e

−i E2

8ω3
[sin(2ωt)−sin(2ωs)]+i(U+ E2

4ω2
)s
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× i
E
ω2 [cos(ωt) − cos(ωs)] + x

(t − s)3/2
ei

[
E
ω2

(cosωt−cosωs)+x

]2
2(t−s) (5.38)

thus

I4 = 1

2
√
2π i

∫ t

0
ds ψ0(s)

E
ω2 [cos(ωt) − cos(ωs)] + x

(t − s)3/2
ei F(x,s,t) (5.39)

a convergent improper integral, with F given by (3.12).
Adding (5.34), (5.35) and (5.38) we obtain (3.10), an L2 function.
(i) The fact that (3.8) is a solution of (1.5) for x < 0 is a simple calculation.
We will now calculate the limit of (3.8) as x → 0−. Note that, for x < 0,

∫ t

0
ds ψ0(s)

i x

(t − s)3/2
e

i x2
2(t−s) = ψ0(t)

∫ t

0
ds

i x

(t − s)3/2
e

i x2
2(t−s)

+
∫ t

0
ds

i x(ψ0(s) − ψ0(t))

(t − s)3/2
e

i x2
2(t−s) (5.40)

and ∫ t

0
ds

i x(ψ0(s) − ψ0(t))

(t − s)3/2
e

i x2
2(t−s) = O(x). (5.41)

Furthermore,

ψ0(t)
∫ t

0
ds

i x

(t − s)3/2
e

i x2
2(t−s) = −iψ0(t)

∫ ∞

x2/t

1√
τ
eiτ/2 (5.42)

so ∫ t

0
ds ψ0(s)

i x

(t − s)3/2
e

i x2
2(t−s) → −i ψ0(t)

√
2π i (as x → 0−). (5.43)

Therefore, taking x → 0−,

ψ−(0, t) = h−(0, t) +

√
i

2
√
2π

∫ t

0
ds

ψx,0(s)√
t − s

+
1

2
ψ0(t)

and the right hand side in the above equals ψ0(t) by (5.2).
The limit of (3.8) as t → 0+ for x < 0 equals limt→0+ h−(x, t). With the large

parameter t−1, the integrand has a saddle point at y = x , hence, by the saddle point
method, equals f (x).

(ii) The fact that ψ+ given by (3.10) is a solution of (1.5) for x > 0 is a simple
calculation.

We will now take the limit of (3.10) as x → 0+. From (5.36) we have

lim
x→0+

I3 = 1

2
√
2π i

∫ t

0
ds[−iψx,0(s) +

E

ω
sinωt ψ0(s)] 1√

t − s
ei F(0,s,t) (5.44)

To calculate the limit of I4, we write I4 = I41 + I42 where

I41 = 1

2
√
2π i

∫ t

0
ds ψ0(s)

E
ω2 [cos(ωt) − cos(ωs)]

(t − s)3/2
ei F(x,s,t),
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I42 = 1

2
√
2π i

∫ t

0
ds ψ0(s)

x

(t − s)3/2
ei F(x,s,t)

We have

lim
x→0+

I41 = 1

2
√
2π i

∫ t

0
ds ψ0(s)

E
ω2 [cos(ωt) − cos(ωs)]

(t − s)3/2
ei F(0,s,t) (5.45)

while (by the same reasoning as in (5.41),)

I42 = 1

2
√
2π i

ψ0(t)
∫ t

0
ds

x

(t − s)3/2
ei F(x,s,t) + O(x) (5.46)

Now, by (3.12),
F(x,s,t)− x2

2(t−s)
t−s is analytic, hence from (5.47) we further have

I42 = 1

2
√
2π i

ψ0(t)
∫ t

0
ds

x

(t − s)3/2
ei

x2
2(t−s) + O(x) → 1

2
ψ0(t) as x → 0 +

(5.47)

where the last limit is evaluated as in (5.40).
Combining (5.44), (5.45), (5.47) we obtain (3.15), whose right hand side equals

ψ0(t), since ψ0 satisfied the relations in Lemma10.
The limit of (3.10) as t → 0+ equals

lim
t→0+

h+(x, t) = lim
t→0+

1√
2π i t

∫ ∞

0
dy f (y) e

i[x−y]2

2t + O(t) = f (x)

where we used the saddle point method.

5.5. Proof of Theorem2. Let ψ+ and ψ− be given by Lemma12. Then ψ(x, t) :=
ψ−(x, t)�(−x) + ψ+(x, t)�(x) is an L2 solution of (1.5) with the initial condition f .

6. Long Time Behavior: Proof of Theorems 3 and 4

Most of the technical elements of the proof of Theorem 4 are common with those of
Theorem3. The only distinction (the presence of some additional poles due to the initial
condition) are dealt with at the end of this section.

The discrete-Laplace transform technique used in this section was devised as an
adaptation of Laplace-Borel methods used in [38,39], in order to deal with the present
setting of noncompact operators, see Appendix A for the connection between the two.

We perform a discrete Laplace transform (DLP) and the long time behavior of the
system is now contained in the analytic properties of the transformed wave function
with respect to the Laplace parameter σ . Namely, the discrete inverse Laplace transform
(DILT), whose coefficients are obtained by Cauchy’s formula, shows that the solution
of the Schrödinger equation (1.5) decay, as t → ∞, uniformly for x on compact sets, if
and only if theMaclaurin coefficients decay with respect to their index k, which happens
if and only if the DLP has no poles in the Laplace variable in an open neighborhood of
the unit disk. The decay in t mimics the decay of the coefficients with respect to their
index k, and for the latter we show to have an upper bound of k−1/2. The absence of
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poles is shown by proving the absence of discrete spectrum of the quasienergy operator
where we use methods of Ecalle’s theory of resurgence of transseries [47,48].

The mathematical details in this section are as follows. To avoid complicating the
notations, in this section we assume ω = 1 (in fact ω can be rescaled in equation (1.5);
see appendix A for ω not rescaled).

In Sect. 6.1 we define the DLT and its inverse DILT, and we show how it can be used
for the study of integral equations of our type. In Sect. 6.2 we study integral kernels
with a singularity of the type we are dealing with, and give details on the techniques
we use and results. In Sect. 6.3 we discrete-Laplace transform the equation (5.2) for ψ0
and deduce that its discrete-Laplace transform only has singularities of the square root
branch point type and possible poles, with a finite number in any compact set, having the
analytic structure (6.46). In Sect. 6.3.4 we show that existence of poles imply existence
of nontrivial solutions of the quasienergy equation. The latter are ruled out in Sect. 6.3.5
based on Ecalle’s theory of transseries, showing that the DLP of ψ has no poles in a
neighborhood of the closed unit disk.

Combining all these elements the proof of Theorem3 is completed in Sect. 6.4, and
that of Theorem4 is completed in Sect. 6.7.

6.1. Discrete-Laplace transform and long time behavior of ψ(0, t). The logic of the
construction is as in Sect. 5.1: we derive formally an integral equation for the discrete-
Laplace transform (defined below) of ψ0(t) := ψ(0, t), we show existence and unique-
ness of solutions of that equation after which we check, in a straightforward way, that
the solution is the discrete-Laplace transform of ψ0.

Let S be the space of functions of the form t 	→ �(t)g(t) which decay faster than
t−1−ε . For f ∈ S define its discrete-Laplace transform for τ ∈ (−π, π ] and σ ∈ [0, 1)
by

(Pσ f )(τ ) :=
∑
k≥0

eiσ2kπ f (τ + 2kπ) (6.1)

Note that the function f can be recovered from its discrete-Laplace transform by

f (τ + 2kπ) =
∫ 1

0
dσ e−iσ2kπ (Pσ f )(τ ) (6.2)

for all τ ∈ (−π, π ] and k ≥ 0.
For functions with not enough decay to ensure convergence of (6.1) it is convenient

to define a more general transform by taking complex σ with �σ > 0. Denote z = eiσ2π

(note that |z| < 1) and define

(Pz f )(τ ) :=
∑
k≥0

zk f (τ + 2kπ) (6.3)

Then (6.3) is a generating function. Assume (6.3) converges in Dδ := {z ∈ C | |z| < δ}.
Then the inversion relations (6.2) are replaced by the Cauchy formula:

f (τ + 2kπ) = 1

2π i

∮
C
dζ

(Pζ f )(τ )

ζ k+1 (6.4)

where C ⊂ Dδ is a simple closed path around 0.
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If the limit of Pz in (6.3) as z approaches the unit circle exists, except possibly at a
discrete set of singular points (which we show to be our case), we take that limit (called
the Abel sum, or Abel mean) as the discrete-Laplace transform of our function. As is
well known, Abel summation of a convergent series is the ordinary sum [47], hence the
two definitions coincide in this case.

We aim to transform ψ0. All that is guaranteed for now for ψ0, by Lemma11, are
exponential bounds in time, therefore we use (6.3) which is guaranteed to converge for
z small enough. We then prove in this section that, if the initial condition f ∈ L2 then
ψ0 decays in time, while for the wave initial condition (1.4) ψ0 approaches a periodic
function.

The proposition below shows the form of a discrete-Laplace transformed integral
operator with a kernel of the form in which we are interested here.

Proposition 15. Consider an operator of the form

L f (t) =
∫ t

0
ds f (s)K (s, t), (6.5)

where K (s, t) = 0 if t < 0 or s �∈ [0, t]. Then

(Pσ L f )(τ ) =
∫ π

−π

dr
∫ 1

0
dσ1 (Pσ1 f )(r) (P−σ1Pσ K )(r, τ ) := (Pσ L)Pσ f (6.6)

For complex σ with �σ > 0 the integrals
∫ 1
0 dσ1 are replaced by 1

2π i

∮ 1
z1
dz1.

Proof. An immediate calculation, using (6.1), then (6.2) shows that

(Pσ L f )(τ ) =
∫ τ

0
ds f (s)K (s, τ )�(τ) +

∞∑
k=1

eiσ2kπ
∫ τ+2kπ

0
ds f (s)K (s, τ + 2kπ)

=
∫ τ

0
ds f (s)K (s, τ )�(τ)

+
∞∑
k=1

eiσ2kπ

⎡
⎣∫ π

0
+

k−1∑
j=1

∫ 2( j+1)π

(2 j−1)π
+
∫ τ+2kπ

(2k−1)π

⎤
⎦ ds f (s)K (s, τ + 2kπ)

=
∫ τ

0
ds f (s)K (s, τ )�(τ) +

∞∑
k=1

eiσ2kπ
[∫ π

0
ds f (s)K (s, τ + 2kπ)

+
k−1∑
j=1

∫ π

−π

ds f (s + 2 jπ)K (s + 2 jπ, τ + 2kπ)

+
∫ τ

−π

ds f (s + 2kπ)K (s + 2kπ, τ + 2kπ)

]

=
∫ τ

0
ds

∫ 1

0
dσ1Pσ1 f (s)K (s, τ )

+
∞∑
k=1

eiσ2kπ
∫ π

0
ds

∫ 1

0
dσ1 Pσ1 f (s)K (s, τ + 2kπ)
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+
∞∑
k=1

k−1∑
j=1

eiσ2kπ
∫ π

−π

ds
∫ 1

0
dσ1 e

−iσ12 jπPσ1 f (s)K (s + 2 jπ, τ + 2kπ)

+
∞∑
k=1

eiσ2kπ
∫ τ

−π

ds
∫ 1

0
dσ1 e

−iσ12kπPσ1 f (s)K (s + 2kπ, τ + 2kπ)

(6.7)

which equals the right hand side of (6.6), since K (s, t) = 0 if s �∈ [0, t]. �

6.2. Analytic structure of solutions. We will apply the discrete-Laplace transform to
integral kernels K (s, t)which are multiples of 1√

t−s
, and this factor introduces singular-

ities in σ . We start by treating 1√
t−s

as a standalone term, as this clarifies the techniques
needed, and then proceed with the actual operator.

For K (s, t) = 1√
t−s

�(t)χ[0,t)(s) a direct calculation shows that the discrete-Laplace
transformed kernel in (6.6) has the expression

(P−σ1Pσ K )(r, τ ) = �(τ)χ[0,τ ](r)
1√

τ − r
+ χ[0,π ](r)

∞∑
k=1

eiσ2kπ√
τ + 2kπ − r

+
∞∑
k=1

k−1∑
j=1

eiσ2kπe−iσ12 jπ

√
τ + 2(k − j)π − r

+χ[−π,τ ](r)
∞∑
k=1

eiσ2kπe−iσ12kπ

√
τ − r

(6.8)

Some of the series in (6.8) must be interpreted in the sense of distributions. To see
how, we truncate the series in k to a term N then take the limit N → ∞. Take for
example the third term in (6.8), the most involved. Changing the index of summation j
to � = k − j we have

T3 =
∞∑
k=1

k−1∑
j=1

eiσ2kπe−iσ12 jπ

√
τ + 2(k − j)π − r

= 1√
2π

∞∑
k=1

uk

wk

k−1∑
�=1

w�

√
a + l

where

u = eiσ2π , w = eiσ12π , a = τ − r

2π
(6.9)

For u, w �= 1 (meaning that σ, σ1 �= 0) we use the integral representation of the Lerch
transcendent [49, (25.14)]:


(z, s, a) = 1

� (s)

∫ ∞

0

ps−1e−ap

1 − ze−p
dp, z �∈ [1,+∞) (6.10)

and the identity

k−1∑
�=1

z�

(a + �)b
= z
(z, b, a + 1) − zk
(z, b, a + k) (6.11)



O. Costin, R. Costin, I. Jauslin and J. L. Lebowitz

We then have

T3 = 1√
2π

N∑
k=1

uk

wk

[
w
(w,

1

2
, a + 1) − wk
(w,

1

2
, a + k)

]

= 1√
2π

w
(w,
1

2
, a + 1)

N∑
k=1

uk

wk
− 1√

2π

1√
π

∫ ∞

0

dp√
p
e−ap 1

1 − we−p

N∑
k=1

uke−pk

= T3,1 − T3,2 (6.12)

with

T3,1 := 1√
2π

w
(w,
1

2
, a + 1)

N∑
k=1

uk

wk
,

T3,2 := 1√
2π

u√
π

∫ ∞

0

dp√
p
e−(a+1)p 1

1 − we−p

1 − (
ue−p

)N
1 − ue−p

(6.13)

To determine limN→∞ T3,1, we note that it appears in (6.7) in an integral form, after
multiplication by the periodic functionPσ1 f , then integrated in σ1.We have, using (6.9),
for σ, σ1 �= 0,

lim
N→∞

∫ 1

0
dσ1T3,1Pσ1 f (τ )

= lim
N→∞

1√
2π

N∑
k=1

e2kπ iσ
∫ 1

0
dσ1e

−2kπ iσ1e2π iσ1


(
e2π iσ1 ,

1

2
, a + 1

)
Pσ1 f (r)

= 1√
2π

e2π iσ 


(
e2π iσ ,

1

2
, a + 1

)
Pσ f (r)

− 1√
2π

∫ 1

0
dσ1e

2π iσ1


(
e2π iσ1 ,

1

2
, a + 1

)
Pσ1 f (r) (6.14)

(the limit is a distribution).
Clearly, for u, w �= 1,

lim
N→∞ T3,2 = 1√

2π

u√
π

∫ ∞

0

dp√
p
e−(a+1)p 1

1 − we−p

1

1 − ue−p
(6.15)

The other terms in (6.8) are similar and simpler.
We now show that σ = 0 and σ1 = 0 are indeed singularities, namely square root

branch points. For this we define the operator for σ in the upper complex plane, and take
the limit �σ → 0.

Clearly (6.15) still holds for u, w complex with |u| < 1, |w| < 1.
We now deform the path of integration:

∫ ∞
0 = 1

2

∫
C where C is a Hankel contour

around [0,+∞), namely a contour starting at ∞ − 0i , going around 0, and ending at
∞ + 0i . We further deform the path of integration to C1 so that the poles at p = lnw

and p = ln u are now inside C1, in the process collecting the residues:

lim
N→∞ T3,2 = u

2
√
2π

∫
C1

dp√
p
e−(a+1)p 1

(1 − we−p)(1 − ue−p)
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− u

2
√
2π

2π i
u

u − w

(
u−a−1

√
ln u

− w−a−1

√
lnw

)

Letting �σ, σ1 → 0, the first integral above is an analytic function, while the sum of
residues equals

i√
2

eiσ4π

eiσ2π − eiσ12π

(
e−i(a+1)σ2π

√
iσ2π

− e−i(a+1)σ12π

√
iσ12π

)

and is analytic (including when σ = σ1) except for σ = 0 and σ1 = 0, where there are
square root branch points.

The term T3,1 is similar: we deform the path of integration of
, [0,+∞), to C, which
is further deformed to C1 so that the pole at p = lnw = 2π iσ1 is inside C1, in the process
collecting the residue:


(w, 1
2 , a + 1) = 1√

π

∫ ∞

0

dp√
p

e−(a+1)p

1 − we−p
= 1

2
√

π

∫
C

dp√
p

e−(a+1)p

1 − we−p

= 1

2
√

π

∫
C1

dp√
p

e−(a+1)p

1 − we−p
+

1

2
√

π
2π i

e−(a+1)i2πσ1

√
i2πσ1

:= 
1(σ1)

(6.16)

and in this form we can let �σ1 → 0. Taking the limit N → ∞ as before, we obtain
the limit as a distribution, which now, due to the residue, contains square root branch
points. We thus see that 
1(σ1) has the form

A1(σ1) +
1√
σ1

A2(σ1), with A1,2 analytic (6.17)

6.3. Solving the discrete-Laplace transformed equation (5.2). We first note that the
series for Pσ ψ0(τ ) converges when z := e2π iσ has small enough absolute value, by
Lemma11. We show in Proposition 20 that the series converges for |z| < 1 and that the
only singularities are square root branch points at σ = 0 and at σ = σ0. Based on this,
Lemma21 provides the decay of ψ(0, t) and finishes the proof of Theorem3 (ii).

The followingTheoremestablishes the analytic structure ofPσ ψ0.We apply discrete-
Laplace transform of Proposition15 to our integral equation (5.2) and obtain

Theorem 16. Assume the initial condition f (x) := ψ(x, 0) is differentiable, with f ′ ∈
L2(R), that f (0) = 0, f has compact support and

∫ 0
−∞ f (y)dy = 0,

∫ ∞
0 f (y)dy = 0.

Let σ0 be the fractional part of U + E2

4ω2 .
Let ψ0 be the unique solution of equation (5.2) given by Lemma11.
For simplicity, we choose units such that ω = 1.
(a) The discrete-Laplace transform �σ := Pσ ψ0 satisfies the equation

�σ = Lσ �σ +Kσ �σ + Pσ h (6.18)

where Lσ + Kσ is the discrete-Laplace transform of the integral operator L given in
given by (5.4) and h is given by (5.3).
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The operator Kσ is a sum of operators of the form

�σ (τ) 	→
∫ π

−π

ds
∫ 1

0
dσ1�σ1(s)H(s, σ1, τ, σ ) (6.19)

where H is an analytic function for �σ > 0 multiplying characteristic functions of
intervals, and for real σ having square root branch points at σ = σ0, σ1 = σ0, σ1 = 0
and at σ = 0 and analytic at all other points.

The operator Lσ is a sum of operators of the form

�σ (τ) 	→
∫ π

−π

ds �σ (s)F(τ, s, σ ) (6.20)

where F is an analytic function for �σ > 0 multiplying characteristic functions of
intervals, and for real σ having square root branch points at σ = σ0 and at σ = 0 and
analytic at all other points.

The operatorLσ is compact on L2([−π, π ], dτ) andKσ is compact on L2([−π, π ]×
[0, 1), dτ dσ).√

σ − σ0 Kσ is analytic in
√

σ − σ0 and Kσ has analytic continuation on the Rie-
mann surface of the square root.

(b)
√

σ − σ0 �σ is analytic in
√

σ − σ0.

Proof. The outline of the proof is as follows. In Sect. 6.3.1 we calculate the discrete-
Laplace transform of the integral operator and of the inhomogeneous term. The discrete-
Laplace transformed operator, Lσ + Kσ , has a “singular” part, Lσ , which needs to
be considered in a one-dimensional space, with σ being a parameter. Kσ is a usual
Fredholm operator in two dimensions. In Sect. 6.3.2 we calculate the discrete-Laplace
transform of the inhomogeneous term h, finishing the proof of (a). To prove (b), we
deduce the existence and analytic structure of (I − Lσ − Kσ )−1 using the analytic
Fredholm alternative as follows. First, in Sect. 6.3.3, we first apply the analytic Fredholm
alternative to invert I−Lσ (operator in one variable).We then treat the resulting equation,
(6.40), by splitting it into a system (a regular part and a ”pole” part) which we show has
a meromorphic solution. In Sect. 6.3.4 Lemma17 we show that any poles can only occur
for σ ∈ R, and thus the series of Pσ ψ0 converges for |z| < 1. Finally, in Sect. 6.3.5 we
show that there are no poles even if σ ∈ R, proving (b).

6.3.1. Calculation of Lσ ,Kσ and their analytic properties By Proposition15 the oper-
ator Lσ +Kσ is the integral operator

f (τ ) 	→
∫ π

−π

dr
∫ 1

0
dσ1 f (τ )K̃ (σ1, σ, r, τ ) (6.21)

where K̃ (σ1, σ, r, τ ) = (P−σ1Pσ K )(r, τ ) is the discrete-Laplace transform of K , the
kernel of the integral operator L .

The kernel of L is a sum of three terms. We detail below the calculations for one of
them, namely the most delicate. The others are similar and simpler.

Consider the first term:

T1(t) :=
∫ t

0
ds ψ0 ∗ s−1/2 G(s, t) =

∫ t

0
ds ψ0(s)

∫ t

s
du

G(u, t)√
u − s
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where, applying Pσ in the variable t , see (6.1), we obtain

Pσ T1(τ ) =
∫ τ

0
ds ψ0(s)

∫ τ

s
du

G(u, τ )√
u − s

+
∞∑
k=1

eiσk2π
∫ τ+2kπ

0
ds ψ0(s)

∫ τ+2kπ

s
du

G(u, τ + 2kπ)√
u − s

=
∫ τ

0
ds ψ0(s)

∫ τ

s
du

G(u, τ )√
u − s

+
∞∑
k=1

eiσk2π
∫ π

0
ds ψ0(s)

∫ τ+2kπ

s
du

G(u, τ + 2kπ)√
u − s

+
∞∑
k=2

eiσk2π
k−1∑
j=1

∫ (2 j+1)π

(2 j−1)π
ds ψ0(s)

∫ τ+2kπ

s
du

G(u, τ + 2kπ)√
u − s

+
∞∑
k=1

eiσk2π
∫ τ+2kπ

(2k−1)π
ds ψ0(s)

∫ τ+2kπ

s
du

G(u, τ + 2kπ)√
u − s

:= T1,1 + T1,2 + T1,3 + T1,4 (6.22)

It suffices to establish the properties listed in a) for each of the terms above. Let us
look at the most involved of the terms T1, j above: changing the variable of integration
we have

T1,3 =
∞∑
k=2

eiσk2π
k−1∑
j=1

∫ π

−π

ds ψ0(s + 2 jπ)

∫ τ+2kπ

s+2 jπ
du

G(u, τ + 2kπ)√
u − s − 2 jπ

(6.23)

so

T1,3 =
∞∑
k=2

eiσk2π
k−1∑
j=1

∫ π

−π

ds ψ0(s + 2 jπ)

∫ (2 j+1)π

s+2 jπ
du

G(u, τ + 2kπ)√
u − s − 2 jπ

+
∞∑
k=3

eiσk2π
k−1∑
j=1

∫ π

−π

ds ψ0(s + 2 jπ)

k−1∑
m= j+1

∫ (2m+1)π

(2m−1)π
du

G(u, τ + 2kπ)√
u − s − 2 jπ

+
∞∑
k=2

eiσk2π
k−1∑
j=1

∫ π

−π

ds ψ0(s + 2 jπ)

∫ τ+2kπ

(2k−1)π
du

G(u, τ + 2kπ)√
u − s − 2 jπ

(6.24)

and so

T1,3 =
∞∑
k=2

eiσk2π
k−1∑
j=1

∫ π

−π

ds ψ0(s + 2 jπ)

∫ π

s
dv

G(v + 2 jπ, τ + 2kπ)√
v − s

+
∞∑
k=3

eiσk2π
k−1∑
j=1

∫ π

−π

ds ψ0(s + 2 jπ)

k−1∑
m= j+1

∫ π

−π

du
G(v + 2mπ, τ + 2kπ)√
u − s + 2(m − j)π
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∞∑
k=2

eiσk2π
k−1∑
j=1

∫ π

−π

ds ψ0(s + 2 jπ)

∫ τ

−π

dv
G(v + 2kπ, τ + 2kπ)√
u − s + 2(k − j)π

(6.25)

which we split into the terms

T1,3 =:
∫ π

−π

ds
∫ 1

0
dσ1Pσ1(s) (Sum1[G] + Sum2[G] + Sum3[G]) (6.26)

where in the last step we used (6.2).
Now note that

G(s, t) = i∂s F0(s, t) ei F0(s,t)√
t − s

+
1

2

ei F0(s,t) − 1

(t − s)3/2

:= g1(s, t)√
t − s

+
g2(s, t)

(t − s)3/2
:= G1 + G2 (6.27)

and that

F0(s + 2mπ, τ + 2kπ) = −(k − m)2πŨ + F0(s, τ ),

∂s F0(s + 2mπ, τ + 2kπ) = ∂s F0(s, τ ) (6.28)

where Ũ = U + E2

4ω2 , and F0, G are defined in (3.17), respectively (5.5). Note that Ũ is
the potential U plus the ponderomotive energy [40].

The sums in (6.26) are split according to Sum j [G]=Sum j [G1]+Sum j [G2].
Calculation of Sum1[G1] contains the main ingredients needed for the calculation of

the others, so we start with this term, providing many details. From (6.27) and (6.28) we
see that g1(s + 2 jπ, τ + 2kπ) = e−iŨ (k− j)2πg1(s, τ ) thus we have

Sum1[G1] =
∞∑
k=2

eiσk2π
k−1∑
j=1

∫ π

−π

ds ψ0(s + 2 jπ)

∫ π

s
dv

G1(v + 2 jπ, τ + 2kπ)√
v − s

=
∫ π

−π

ds
∫ 1

0
dσ1Pσ1ψ0(s) g1(s, τ )

∞∑
k=2

eiσk2π
k−1∑
j=1

e−iσ1 j2π
∫ π

s
du

e−iŨ (k− j)2π

√
u − s

1√
τ − u + (k − j)2π

(6.29)

and the double sum above equals, after changing the index of summation from j to
� = k − j ,

∞∑
k=2

eiσk2π
k−1∑
�=1

e−iσ1(k−�)2π
∫ π

s
du

e−iŨ�2π

√
u − s

1√
τ − u + �2π

=
∫ π

s

du√
u − s

∞∑
k=2

ei(σ−σ1)k2π
k−1∑
�=1

ei(σ1−Ũ )�2π

√
τ − u + �2π

=
∫ π

s

du√
u − s

∞∑
k=2

ei(σ−σ1)k2π 1√
2π

[
ei(σ1−Ũ )2π


(
ei(σ1−Ũ )2π ,

1

2
,
τ − u

2π
+ 1

)
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−ei(σ1−Ũ )k2π


(
ei(σ1−Ũ )2π ,

1

2
,
τ − u

2π
+ k

)]
(6.30)

where we used the formula (6.11).
The first sum in (6.30) must be understood in the sense of distributions, and the

second one is convergent. Indeed, for the first sum we have

∫ 1

0
dσ1Pσ1ψ0(s)

∫ π

s
du

g1(s, τ )√
u − s

∞∑
k=2

ei(σ−σ1)k2π

1√
2π

ei(σ1−Ũ )2π


(
ei(σ1−Ũ )2π ,

1

2
,
τ − u

2π
+ 1

)

= Pσ ψ0(s)
∫ π

s
du

g1(s, τ )√
u − s

1√
2π

ei(σ−Ũ )2π


(
ei(σ−Ũ )2π ,

1

2
,
τ − u

2π
+ 1

)

:= Pσ ψ0(s) K1(s, τ ) (6.31)

yielding a term in Lσ , of the form (6.20). Since K1 is continuous, the operator with this
kernel is compact on L2([−π, π ], ds).

To see that the second sum in (6.30) is convergent, we use the integral representation
(6.10) of the Lerch 
 transcendendent; we have

∫ π

s

du√
u − s

∞∑
k=2

ei(σ−σ1)k2π 1√
2π

ei(σ1−Ũ )k2π


(
ei(σ1−Ũ )2π ,

1

2
,
τ − u

2π
+ k

)

=
∫ π

s

du√
u − s

∞∑
k=2

ei(σ−σ1)k2π 1√
2π

ei(σ1−Ũ )k2π
∫ ∞

0

dp√
p

e−p( τ−u
2π +k)

1 − ei(σ1−Ũ )2πe−p

(6.32)

which is convergent for σ1 − Ũ �= 0, yielding a term in Kσ , of the form (6.19).
Analytic structure. For σ1 − Ũ = 0 (meaning σ1 = σ0) we proceed as in Sect. 6.2,

only here the square root branch point will be at σ1 = σ0 (instead of σ1 = 0): we deform
the path of integration and collect the residues. The integral kernel (6.32) has the form
(analogue to (6.17))

A1(σ1) +
1√

σ1 − σ0
A2(σ1), with A1, A2 analytic in

√
σ1 (6.33)

The operator with the integral kernel (6.32) is compact.
The calculation of Sum2[G] in (6.26) is the most labor intensive, and we outline

the main steps here (the details are as for the previous term). We change the order of
summation:

∑k−1
j=1

∑k−1
m= j+1 = ∑k−2

m=1
∑k−m−1

�=1 and using (6.28) we obtain

Sum2[G1] =
∫ π

−π

du g1(u, τ )

∞∑
k=3

ei(σ−σ1)2kπ
k−2∑
m=1

eiσ12mπ

√
u − s + 2mπ

k−m−1∑
�=1

ei(σ1−Ũ )2�π

√
τ − u + 2π�

= 1

2π

∫ π

−π

du g1(u, τ )

∞∑
k=3

ei(σ−σ1)2kπ
k−2∑
m=1

eiσ12mπ√
u−s
2π + m[

ei(σ1−Ũ )2π


(
ei(σ1−Ũ )2π ,

1

2
,
τ − u

2π
+ 1

)
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−ei(σ1−Ũ )2(k−m)π


(
ei(σ1−Ũ )2π ,

1

2
,
τ − u

2π
+ k − m

)]

:= Term1 + Term2 (6.34)

and furthermore

Term1 = 1

2π

∫ π

−π

du g1(u, τ )

∞∑
k=3

ei(σ−σ1)2kπ

×
[
eiσ12π


(
eiσ12π ,

1

2
,
u − s

2π
+ 1

)
− eiσ1(k−1)2π


(
eiσ12π ,

1

2
,
u − s

2π
+ k − 1

)]

×ei(σ1−Ũ )2π


(
ei(σ1−Ũ )2π ,

1

2
,
τ − u

2π
+ 1

)

= 1

2π

∫ π

−π

du g1(u, τ )δσ−σ1

eiσ12π


(
eiσ12π ,

1

2
,
u − s

2π
+ 1

)
ei(σ1−Ũ )2π


(
ei(σ1−Ũ )2π ,

1

2
,
τ − u

2π
+ 1

)

− 1

2π

∫ π

−π

du g1(u, τ )

∞∑
k=3

ei(σ−σ1)2kπ

×
[
eiσ12π


(
eiσ12π ,

1

2
,
u − s

2π
+ 1

)
− eiσ1(k−1)2π


(
eiσ12π ,

1

2
,
u − s

2π
+ k − 1

)]

×ei(σ1−Ũ )2π
∫ ∞

0

dp√
p

e−( u−s
2π +k−1)p

1 − eiσ12πe−p

= δσ−σ1

1

2π

∫ π

−π

du g1(u, τ )eiσ2π


(
eiσ2π ,

1

2
,
u − s

2π
+ 1

)

ei(σ−Ũ )2π


(
ei(σ−Ũ )2π ,

1

2
,
τ − u

2π
+ 1

)
+ analytic (6.35)

and the first term above produces a term of the form (6.20), while the second term has
the form (6.19).

Similarly, for G2 we obtain the following term of the form (6.20):
∫ π

−π

dr [Pσ ψ0](s) 1

2π

∫ π

−π

du eiσ2π


(
eiσ2π ,

1

2
,
u − s

2π
+ 1

)

×
[
ei F0(u,τ )ei(σ−Ũ )2π


(
ei(σ−Ũ )2π ,

3

2
,
τ − u

2π
+ 1

)

−eiσ2π


(
eiσ2π ,

3

2
,
τ − u

2π
+ 1

)]
(6.36)

and a regular part, of the form (6.19).
The other terms are evaluated similarly and are simpler.

6.3.2. Calculation of Pσ h We note the following identities:

e−i B/(n+a)

(n + a)1/2
=

∫ ∞

0
dq e−nq F1(q),

e−i B/(n+a)

(n + a)3/2
=

∫ ∞

0
dq e−nq F2(q)
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with

F1(q) = e−aq cosh(2
√−i Bq)√

πq
, F2(q) =

√
ie−aq sinh(2

√−i Bq)√
πB

(6.37)

We saw that the kernels of Lσ ,Kσ have integral expressions. So will also Pσ h, except
(6.9) is replaced by

u = e2π i(σ−Ũ ), w = e2π i(σ1−Ũ ), Ũ = U +
E2

4ω2

and instead of 
(z, a, b) we have a sum of analytic functions multiplying
∫ ∞
0 F1,2(p)

e−ap(1 − ze−p)−1dp, with the functions F1 and F2 given by (6.37).
Indeed, let us calculate for the discrete-Laplace transform of h+(0, t): with ω = 1

and the notations Ũ = U + E2/4, A = E2/8, Ã = E we have

√
2π iPσ h+(τ ) = 1√

τ
e−iŨτ+i A sin 2τ

∫ ∞

0
dy f (y)ei

(y+ Ã(1−cos τ ))2

2τ

+
∞∑
k=1

eiσ2kπe−iŨ (τ+2kπ)+i A sin 2τ
∫ ∞

0
dy f (y)e

i (y+ Ã(1−cos τ ))2

4π( τ
2π +k)

= e−iŨτ+i A sin 2τ
[

1√
τ

∫ ∞

0
dy f (y)ei

(y+ Ã(1−cos τ ))2

2τ

+
∞∑
k=1

ei(σ−Ũ )2kπ
∫ ∞

0
dy f (y)

∫ ∞

0
dqe−kq F1(q)

]

= e−iŨτ+i A sin 2τ
[

1√
τ

∫ ∞

0
dy f (y)ei

(y+ Ã(1−cos τ ))2

2τ

+
∫ ∞

0
dy f (y)

∫ ∞

0
dqF1(q)

e−q+i(σ−Ũ )2π

1 − e−q+i(σ−Ũ )2π

]
(6.38)

Note that under our assumptions on f , the term

1√
τ

∫ ∞

0
dy f (y)ei

(y+c)2

2τ , c = Ã(1 − cos τ)

in the last line of (6.38) is in L2([−π, π ], dτ). To see this we integrate by parts, then
change the variable of integration:

1√
τ

∫ ∞

0
dy f (y)ei

(y+c)2

2τ = 1√
τ

∫ ∞

0
dy f ′(y)

∫ ∞

y
du ei

(u+c)2
2τ

= 1√
2

∫ ∞

0
dy f ′(y)

∫ ∞
(y+c)2
2τ

du
eis√
s

which is in L2 since f ′ ∈ L2(R) and the integral
∫ ∞
ν

du eis√
s
is uniformly bounded (easily

seen after an integration by parts).
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The discrete-Laplace transform of the term h3(t) := ∫ t
0 (h− ∗ s−1/2)G(s, t) in h

yields singularities of the type studied in Sect. 6.2. Indeed

h3(t) =
∫ t

0
du h−(u)

∫ t

u
ds

1√
s − u

[
1

2

ei F0(s,t) − 1

(t − s)3/2
+ i

∂s F0.ei F0(s,t)√
t − s

]
(6.39)

which has a singularity of the type 1√
t−s

which is preserved upon discrete-Laplace

transform due to the special form of F0, as seen in Sect. 6.3.1. Indeed, by Proposition15
it suffices to discrete-Laplace transform the integral kernel in (6.39), which leads to a
sum of terms of the form

ei F0(r+2 jπ,τ+2kπ) − 1

(τ + 2kπ − r − 2 jπ)3/2
= e−Ũ (τ+2kπ−r−2 jπ)ei F0(r,τ ) − 1

(τ + 2kπ − r − 2 jπ)3/2

which again, has a square root singularity.
In the same way as in Sects. 6.2 and 6.3.1 it follows that

√
σ − σ0 Pσ h is analytic in√

σ − σ0 and in
√

σ .

6.3.3. Existence of meromorphic solutions Existence of solutions of (6.18) for large
�σ > 0 follows from the existence of ψ0, proved in Lemma11 and Propostion15.

We showed in §6.3.1 that the operator
√

σ − σ0Lσ is analytic in
√

σ − σ0,
√

σ for
σ �= 0 and it is compact on L2[−π, π ]. Denote z = e2π iσ ; then Lσ , Kσ are analytic in
z, except for z = z0 = e2π iσ0 , where there is a square root branch point. For z �= z0,
by analytic Fredholm alternative I − Lσ has an inverse merormorphic in z and in a
punctured neighborhood of each of its poles, say z p, it has the form

(I − Lσ )−1 = 1

(z − z p)m
M(z) + B(z)

where M is a finite rank operator, depending polynomially on z, and B is analytic at z p.
Then (I − Lσ )−1 = 1

(z−z p)m
PM(z) + B(z) where P is the orthogonal projection on

Ran(M).
Applying this in (6.18) we obtain

f = 1

(z − z p)m
PMKσ f + BKσ f +

[
1

(z − z p)m
PM + B

]
hσ ,

where f = �σ , hσ = Pσ h (6.40)

Denote by P⊥ the orthogonal projection on Ran(PM). Then f = P f + P⊥ f . Applying
P⊥ to (6.40) we obtain

P⊥ f = P⊥BKσ (P f + P⊥ f ) + P⊥Bh

Now,Kσ is compact onH = L2([−π, π ]×[0, 1), ds dσ1). Then P⊥BKσ P⊥ is compact
on P⊥H has it has a meromorphic inverse, and there is P⊥ f := u:

u := P⊥ f = (I⊥ − P⊥BKσ P⊥)−1(P⊥BKσ P f + P⊥Bhσ ) := AP f + h̃ (6.41)
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Now applying P to (6.40) we obtain

P f = 1

(z − z p)m
PMKσ (P f + u) + PBKσ (P f + u) +

[
1

(z − z p)m
PM + PB

]
hσ

(6.42)

where, introducing u from (6.41) we obtain a finite dimensional equation for P f , with
meromorphic coefficients, which we know it has solutions. Therefore the solution P f
of (6.42) exists, and it is meromorphic in z. We established that (I − Lσ − Kσ )−1 is
meromorphic in a neighborhood of the closed unit disk except for two square root branch
points at 0 and σ0 and, in a neighborhood of any of its finitely many poles z p /∈ {0, σ0},
it has the form

(I − Lσ − Kσ )−1 = 1

(z − z p)mp
Mp + Bp (6.43)

with Mp of finite rank, polynomial in z and Bp analytic. Using analyticity in
√

σ

(
√

σ − σ0 resp.), if a pole coincides with one of these branch points, then mp is simply
replaced by m + 1/2 and Mp becomes analytic in

√
σ (

√
σ − σ0 resp.).

6.3.4. Poles imply nontrivial solutions of the quasienergy equation Lemma17 shows
that if poles exist in (6.43), then there is a solution of the Schrödinger equation (1.5)
with a special asymptotic behavior (6.44) in t .

Lemma 17. Let z = e2π iσ , with �σ > 0 (so that |z| < 1).
Assume that (I − Lσ − Kσ )−1 has a pole at σ = σp, that is, Mp �= 0 in (6.43) and

that the imaginary parts of the pole and branch point do not coincide. Then, for a dense
set of initial conditions the Schrödinger equation (1.5) has a solution of the form

ψ(x, t) = tm−1e−i tσpa(x, t) [1 + O(1/t)] + O(1/
√
t) (6.44)

with m ∈ N
∗ and a(x, ·) is 2π -periodic, a(·, t) ∈ L2(R) and also σp ∈ R.

Remark 18. In the exceptional case where the branch point coincides with the pole, then
m would be a half-integer, see the discussion after (6.43). We do not treat this case here,
and leave it up to the reader.

Proof. Substituting (6.43) in (6.18) we obtain

�σ (τ) = 1

(z − z p)mp
Mp Pσ h + BpPσ h (6.45)

where mp > 0 is an integer with

(I − Lσp − Kσp )Pσp h = 0

Let us simply denote mp = m, Mp = M, Bp = B.
We construct a ψ0 so that �σ of (6.45) is its discrete-Laplace transform using (6.3),

(6.4).
Denoting �σ (τ) = F(z, τ ) we have

Pzψ0(τ ) = F(z, τ ) =
∞∑
k=0

zkψ0(τ + 2kπ)
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and the series converges in a disk |z| < δ by Lemma 6. By (6.45) F has the form
F(z, τ ) = P(z;τ)

(z−z p)m
+ g(z, τ ) where P is a polynomial in z of degree at most m − 1 and

g is analytic at z p. Then

ψ0(τ + 2kπ) = 1

2π i

∮
C

F(z, τ )

zk+1
dz

where C is a closed path containing 0 inside the disk of radius δ and the pole z p is
outside C . To determine large k behavior we deform C past the pole z p and leaving the
path hanging around cuts at the branch points. In the process we collect the residue at
the pole, and then using the analytic properties of the operator, we push to two Hankel
contours around the branch points σ = 0 and σ = σ0 linked by arccircles of radius 1+ε.

The contributions of the Hankel contours to the large k behavior is O(k−1/2). Indeed,
near σ0, by Theorem16 we have

Pσ ψ0 = a−1√
σ − σ0

+ a1
√

σ − σ0 + f1(σ ) (6.46)

where f1 is differentiable in σ . Integration by parts shows that
∫ 1

0
dσ e−iσ2kπ f1(σ ) = O(1/k) (6.47)

Hence ∫ 1

0
dσ e−iσ2kπPσ ψ0 = −e3iπ/4

√
2a−1

2
√
k

erf
(√

2kπeiπ/4
)
+ O(1/k)

∼ −e3iπ/4a−1√
2

k−1/2 + O(1/k) (6.48)

where O(1/k) comes from (6.47) and from
∫ 1
0 dσ e−iσ2kπa1

√
σ − σ0.

The contribution from the square root branch point at σ = 0 is similar.
The contribution of the residues at the poles, each of which is, to leading order,

1

2π i

∮
|z−z p |<ε

dz
P(z; τ)

zk+1(z − z p)m
∼ (−1)m−1km−1z−k−m

p P(z p, τ )(1 + O(1/k))

(6.49)

Consider initial conditions ψ(x, 0) so that Pzh does not belong to ∪ j �=p Ran(Mj )

where j indexes the finitely many possible poles, and so that Pσ h �∈Ker(Mp). Since
Mj are finite rank, this is a dense set of initial conditions. For such initial conditions the
leading order behavior of ψ0(τ + 2kπ) is, with the notation z p = e2π iσp ,

ψ0(τ + 2πk) ∼ km−1e2π iσp(−k−m)b(τ ) (6.50)

For t > 0 let τ ∈ [−π, π) be the unique number so that t = τ +2kπ with k a positive
integer. Then for large t

ψ0(t) ∼ tm−1e−i tσp b1(τ ) [1 + O(1/t)] + O(1/
√
t) (6.51)

For the assumed initial conditions as discussed the discrete-Laplace transform of h
exists up to the unit circle, and since the asymptotic form (6.51) is still valid for σ1 real.
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By Lemma11 ψ0 is continuously differentiable therefore b1(τ ) extends to [−π, π ]
periodically, hence to a(t), a periodic functions of period 2π .

Thenψ(x, t), obtained by introducingψ0 in formulas (5.6), (3.8), (3.10) has a similar
asymptotic form (6.51). To see this we note that convolutions with t−1/2 preserves
the asymptotic behavior (6.51) (up to multiplicative constants) since, expanding each
a j (t) := a(t) in Fourier series a(t) = ∑

k cke
ikt which converges uniformly since a(t)

is continuously differentiable, we see that

∫ t

0
ds sm−1e−iσpsa(s)

1√
t − s

= tm−1e−iσpt
∫ t

0
ds (1 − s/t)m−1eiσpsa(t − s)

1√
s

∼ tm−1e−iσpt
∫ t

0
ds eiσpsa(t − s)

1√
s

= tm−1/2e−iσpt
∫ 1

0
du eiσputa(t (1 − u))

1√
u

= tm−1/2e−iσpt
∑
k

cke
ikt

∫ 1

0
du ei(σp−k)ut 1√

u
(6.52)

where each integral in (6.52) is evaluated by deforming the path of integration of the
steepest descent and each integral is of order t−1/2k−1/2 and thus obtain that (6.52) has
dominant behavior tm−1e−iσpt a3(t) with a3 is 2π -periodic and smoothly differentiable.
Differentiation also preserves this form (being obtained from integral formulas, the
asymptotic is differentiable). Furthermore, note that we required initial conditions so
that h±(·, t) decay sufficiently fast at ∞, thus being smaller than behavior (6.51) for
m ≥ 1. The other integrals in (5.6), (3.8), (3.10) are treated similarly (recall that in this
section we assumed ω = 1). Then, from (3.8), (3.10), ψ(x, t) behaves, for large t , as a
polynomial multiplying e−iσpt and a(t), a 2π -periodic function.

To study the behavior at σ = σ0 we denote ζ = √
σ − σ0 and we repeat the argument

above, ruling out poles at ζ �= 0, while if there is a pole at ζ = 0, it will have the form
ζ−m = (σ − σ0)

−m/2, which is not a pole in σ .
We now show that a(·, t) ∈ L2(R). The proof mimics the arguments in Sect. 5.4, (iii).

An algebraically simpler way to see why this is to combine those arguments with the
Fourier representations (3.1) and (3.4) below.ψ0(t) converges in a space of differentiable
functions with Hölder 1/4 derivative, and, from (5.6), ψx,0 converges in a space of
functions with Hölder exponent 3/4 in intervals of the form [t, t + 2π/ω]. The norm in
the latter space ‖ f ‖∞ + ‖ f ′‖∞ + supx,y |x − y|−γ | f ′(x) − f ′(y)|, with γ = 1/4 and
exponential weights are place on the sup norm as in (5.7) to ensure contractivity. The
integral operator is smoothing in this space.

The integral term in (3.2) converges uniformly in a space of functions on R
+ with

values in {g : ‖√x2 + 1g‖∞ < ∞}, hence uniformly a space of functions on R
+ with

values in L2(R), to a ψ̃ ∈ L2 periodic in t which solves (3.1), as it is easy to check.
(Note that the boundary condition at x = 0 does not ensure symmetry of the Laplacian,
nor hence conservation of the L2 norm.)

It remains to show that σp is real. Denote ψ(x, t) = e−iσptφ(x, t). Since ψ satisfies
the Schrödinger equation iψt = Hψ then φ satisfies σpφ+ iφt = Hφ therefore σp ∈ R,
since the operator is symmetric.

This completes the proof of Lemma17. �
Consequence. Since there are no poles for |z| < 1 (and no other singularities, by the

Analytic Fredholm Alternative), the series of Pσ ψ0 converges for |z| < 1.
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6.3.5. Absence of solutions of the quasienergy equation We first show that the existence
of such solutions implies existence of actual eigenfunctions of the quasienergy operator;
this implication is very general.

Lemma 19. Consider a general Schrödinger equation

iψt (x, t) = H(x, t)ψ(x, t); x ∈ R
n (6.53)

where H(x, t + 2π) = H(x, t) for all t . Assume (6.53) has a solution of the form

ψ(x, t) = P(t)eiλtφ(x, t),

where φ(x, t + 2π) = φ(x, t)
[
1 + O(t−1)

]
+ O(t−1/2) (t → ∞)

(6.54)

where P is a polynomial, ψ is nonzero, λ ∈ R. Then P(t) is constant.

Proof. This follows from the fact that the evolution is unitary and ‖ψ(x, t)‖ = 1 for all
t . �
Proposition 20. There are no nonzero solutions of satisfying (6.44) any λ ∈ R.

As a consequence, there are no poles for z = e2π iσ with |z| ≤ 1.

Proof. Recall that in this section we normalized equation so that ω = 1.
Consider a solution satisfying (6.44). By Lemma19 we have m = 1, therefore, with

σ = λ,

ψ(x, t) = e−iλt a(x, t) [1 + O(1/t)] + O(1/
√
t) (6.55)

Substituting ψ(x, t) = eiλt φ̃(x, t) in the Schrödinger equation (1.5) we see that φ̃

solves:

i∂t φ̃(x, t) − 1

2

[
−∂2x + �(x)(U − Ex cos(t))

]
φ̃(x, t) = λφ̃(x, t) (6.56)

where φ̃(·, t) is in L2 for each t and for each x

φ̃(x, t) = a(x, t)
[
1 + O(t−1)

]
+ O(t−1/2) (t → ∞),

a(x, t) = a(x, t + 2π), ∀t > 0 (6.57)

We have limt→∞ φ̃(0, t) = a(0, t), periodic. We now show that there are no solutions
with such matching conditions at x = 0.

Remark 1. If ψ0(t) := ψ(0, t) is 2π -periodic then ψ(x, ·) is 2π -periodic.
Indeed, let z = e2π is where �s ≥ 0 to be complex. For x < 0 we have iψt +

ψxx = 0 with boundary condition ψ0(t). Now we write φ(x, t) = e2π iσ tψ(x, t) we get
−2πσφ + φt + φxx = 0 where now φ(0, t) is periodic. Since for each fixed x φ(x, t)
is continuous, we take the discrete Fourier transform, φ(t) = ∑

j∈Z C j (x)e2π i j t we

get −2πσC j − jC j + C ′′
j = 0. The solution is A je±√

2π j+sx where the sign depends

on the sign of �√
2π j + s where A j are the Fourier coefficients of φ(0, t). We note

that the Fourier series of φ converges pointwise since φ is differentiable.The series∑
j A j e±√

2π j+s converges absolutely and uniformly since |C j | ≤ |A j |e±√
2π j+sx where

the sign ensures the real part is positive and because of the convergence of the Fourier



Non-perturbative Solution of the 1d Schrödinger Equation

deries of φ, A j → 0 as j → ∞. We note that for such solutions to exist, we need that the
Fourier coefficients A j vanish if j is below a certain value. We have shown that, if such
solutions exist, they are analytic in t for any x �= 0 and periodic in t . The proof for x > 0
is similar. The boundary condition becomes

∑
C je±√

2π j+sE cos t+2π i j t = ∑
A je2π i j t .

Since f0 is differentiable and hence
∑

A je2π i j t converges for all t , for t = 1 we get

that C je∓√
2π j+s → 0 once more ensuring the absolute and uniform convergence of the

series
∑

C je±√
2π j+sξ+i j t in the corresponding domain (6.50).

Remark 2. A straightforward but more tedious way is to rely on (3.1), (3.2) and (3.3),
starting with λ in the upper half plane to obtain, for x < 0, an L2 solution ψ0 such that
in the large t , eiλt is periodic. Similarly, for x > 0, one uses (3.4), (3.5), (3.6), and (3.7).

We can equivalently work in the magnetic gauge. Let

ϕt (x) = e−i x At�(x)φ̃(x, t), At :=
∫ t

0
dτ E cos(τ ) = E sin(t) (6.58)

Then ϕt (x) satisfies

i∂tϕt (x) − 1

2
[i∂x − �(x)At ]

2 ϕt (x) − �(x)Uϕt (x) = λψ(x, t). (6.59)

The matching condition ψt (0−) = ψt (0+), ∂xψt (0−) = ∂xψt (0+) becomes

ϕt (0−) = ϕt (0+), ∂xϕt (0−) = ∂xφt (0+) + i Atϕt (0) (6.60)

We solve the equation (6.59) for x < 0 and x > 0.
Negative x .

For x < 0 equation (6.59) becomes

−i∂tϕt (x) − 1

2
∂2xϕt (x) = λϕt (x)

which we solve with boundary condition ϕt (0) = a(0, t).
Substituting ϕt (x) = ∑

k∈Z uk(x)eikt we obtain that uk(x) = e±√
2(k−λ) x .

Solutions that decay towards −∞ must have kω − λ > 0 and the plus sign must be
chosen at the exponent. Therefore, for x < 0,

ϕt (x) =
∑

k∈Z,k>λ

Ck e
√
2(k−λ) x eikt (6.61)

for some constants Ck .
Positive x . For x > 0 the equation (6.59) becomes

− i∂tϕt (x) − 1

2

(
∂2x + 2i At∂x − A2

t −U
)

ϕt (x) = λϕt (x) (6.62)

Gauge transformation on a half-line; and eliminating the magnetic field. Substi-
tuting

u(x, t) = eg(t)G(x + q(t), t)
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with

q(t) = E cos(t), g(t) = i E2 sin (2 t)

8
, ξ = x + q(t)

equation (6.62) becomes

− i∂tG(ξ, t) − 1

2
∂2x G(ξ, t) =

(
−λ −U − E2

4

)
G(ξ, t) =: λ̃G(ξ, t) (6.63)

The new PDE is defined on the domain

D = {(ξ, t) : t ≥ 0, ξ + E cos(t) ≥ 0} (6.64)

It is clear that, for each fixed t , the change of variables is an isomorphism between
L2((−E cos(t),∞) and L2(R+). We are looking for periodic solutions of (6.63). Such
solutions have Fourier series, convergent in D:

G(ξ, t) =
∑
n∈Z

cn(ξ)eint (6.65)

Substituting (6.66) in (6.63) we obtain that for any n ∈ Z there is a Dn ∈ C such that

cn(ξ) = Dne
−ξ

√
2(n−λ̃); n > n0 := λ̃ and cn = 0 otherwise (6.66)

hence

G(ξ, t) =
∑
n>n0

Dne
−ξ

√
2(n−λ̃)eint (6.67)

Since G is differentiable the series converges pointwise convergence in the interior of
D, which implies

|Dn| < Const eξ
√

2(n−λ̃) (6.68)

The best bound is obtained when t = (2m + 1)π (m ∈ Z), see (6.64),

|Dn| < Const e−E
√

2(n−λ̃) (6.69)

We note that this estimate implies that the series (6.67) converges uniformly and abso-
lutely to a locally analytic function in the interior of D, and it also converges uniformly
and absolutely, together with all derivatives to its boundary, except perhaps at the special
points (−Eω−2, (2m + 1)π), m ∈ N.

Returning to the variables (x, t) we obtain

ϕt (x) =
∑

n∈Z,n>n0

Dn fn(t) e
−κn x eint (6.70)

fn(t) = e
i E2
8 sin(2t)−κn E cos(t), n0 = (−λ −U − E2

4 ),

κn = √
2

√
n + λ +U +

E2

4
(6.71)
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and convergence and analyticity are inherited from the above, for all x > 0, t > 0, all
the way to x = 0 except for the points (0, (2m + 1)π).

We now show, by contradiction, that (6.59) has no nonzero solutions,
We impose the matching conditions (6.60) for ϕt (x) given by (6.61) for x < 0 and

by (6.70) for x > 0. We must have∑
k∈Z,k>λ

Ck eikt =
∑

n∈Z,n>n0

Dn e
int fn(t) := 
(t) (6.72)

This equation holds pointwise except for t = (2m + 1)π := tm , which means that,
except at these points we are dealing with locally analytic functions of t , and the series
on the left also converge pointwise uniformly a.e. (more precisely, except at tm). From
(6.72), since we have Ck = 0 for k < λ, then∫ 2π

0
e−ikt 
(t) dt = 0 for all k < λ

which we now show it is not possible unless all the Dn = 0 in the sum.
Indeed, since the Fourier coefficients of 
(t) vanish for k < λ, then 
 extends as a

meromorphic function inside the disk bounded by T. Denoting z = ei t , the function 


is presented as a convergent transseries (see e.g. [47]) at z = 0:


 = e
ε2
2 (z2− 1

z2
)

∑
n∈Z,n>n0

Dn z
ne−κn4ε( z2 +

1
2z ) = e

− ε2
2

1
z2

∑
n>n0

e−κn2ε 1
2z gn(z)

(6.73)

with gn meromorphic and κn strictly increasing in n. When transseries representations
exist, they are unique. Since 
 is meromorphic at z = 0, the transseries representation
(6.73) is possible only if all gn, n ∈ N are zero, therefore 
 ≡ 0.

In conclusion a(x, t) = 0, hence no poles can exist. �
Note. In the process we showed that we could work with the dominant term in (6.57),

asymptotically, as t → ∞.

6.4. End of proof of Theorem 3. Assume x is in a compact set and ψ(x, 0) ∈ L2. The
fact that decay of ψ(x, t) is at least as fast as t−1/2 follows from the explicit formula for
ψ(x, t) in terms of ψ(x, 0) and the following:

Lemma 21. Assume ψ(x, 0) ∈ L2.
(i) We have ψ(0, t) = O(t−1/2) as t → ∞.
(ii) For x in a compact set ψ(x, t) = O(t−1/2).

Proof. (i) The absence of poles proven in Proposition 20 shows that the main large k
asymptotic behavior of ψ(0, τ + 2kπω) comes from the Hankel contours around the
branch points, namely (6.49) resulting in O(t−1/2) decay in x , uniformly on compact
sets. (Uniformity follows immediately from (3.8) and (3.10).)

(ii) The same arguments as in Sect. 6.3.4 show that ψ(x, t) = O(t−1/2).
�

Since ψ(x, t) = O(t−1/2) uniformly on compact sets in R, formula (2.2) follows.
Theorem3 is proved.

Remark 22. Note that starting with distributional (plane wave) initial condition (1.4),
poles appear in h± as seen by a straightforward calculation and decay to an eventually
periodic solution obtained by physical arguments by Faisal [28]).
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6.5. Computation of h±. Let us start by computing h±.
Proposition 23. For the initial condition f (x) = ψ(0, x) in (1.4) we have

h−(0, t) = e−i k
2 t
2

2

[
erfc

(
−
√

t
2i k

)
+ R0 erfc

(√
t
2i k

)]
(6.74)

and

h+(0, t) = T0
2
e

E
ω2

(1−cos(ωt))
√
2U−k2− i

2 (k2+ E2

2ω2
)t+i E2

8ω3
sin(2ωt)
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(√
i t
2

√
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√
2i t

(1 − cos(ωt))

)
. (6.75)

Proof. We first compute h−: by (3.9),

h−(t) =
√

1

2π i t

∫ 0

−∞
dy (eiky + R0e

−iky)ei
y2

2t . (6.76)

We have∫ 0

−∞
dy eikyei

y2

2t = e−i k
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2

∫ 0

−∞
dy ei

1
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√
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Therefore,

h−(t) = e−i k
2
2 t

2

(
erfc(−e− iπ

4
√
t k√

2
) + R0erfc(e− iπ

4
√
t k√

2
)
)

. (6.78)

We now turn to h+: by (3.11), if qk := √
2U − k2, then

h+(t) := T0

√
1

2π i t
e
−i(U+ E2

4ω2
)t+i E2

8ω3
sin(2ωt)

∫ ∞
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2t . (6.79)

We have

∫ ∞
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and ∫ ∞
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i 1
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so

∫ ∞
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Therefore,

h+(t) = T0
2
e
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(1−cos(ωt))qk−i
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�

6.6. Poles of Pσ h±. We now compute the poles of Pσ h±.

Proposition 24. Pσ h± has poles at σp = k2
2 and

√
σPσ h± is analytic in

√
σ .

Proof. We start with Pσ h−. Using the asymptotic expansion of the error function [49,
(7.12.1)],

h−(0, t) = e−i k
2 t
2√

π
+R−(t) (6.84)

with

R−(t) := −
√
i

k
√
2π t

(1 − R0) + O(t−
3
2 ). (6.85)

Proceeding as in section 6.2, we find that
√

σPσR− is analytic in
√

σ . Furthermore,

Pσh− =
∞∑
n=0

e2iπσn e
−i k

2(t+2πn)
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π
= e−i k

2
2 t 1

√
π(1 − e2iπ( k

2
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(6.86)

which has a pole at σ = k2
2 .

We now turn to Pσ h+. By [49, (7.12.1)],

h+(0, t) = T0

2
√
iπ t (U − k2

2 )

e
−i t (U+ E2

4ω2
)+i E2

8ω3
sin(2ωt) + O(t−

3
2 ). (6.87)

Again, proceeding as in section 6.2, we find that
√

σPσR− is analytic in
√

σ . �
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6.7. End of proof of Theorem 4. As we explained at the beginning of Sect. 6, we only
need to take into account that for the distributional plane wave initial condition, Pσ h±
has a pole at σp = k2

2 . Otherwise,
√

σPσ h± is analytic in
√

σ everywhere else (see
Proposition 24). Proceeding as in the proof of Lemma 17, we find that the solution of
the Schrödinger equation (1.5) is of the form

ψ(x, t) = e−i t k
2
2 φ(x, t)(1 + O(t−

1
2 )) (6.88)

where φ(x, ·) is 2π/ω-periodic, which proves the theorem. �
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A. Laplace Transform Versus Discrete-Laplace Transform

In a way similar to the classical Poisson summation formula approach, working in
distributions, taking a Laplace transform, which we denote by L, followed by a discrete
Fourier transform is related to a discrete-Laplace transform in the original variable, as
seen below.

1

2π

∑
n∈Z

(Lψ)(−iσ − inω)e−i(σ+nω)r = 1

ω

[
ψ(r)�(r) +
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(
r +

2kπ

ω

)]

:= (Pσ ψ)(r) (A.1)

where −π
ω

≤ r < π
ω
and σ ∈ [0, ω).

To deduce this formula, we calculate
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where we let t = 2kπ
ω

+ s. Using the fact that 1
2π

∑
n e

inω(s−r) = 1
ω
δs−r formula (A.1)

follows.
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Fig. 2. The normalized current j
k at the interface (in atomic units, so j

k is dimensionless) as a function of tω
2π

for ω = 1.55 eV and for the electric field: E = 25V nm−1. The dotted line is the graph of cos(ωt) (not to
scale)
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Fig. 3. An average of the current after a number of periods as a function of ω − ωc , for various values of the
field: E = 3 V nm−1 (blue), E = 10 V nm−1 (red). For the sake of comparison, we have also plotted the
asymptotic current predicted in [28] as dotted lines: green for E = 3 V nm−1 and purple for E = 10 V nm−1.
All four curves are almost on top of each other. We see a sharp transition as ω crosses the critical frequency

ωc = U − k2
2 + E2

4ω2
c

B. Figures

As already mentioned in the introduction Eq. (1.5) is the underlying basic model used
for the interpretation of experiments of electron emission from ametal surface irradiated
by lasers of different frequencies [1,4,22,24,27–37]. This is so despite the fact that the
system described by (1.5) is very idealized, both in the description of the metal and in
the use of a classical electric field. The literature therefore contains many approximate
qualitative solutions of (1.5) or some modification of it. Our analysis which proves the
existence of physical solutions to (1.5) does not give a visualization of the form of such
solutions. To do that requires carefully controlled numerical solutions. Figure2 shows the
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complex behavior of the current at early times for large fields. Figure3 shows the steep
rise of the current as the frequency of the applied field crosses the field dependent critical
frequency, which is the energy that is necessary for an electron to absorb in order to be
extracted from the metal: it is the real solution to the cubic equation ωc = U − k2

2 + E2

4ω2
c

(the term E2

4ω2
c
comes from the “Zitterbewegung” [40]). For small E , this reproduces the

usual physical picture of the photoelectric effect.
The figures are obtained by solving the integral equation numerically forψ(x, t)with

controlled approximations [38].

References

1. Hommelhoff, P., Kealhofer, C., Kasevich, M.A.: Ultrafast electron pulses from a tungsten tip triggered
by low-power femtosecond laser pulses. Phys. Rev. Lett. 97, 247402 (2006). https://doi.org/10.1103/
physrevlett.97.247402

2. Schenk, M., Krüger, M., Hommelhoff, P.: Strong-field above-threshold photoemission from sharp metal
tips. Phys. Rev. Lett. 105, 257601 (2010). https://doi.org/10.1103/physrevlett.105.257601

3. Bormann, R., Gulde, M., Weismann, A., Yalunin, S.V., Ropers, C.: Tip-enhanced strong-field photoemis-
sion. Phys. Rev. Lett. 105, 147601 (2010). https://doi.org/10.1103/physrevlett.105.147601

4. Krüger, M., Schenk, M., Hommelhoff, P.: Attosecond control of electrons emitted from a nanoscale metal
tip. Nature 475, 78 (2011). https://doi.org/10.1038/nature10196

5. Krüger, M., Schenk,M., Hommelhoff, P., Wachter, G., Lemell, C., Burgdörfer, J.: Interaction of ultrashort
laser pulses with metal nanotips: a model system for strong-field phenomena. New J. Phys. 14, 085019
(2012). https://doi.org/10.1088/1367-2630/14/8/085019

6. Thomas, S., Holzwarth, R., Hommelhoff, P.: Generating few-cycle pulses for nanoscale photoemission
easily with an erbium-doped fiber laser. Opt. Express 20, 13663 (2012). https://doi.org/10.1364/oe.20.
013663

7. Herink, G., Solli, D.R., Gulde, M., Ropers, C.: Field-driven photoemission from nanostructures quenches
the quiver motion. Nature 483, 190 (2012). https://doi.org/10.1038/nature10878

8. Park, D.J., Piglosiewicz, B., Schmidt, S., Kollmann, H., Mascheck, M., Lienau, C.: Strong field accelera-
tion and steering of ultrafast electron pulses from a sharp metallic nanotip. Phys. Rev. Lett. 109, 244803
(2012). https://doi.org/10.1103/physrevlett.109.244803

9. Homann, C., Bradler, M., Förster, M., Hommelhoff, P., Riedle, E.: Carrier-envelope phase stable sub-
two-cycle pulses tunable around 18 μm at 100 kHz. Opt. Lett. 37, 1673 (2012). https://doi.org/10.1364/
ol.37.001673

10. Piglosiewicz, B., Schmidt, S., Park, D.J., Vogelsang, J., Groß, P., Manzoni, C., Farinello, P., Cerullo, G.,
Lienau, C.: Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic
nanostructures. Nat. Photonics 8, 37 (2013). https://doi.org/10.1038/nphoton.2013.288

11. Herink, G., Wimmer, L., Ropers, C.: Field emission at terahertz frequencies: AC-tunneling and ultrafast
carrier dynamics. New J. Phys. 16, 123005 (2014). https://doi.org/10.1088/1367-2630/16/12/123005

12. Ehberger, D., Hammer, J., Eisele, M., Krüger, M., Noe, J., Högele, A., Hommelhoff, P.: Highly coherent
electron beam from a laser-triggered tungsten needle tip. Phys. Rev. Lett. 114, 227601 (2015). https://
doi.org/10.1103/physrevlett.114.227601

13. Bormann, R., Strauch, S., Schäfer, S., Ropers, C.: An ultrafast electron microscope gun driven by two-
photon photoemission from a nanotip cathode. J. Appl. Phys. 118, 173105 (2015). https://doi.org/10.
1063/1.4934681

14. Yanagisawa, H., Schnepp, S., Hafner, C., Hengsberger, M., Kim, D.E., Kling, M.F., Landsman, A.,
Gallmann, L., Osterwalder, J.: Delayed electron emission in strong-field driven tunnelling from ametallic
nanotip in the multi-electron regime. Sci. Rep. 6, 35877 (2016). https://doi.org/10.1038/srep35877

15. Förg, B., Schötz, J., Süßmann, F., Förster, M., Krüger, M., Ahn, B., Okell, W.A., Wintersperger, K.,
Zherebtsov, S., Guggenmos,A., Pervak,V., Kessel, A., Trushin, S.A., Azzeer, A.M., Stockman,M.I., Kim,
D., Krausz, F., Hommelhoff, P., Kling, M.F.: Attosecond nanoscale near-field sampling. Nat. Commun.
7, 11717 (2016). https://doi.org/10.1038/ncomms11717

16. Rybka, T., Ludwig, M., Schmalz, M.F., Knittel, V., Brida, D., Leitenstorfer, A.: Sub-cycle optical phase
control of nanotunnelling in the single-electron regime. Nat. Photonics 10, 667 (2016). https://doi.org/
10.1038/nphoton.2016.174

17. Förster, M., Paschen, T., Krüger, M., Lemell, C., Wachter, G., Libisch, F., Madlener, T., Burgdörfer,
J., Hommelhoff, P.: Two-color coherent control of femtosecond above-threshold photoemission from a
tungsten nanotip. Phys. Rev. Lett. 117, 217601 (2016). https://doi.org/10.1103/physrevlett.117.217601

https://doi.org/10.1103/physrevlett.97.247402
https://doi.org/10.1103/physrevlett.97.247402
https://doi.org/10.1103/physrevlett.105.257601
https://doi.org/10.1103/physrevlett.105.147601
https://doi.org/10.1038/nature10196
https://doi.org/10.1088/1367-2630/14/8/085019
https://doi.org/10.1364/oe.20.013663
https://doi.org/10.1364/oe.20.013663
https://doi.org/10.1038/nature10878
https://doi.org/10.1103/physrevlett.109.244803
https://doi.org/10.1364/ol.37.001673
https://doi.org/10.1364/ol.37.001673
https://doi.org/10.1038/nphoton.2013.288
https://doi.org/10.1088/1367-2630/16/12/123005
https://doi.org/10.1103/physrevlett.114.227601
https://doi.org/10.1103/physrevlett.114.227601
https://doi.org/10.1063/1.4934681
https://doi.org/10.1063/1.4934681
https://doi.org/10.1038/srep35877
https://doi.org/10.1038/ncomms11717
https://doi.org/10.1038/nphoton.2016.174
https://doi.org/10.1038/nphoton.2016.174
https://doi.org/10.1103/physrevlett.117.217601


Non-perturbative Solution of the 1d Schrödinger Equation

18. Li, S., Jones, R.R.: High-energy electron emission from metallic nano-tips driven by intense single-cycle
terahertz pulses. Nat. Commun. 7, 13405 (2016). https://doi.org/10.1038/ncomms13405

19. Hoff, D., Krüger, M., Maisenbacher, L., Sayler, A.M., Paulus, G.G., Hommelhoff, P.: Tracing the phase
of focused broadband laser pulses. Nat. Phys. 13, 947 (2017). https://doi.org/10.1038/nphys4185

20. Storeck, G., Vogelgesang, S., Sivis, M., Schäfer, S., Ropers, C.: Nanotip-based photoelectron microgun
for ultrafast LEED. Struct. Dyn. 4, 044024 (2017). https://doi.org/10.1063/1.4982947

21. Putnam, W.P., Hobbs, R.G., Keathley, P.D., Berggren, K.K., Kärtner, F.X.: Optical-field-controlled pho-
toemission from plasmonic nanoparticles. Nat. Phys. 13, 335 (2016). https://doi.org/10.1038/nphys3978

22. Jensen, K.L.: Introduction to the Physics of Electron Emission. Wiley, New York (2017)
23. Wimmer, L., Karnbach, O., Herink, G., Ropers, C.: Phase space manipulation of free-electron pulses

from metal nanotips using combined terahertz near fields and external biasing. Phys. Rev. B 95, 165416
(2017). https://doi.org/10.1103/physrevb.95.165416

24. Krüger, M., Lemell, C., Wachter, G., Burgdörfer, J., Hommelhoff, P.: Attosecond physics phenomena
at nanometric tips. J. Phys. B Atom. Mol. Opt. Phys. 51, 172001 (2018). https://doi.org/10.1088/1361-
6455/aac6ac

25. Li, C., Chen, K., Guan, M., Wang, X., Zhou, X., Zhai, F., Dai, J., Li, Z., Sun, Z., Meng, S., Liu, K., Dai,
Q.: Study of electron emission from 1D nanomaterials under super high field, arXiv:1812.10114 (2018)

26. Schötz, J.,Mitra, S., Fuest, H., Neuhaus,M., Okell,W.A., Förster,M., Paschen, T., Ciappina,M.F., Yanag-
isawa, H., Wnuk, P., Hommelhoff, P., Kling, M.F.: Nonadiabatic ponderomotive effects in photoemission
from nanotips in intense midinfrared laser fields. Phys. Rev. A 97, 013413 (2018). https://doi.org/10.
1103/physreva.97.013413

27. Fowler, R.H., Nordheim, L.: Electron emission in intense electric fields. Proc. R. Soc. AMath. Phys. Eng.
Sci. 119, 173 (1928). https://doi.org/10.1098/rspa.1928.0091
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