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Abstract
We derive macroscopic equations for a generalized contact process that is inspired by a
neuronal integrate and fire model on the lattice Z

d . The states at each lattice site can take
values in 0, . . . , k. These can be interpreted as neuronal membrane potential, with the state
k corresponding to a firing threshold. In the terminology of the contact processes, which we
shall use in this paper, the state k corresponds to the individual being infectious (all other
states are noninfectious). In order to reach the firing threshold, or to become infectious, the
site must progress sequentially from 0 to k. The rate at which it climbs is determined by other
neurons at state k, coupled to it through aKac-type potential, of range γ −1. The hydrodynamic
equations are obtained in the limit γ → 0. Extensions of the microscopic model to include
excitatory and inhibitory neuron types, as well as other biophysical mechanisms, are also
considered.
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1 Introduction

The derivation ofmacroscopic deterministic time evolution equations fromunderlyingmicro-
scopic dynamics is one of the central problems of non-equilibrium statistical mechanics. This
micro-to-macro transition is a very difficult mathematical problemwith only limited progress
so far [3, 11, 14]. This can be overcome to some extent when the underlying microscopic
dynamics is stochastic with very strong ergodic properties. Examples are the time evolution
of the stochastic Ising model via Glauber or Kawasaki dynamics. There one has derived
rigorously macroscopic equations in a space-time scaling limit [2, 4, 7, 8]. These equations
are of the mean field type using long range Kac type interactions on the microscopic scale.

In this note we derive macroscopic equations presented and partially solved in [1]. The
microscopic model system described here is inspired by neuronal integrate-and-fire models
[6]. In the simple version of this model the membrane voltage increases until it reaches a
maximum threshold value atwhich time it fires (spikes).When it fires that neuron’smembrane
voltage gets reset to itsminimumvalue. At the same time other neurons connected to it, whose
potential is below threshold, increase their potential at a rate depending on the strength of their
connectivity to the neuronwhich has just spiked. In themacroscopic equations we considered
in [1] we discretized the values which the membrane potential can take restricting it to the
integer set {0, 1, ......, k}. When and only when a neuron is in state k, its maximum value, it
causes other neurons connected to it with potential j < k to transit to the next level j + 1.
Independently, neurons with potential values k spike and assume the value 0. The neurons
in the microscopic model live on the d-dimensional lattice Z

d with spacing γ and their
interaction is given by a Kac type function, J (γ |x − y|) [8]. In the limit γ → 0 one obtains
the macroscopic equations.

It turns out that for k = 1 the model is equivalent to the well known contact process
with the state j = 0 corresponding to the healthy state and the state j = 1 the infected one
[12, 13]. For k > 1 the model can be thought of as a generalized contact process with only
the state j = k being infectious. In terms of neural models the case k = 1 corresponds to
the stochastic Wilson-Cowan model [9, 15], which is a popular simplified model of neural
systems. Setting k > 1 introduces inactive states which behave like subthreshold neuron
potentials and leads to more complicated behavior.

The analysis in this note will be done entirely in the context of the generalized contact
process. We consider an extension of the classical contact process where the state of an
individual is described by a potential U : when U = 0 the individual is healthy, when 0 <

U < k is sick but not contagious and whenU = k is both sick and contagious (in the classical
contact process k = 1). Infections are long range and described by a Kac potential with range
γ −1. We study the system in the macroscopic limit γ → 0.

In more realistic models there are two types of neurons, excitatory ones which act as those
described above and inhibitory ones [6, 10]. The latter ones also have a threshold for firing
but instead of increasing the potential of other neurons when firing it decreases them. This,
as well as other generalizations can be incorporated in the microscopic model studied here.
They lead to more complicated macroscopic equations, which we are currently exploring.
Their derivation uses the same formalism as the derivation given here. Thesewill be discussed
briefly at the end of this note.

The outline of the rest of the paper is as follows. In Sect. 2 we give a precise definition
of the microscopic model and present the hydrodynamic limit equations. In Sects. 3–7 we
prove the hydrodynamic limit. In Sect. 8 we describe some generalizations of the model.
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2 TheModel

2.1 TheMacroscopic Region

Themacroscopic region� is a torus inRd of side length L; for simplicity L is a large positive
integer.

2.2 TheMicroscopic Region

Let γ = 2−n1 , n1 a positive integer. The microscopic region is the torus �γ = γ −1� ∩ Z
d .

2.3 The Kac Potential

Dynamics are defined in terms of the Kac potential Jγ (x, y) = aγ γ d J (γ x, γ y), x, y ∈ �γ .
aγ is the normalization coefficient which makes Jγ (x, y) a probability; J (r , r ′) is a smooth,
non negative, symmetric probability kernel with finite range R < L/2. Call

Rγ = 1

2
sup{|x − y| : Jγ (x, y) > 0}, Rγ = γ −1R (2.1)

the range of the interaction Jγ (x, y).
The macroscopic limit is defined by letting γ → 0.

2.4 The Time Evolution

Time evolution is described by a jump Markov process where there are two types of jumps
related to infection and recovery. The individual at site x with U (x) = k recovers at rate 1
and the potential after recovery becomes U (x) = 0. Moreover the individual at site x with
U (x) = k infects the one at site y if U (y) < k at rate λ∗ Jγ (x, y) and the effect of the
infection is that U (y) → U (y) + 1.

We denote byUt (x), x ∈ �γ the potentials at time t and we denote by Pγ the law of this
process in �γ .

Definition 2.1 The Initial Condition For any fixed γ the potentials U0(x), x ∈ �γ , at time
0 are mutually independent and the following holds:

• Pγ [U0(x) = i] = ρ0(γ x, i), i = 0, .., k where ρ0(r , i) > 0, i = 0, .., k is such that∑
i ρ0(r , i) = 1 for any r ∈ �. The variables ρ0(r , i) are the initial densities.

• The densities ρ0(r , i), r ∈ �, i = 0, .., k, have values in [ε, 1−ε], ε > 0 and are smooth.

Assuming propagation of chaos, namely that the potentials Ut (x), x ∈ �γ at any t > 0
are mutually independent and Pγ [Ut (x) = i] = ρt (γ x, i), i = 0, .., k, then ρt satisfies

d

dt
ρt (r , i) = {ρt (r , i − 1) − ρt (r , i)}

∫

�

dr ′λ∗ρt (r ′, k)J (r ′, r) (2.2)

when 1 ≤ i ≤ k − 1; for i = k

d

dt
ρt (r , k) = −ρt (r , k) + ρt (r , k − 1)

∫

�

dr ′λ∗ρt (r ′, k)J (r ′, r) (2.3)
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and for i = 0:

d

dt
ρt (r , 0) = ρt (r , k) − ρt (r , 0)

∫

�

dr ′λ∗ρt (r ′, k)J (r ′, r) (2.4)

the initial condition being ρ0(r , i), ρ0 as in Definition 2.1. These are the macroscopic equa-
tions analyzed in [1]. There, for λ∗ ≤ k, it is shown that the only steady state solutions to the
equations are the trivial ones with ρt (r , k) = 0, where nothing is in the active state k. For
λ∗ > k, the nontrivial steady state solutions are derived, and they are shown to be constant
in x and linearly stable. From the examination of numerically computed trajectories it is
conjectured that all solutions tend towards a steady state. The complete solution is given in
the spatially uniform case (where the initial condition is constant in x), and a partial solution
is given in the general case. Traveling wave solutions are also investigated numerically.

We will use three scaling parameters γ = 2−n1 , n1 ∈ N, δ = 2−n2 , n2 ∈ N and ξ = 2−n3 ,
n3 ∈ N. The macroscopic limit, namely the solution of Eqs. (2.2)–(2.4), is obtained by first
letting γ → 0, then δ → 0 and finally ξ → 0.

To prove this limiting behavior we first prove the hydrodynamic limit for a modified
dynamics, called the auxiliary process, with a Kac potential Aγ , see (3.2), which is a coarse
grained version of Jγ . We then obtain in the limit γ → 0 a macroscopic equation with a
kernel Aξ , see (3.6), which is a coarse graining version of J , see Theorem 3.2. In the limit
ξ → 0 we get (2.2)-(2.4), see Theorem 3.3.

3 The Auxiliary Process

The auxiliary process is defined as the previous one but with a piecewise constant kernel
Aγ (x, y) in the place of Jγ (x, y).

In order to define Aγ we need the following definition.

Definition 3.1 The basic partition. We call

�∗
γ = {r ∈ � : r = γ x, x ∈ Z

d}, �∗ =
⋃

γ

�∗
γ , �γ = γ −1�∗

γ (3.1)

The basic partition of � is denoted by πξ , ξ = L2−n3 ; its atoms Cξ ∈ πξ are cubes of
side ξ and Cξ (r), r ∈ �, denotes the atom which contains r .

The microscopic basic partition πγ,ξ is made by atoms Cγ,ξ = γ −1Cξ , Cξ ∈ πξ , Cγ,ξ

has N = (γ −1ξ)d elements. We write Cγ,ξ (x) = γ −1Cξ (γ x), Cξ ∈ πξ .
We say that two atoms Cγ,ξ and Dγ,ξ of the basic partition interact with each other if

there are x ∈ Cγ,ξ and y ∈ Dγ,ξ such that Jγ (x, y) > 0.
To simplify the notation we will drop the superscript (γ, ξ) from the cubes Cγ,ξ unless

confusion may arise.

3.1 The New Piecewise Constant Kernel

In the new process the rate at which x infects y �= x is λ∗Aγ (x, y). The new kernel Aγ (x, y)
is defined by averaging Jγ (x, y) over the atoms of the basic partition πγ,ξ , more precisely

Aγ (x, y) = 1

N 2

∑

x ′∈Cγ,ξ (x)

∑

y′∈Dγ,ξ (y)

Jγ (x ′, y′) (3.2)
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where Jγ (x, x) = 0 and N = |Cγ,ξ |.

3.2 Properties of A�

• For any x , Aγ (x, ·) is a probability, in fact
∑

y

Aγ (x, y) =
∑

D∈πγ,ξ

∑

y∈D
Aγ (x, y) =

∑

D∈πγ,ξ

Aγ (x, yD)|D|

= 1

N

∑

x ′∈C(x)

∑

D∈πγ,ξ

∑

y′∈D
Jγ (x ′, y′) =

∑

D∈πγ,ξ

∑

y′∈D
Jγ (x, y′)

=
∑

z

Jγ (x, z) = 1 (3.3)

where yD is any point in D. In the third equality we have used that |D| = N .
• Aγ (x, y) = 0 if C(x) and D(y) do not interact.
• If instead C(x) and D(y) interact

Aγ (x, y) ≤ γ d‖J (r , r ′)‖∞ =: cξd 1

N
(3.4)

We denote by PAγ ,γ the law of the auxiliary process with initial conditions unchanged,
see Definition 2.1 and by P Aγ ,γ the corresponding law of of the density variables

v
γ,ξ

i,t (x) = 1

N
|Cγ,ξ

i,t (x)|, Cγ,ξ

i,t = {x ′ ∈ Cγ,ξ (x) : Ut (x
′) = i} (3.5)

The following Theorem will be proved in Sect. 6.

Theorem 3.2 Fix T > 0 and t ∈ [0, T ], we denote by P Aγ ,γ
t the restriction of P Aγ ,γ to time

t. In analogy with (3.2) we define the kernel Aξ (r , r ′), r , r ′ ∈ �∗ as

Aξ (r , r
′) = 1

ξ2d

∫

Cξ (r)
dr1

∫

Cξ (r ′)
dr ′

1 J (r1, r
′
1) (3.6)

ThenP Aγ ,γ
t convergesweakly as γ → 0 to a probabilityP Aξ

t which is supported byϕξ (r , i; t)
r ∈ � which is the solution at time t of the equations

d

dt
ϕξ (r , i; t) = {ϕξ (r , i − 1; t) − ϕξ (r , i; t)}

∫

�

dr ′λ∗ϕξ (r
′, k; t)Aξ (r

′, r) (3.7)

when 1 ≤ i ≤ k − 1; for i = k

d

dt
ϕξ (r , k; t) = −ϕξ (r , k; t) + ϕξ (r , k − 1; t)

∫

�

dr ′λ∗ϕξ (r
′, k; t)Aξ (r

′, r) (3.8)

and for i = 0:

d

dt
ϕξ (r , 0; t) = ϕξ (r , k; t) − ϕξ (r , 0; t)

∫

�

dr ′λ∗ϕξ (r
′, k; t)Aξ (r

′, r) (3.9)

the initial condition being ϕξ (r , i; 0) = 1

|Cξ (r)|
∫

Cξ (r)
dr ′ ρ0(r ′, i), ρ0 as in Definition 2.1.

123



49 Page 6 of 25 L. Chariker et al.

Observe that ϕξ (r , i; t), r ∈ � is constant on the cubes Cξ . Convergence of the space-
time joint distribution of the densities will be proved in Sect. 8 together with the following
Theorem.

Theorem 3.3 The function ϕξ (r , i; t), r ∈ � , t ∈ [0, T ] converges as ξ → 0 to ρt (r , i)
solution of the Eqs. (2.2)–(2.4).

Sketch of the proof of Theorem 3.2

In the theory of hydrodynamic limit for stochastic interacting particle systems a typical
procedure is to use the martingale decomposition for the variables of interest, see for instance
the book [11]. Applied to our case we have

v
γ,ξ

i,t (x) − v
γ,ξ

i,0 (x) =
∫ t

0
ds Lγ v

γ,ξ

i,s (x) + Mγ,ξ

i,t (x) (3.10)

where Lγ is the generator of the process andMγ,ξ

i,t (x) is amartingale.Mγ,ξ

i,t (x) is a “fluctuation

term” and one can often prove that in the hydrodynamic limit N → ∞, Mγ,ξ

i,t (x) vanishes

with probability going to 1. The hardest problem is to control Lγ v
γ,ξ

i,t (x), whose explicit
expression for 1 ≤ i ≤ k − 1 in our case is

Lγ v
γ,ξ

i,t (x) =
(
v

γ,ξ

i−1,t (x) − v
γ,ξ

i,t (x)
)
λ∗∑

y

Aγ (y, x)vγ,ξ

k,t (y) (3.11)

By compactness v
γ,ξ

i,t (x) converges (by subsequences) weakly in probability to some limit

density but the problem is that in (3.11) the functions vγ,ξ appear quadratically and in general
the weak limit of a product is not the product of the weak limits of the factors.

To close the equations one then needs to prove a factorization property for the v
γ,ξ

i,t , i.e.
propagation of chaos or local equilibrium. We overcome this difficulty by using the same
method as in [2, 5]. We discretize time, see Sect. 4: we use a mesh δ which will vanish after
taking the limit γ → 0 and study the process in the generic time interval [nδ, (n + 1)δ] with
n ≤ δ−1T having conditioned on the values of the potential Ut (x) at time t = nδ.

The increments of the densities in a time interval [nδ, (n+1)δ] (having fixed the potentials
at time nδ) are given in (4.7)–(4.9) in terms of variables MC,D;i , C , D cubes of the basic
partition, i ∈ {0, .., k}, and variables MD , see (4.6).

Probability estimates onMC,D;i are obtained in Theorem 5.1, those for MD in Theorem
5.4. The proof of Theorem 3.2 is then given in Sect. 6.

The crucial point is to prove the probability estimates stated in Theorem 5.1 and in The-
orem 5.4. We use a graphical representation of the process where we represent by an arrow
(x, y) the infection to the individual at y due to the individual at x ; the recovery of an
individual at x is described by a “marked point”.

The collection of arrows and marked points define a natural graph structure, see the
paragraph A graph structure in the next section. To reconstruct the true process we introduce
time variables t(x, y) and t(x), t(x, y) is a finite sequence of times tm(x, y) and t(x) of times
tm(x). t(x, y) and t(x) are mutually independent Poisson processes with mean λ∗Aγ (x, y)
and respectively mean 1.

The above graph structure is realized by drawing an arrow (x, y) at a time t ∈ t(x, y)
and a marked point at x at t ∈ t(x). Knowledge of all t(x, y) and t(x) allows to reconstruct
the true process, see the paragraph A realization of the process: the clock process in Sect. 4.
However to know whether at t = t(x, y) there is an infection we need to know all the values
t(x ′, y′; s) and t(x ′; s) for all s ≤ t as well as the values of the initial potentials.
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The analysis of the graph structure of arrows and marked points ignoring the times when
they are drawn is quite simple because the variables t(x, y) and t(x) aremutually independent.
The first crucial point is that an arrow (x, y) corresponds to an infection if at the initial time
U (x) = k and U (y) = i , i < k, provided that the cluster containing (x, y) is made only by
the arrow (x, y), see Lemma 4.1 and the paragraph A graph structure in the next section for
the definition of clusters. Analogous property holds for marked points. Thus when clusters
have only one element the time when the event occurs is not relevant.

The second crucial point is that clusters with more than one element are probabilistically
negligible. An estimate is proved in Corollary 4.4. As argued after (5.8) this is good enough
for clusters with at least 3 elements, for clusters with only two elements we have a more
refined argument proved in Lemma 5.3.

The crucial step in the proof of Corollary 4.4 is to reduce to a branching process which is
studied in Appendix A.

4 Time Discretization and a Realization of the Process

4.1 Time Discretization

Wediscretize timewithmesh δ = 2−n2 , n2 ≥ 1.Wefix δ and a time interval [nδ, (n+1)δ], for
a while we will study the process in such a time interval having conditioned on the valuesUnδ

of the potentials at time nδ. By choosing δ small enough the process becomes considerably
simpler and we will exploit the following realization of the process.

4.2 A Realization of the Process: The Clock Process

We attach to any ordered pair (x, y), x �= y, independent clocks called (x, y)-clocks which
ring at exponential rate λ∗Aγ (x, y). The clocks start at time nδ and are stopped at time
(n+ 1)δ, recall that we are studying the process restricted to the time interval [nδ, (n+ 1)δ].
We denote by t(x, y) the times when the (x, y)-clock rings. We introduce also x-clocks
which ring at rate 1, t(x) being the times when the x-clock rings. All the above clocks are
independent of each other.

Our process is recovered as follows. If the (x, y)-clock rings and at the time of the ring
U (y) < k and U (x) = k then U (y) → U (y) + 1. Moreover if the x-clock rings at a time
whenU (x) = k thenU (x) → 0. All these rings are effective while the other rings where the
above conditions are not fulfilled are ineffective, the potentials are unchanged and they can
be ignored. However it is a very complicated task to understand whether a clock ring is or
is not effective, it depends on all the clock rings {t(x, y); t(x)}. As already mentioned it is
convenient to introduce a graph structure.

4.3 A Graph Structure

When the (x, y)-clock rings we draw an oriented arrow (x, y), when the x-clock rings we
draw amarked point at x . Two arrows are connected if they have a point in common, amarked
point is connected to an arrow if it is one of the two points of the arrow. Clusters are the
maximal connected sets of marked points and arrows. Notice that a same arrow may appear
several times in a cluster as well as a same marked point. In the Appendix we compute the
probability of a cluster.
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We denote by C1 the clusters made by a single element, i.e. either a marked point or an
arrow. C j are the clusters with j elements. We will see that if the time mesh δ is small the
relevant clusters are the single clusters C1. In such a case we have:

Lemma 4.1 Let Unδ(x) = k, Unδ(y) = i , i < k, and let C1 = (x, y) then U(n+1)δ(x) = k
and U(n+1)δ(y) = i + 1. Analogously if x is a marked point with Unδ(x) = k and C1 = x
then U(n+1)δ(x) = 0

Proof The potentialsUnδ(x) andUnδ(y) can only changewhen the (x, y)-clock rings because
(x, y) = C1 and all the other arrows are not connected to (x, y) nor the marked points. Then
by the assumptionUnδ(x) = k andUnδ(y) = i the (x, y)-ring is effective hence the statement
in the lemma. The case of C1 = x is proved similarly. �
Definition 4.2 In the sequel we will denote by c constants which do not depend on N and δ.

The following Theorem is proved in the Appendix.

Theorem 4.3 For any a ∈ (0, 1) and any ε > 0 such that 1− a− 2ε > 0, there is a constant
c so that for any γ and δ small enough the following holds. Let (x, y) be an arrow then for
any two atoms C and D of the basic partition

N−1
∑

x∈C

∑

y∈D

∑

j≥1

δ−aj
∑

C j�(x,y)

PAγ,γ
[
C j
] ≤ cδ1−a−2ε (4.1)

Moreover

N−1
∑

x∈C

∑

j≥1

δ−aj
∑

C j�x
P Aγ,γ

[
C j
] ≤ cδ1−a−2ε (4.2)

We will use the following consequence of Theorem 4.3:

Corollary 4.4 Let C and D be two atoms of the basic partition, then for any j∗ ≥ 1

PAγ,γ
[
N−1

∑

x∈C

∑

y∈D

∑

j≥ j∗
1C j�(x,y) > δbj

∗] ≤ cδ(a−b) j∗+1−a−2ε, (4.3)

where a ∈ (0, 1), b ∈ (0, 1), for ε as in Theorem 4.3. Analogously

P Aγ,γ
[
N−1

∑

x∈C

∑

j≥ j∗
1C j�x > δbj

∗] ≤ cδ(a−b) j∗+1−a−2ε, (4.4)

where a ∈ (0, 1), b ∈ (0, 1).

Proof We take a > 0 and write
∑

j≥ j∗

∑

C j�(x,y)

PAγ,γ [C j ] =
∑

j≥ j∗
δ jaδ− ja

∑

C j�(x,y)

PAγ,γ [C j ]

≤ δ j∗a∑

j

δ− ja
∑

C j�(x,y)

PAγ,γ [C j ]

Then using Theorem 4.3 we have

N−1
∑

x∈C

∑

y∈D

∑

j≥ j∗

∑

C j�(x,y)

PAγ,γ [C j ] ≤ cδ j∗aδ1−a−2ε (4.5)

By the Markov inequality we then have (4.3). The proof of (4.4) is similar and omitted. �
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For simplicity, in the sequel we write Pγ instead of PAγ,γ .

Definition 4.5 We denote by κx,y,i (n), i < k, the number of effective (x, y)-rings in the
time interval [nδ, (n + 1)δ), namely those such that when the clock rings U (x) = k and
U (y) = i ; we denote by κx (n) the number of effective x-rings, namely the times t in t(x)
when Ut (x) = k. We then define for two cubes C and D

MC,D;i (n) =
∑

x∈C

∑

y∈D
κx,y,i (n), i < k; MD(n) =

∑

x∈D
κx (n) (4.6)

Since in the following n is fixed we drop the dependence on n in (4.6).
Recalling (3.5) for notation we have for 0 < i < k

vi,(n+1)δ(y) − vi,nδ(y) = 1

N

∑

C

[MC,D(y);i−1 − MC,D(y);i ] (4.7)

v0,(n+1)δ(y) − v0,nδ(y) = 1

N

(
MD(y) −

∑

C

MC,D(y);0
)

(4.8)

vk,(n+1)δ(y) − vk,nδ(y) = 1

N

(
− MD(y) +

∑

C

MC,D(y);k−1

)
(4.9)

5 Probabilty Estimates

In this Section we estimate MD and MC,D;i , i < k, see Definition 4.5. They are in general
very complicated functions in the space of the clock rings {t(x, y); t(x)}, we shall see however
that only cases with few rings are important, the others give a small contribution. This will
be the crucial point in the proof of the following theorem, Theorem 5.1, which concerns the
number of events where an individual in a cube C with potential k infects an individual in
the cube D which has potential i < k.

Probabili t y estimates onMC,D;i
Recall that we have fixed a time interval [nδ, (n + 1)δ] and we will not make explicit the

dependence on such interval unless confusion may arise.

Theorem 5.1 For any θ ∈ (0, 1), a ∈ ( 12 , 1), b ∈ ( 13 ,
2
3a) and ε < 1−a

2 there is a constant c
so that for all i < k and all x such that Unδ(x) = k and all y so that Unδ(y) = i

Pγ
[
|N−1MC(x),D(y);i − λ∗δN Aγ (x, y)vk,nδ(x)vi,nδ(y)|

≤ c(N−ε + N−θ + δ3b + δ2−a)
]

≥ 1 − c
( δ2

N 1−ε
+ δ

N
+ δλ∗

N 1−2θ + δ1+2a−3b−2ε + δa

N

)
(5.1)

Notice that the conditions a ∈ ( 12 , 1), b ∈ ( 13 ,
2
3a) and and ε < 1−a

2 imply that 2a−3b−2ε >

0.

The proof will be obtained in several steps.
The first step is to reduce to cases where |t(x, y)| = 1. To this end, recalling Definition

4.5, we consider two cubes C and D and for i < k we write

MC,D;i =
∑

x∈C

∑

y∈D
κx,y,i1|t(x,y)|=1 + RC,D;i (5.2)
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where

RC,D;i =
∑

x∈C

∑

y∈D
κx,y,i1|t(x,y)|>1

Lemma 5.2 There is a constant c (independent of N and δ) so that for any ε > 0:

Pγ
[ 1

N
RC,D;i > N−ε

]
≤ c

δ2

N 1−ε
(5.3)

Proof Recall that by definition

Pγ
[
|t(x, y)| = n

]
= e−λ∗δAγ (x,y)

[
λ∗δAγ (x, y)]n

n! (5.4)

We then bound

1

N
RC,D;i ≤ 1

N

∑

x∈C

∑

y∈D
|t(x, y)|1|t(x,y|>1

and using (3.4) we get

Eγ
[ 1

N
RC,D;i

]
= 1

N

∑

x∈C

∑

y∈D

∞∑

k=2

ke−λ∗δAγ (x,y) [λ∗δAγ (x, y)]k
k! ≤ c

δ2

N

By the Markov inequality we then get (5.3). �
Let x be such that Unδ(x) = k and y be such that Unδ(y) = i , then

κx,y,i1|t(x,y)|=1 = 1|t(x,y)|=11{(x,y)=C1} + κx,y,i1|t(x,y)|=1

∑

j≥2

∑

C j

1{(x,y)∈C j }

= 1|t(x,y)|=1 + 1|t(x,y)|=1[κx,y,i − 1]
∑

j≥2

∑

C j

1{(x,y)∈C j } (5.5)

Thus from (5.2) we get

| 1
N
MC,D;i − 1

N

∑

x∈C

∑

y∈D
1|t(x,y)|=1| ≤ 1

N
RC,D;i + 1

N
TC,D (5.6)

where

TC,D =
∑

j≥2

T ( j)
C,D, T ( j)

C,D =
∑

x∈C

∑

y∈D
1{(x,y)∈C j } (5.7)

having used that 0 ≤ κx,y,i ≤ 1 if 1|t(x,y)|=1.
By Corollary 4.4 we have:

Pγ
[ 1

N

∑

j ′≥ j

T ( j ′)
C,D > δ jb

]
≤ cδ(a−b) j+1−a−2ε a ∈ (0, 1), b ∈ (0, 1) (5.8)

We will eventually need to iterate the estimate over all the time intervals [δn, δ(n + 1)], i.e.
δ−1 times, so that we want δ−1δ jb and δ−1δ j(a−b)+1−a−2ε to vanish when δ → 0. When
applied to the case j = 2, the above requires that b > 1/2 and also that b < a/2 < 1/2, so
that for j = 2 the conditions cannot be fulfilled.
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Instead if j ≥ 3 by choosing

a ∈
(1

2
, 1
)

and b ∈
(1

3
,
2

3
a
)

so that 2a − 3b > 0

we have for ε sufficiently small

− 1 + jb > 0, −1 + j(a − b) + 1 − a − 2ε > 0, ∀ j ≥ 3 (5.9)

The analysis of T (2)
C,D requires a more refined estimate which is the content of the next

lemma.

Lemma 5.3 For any a > 0

Pγ
[ 1

N
T (2)
C,D > δ2−a

]
≤ c

δa

N
(5.10)

Proof A cluster C2 which contains the arrow (x, y) is equal to

{(x, y), (y, z)} ∪ {(x, y), (z, y)} ∪ {(x, y), (x, z)}
∪ {(x, y), (z, x)} ∪ {(x, y), x} ∪ {(x, y), y}

in the last two terms besides the arrow (x, y) the single poins x and y are marked points and
in the previous terms z is any point different from x and y..

Since the estimates are similar for simplicity we just examine the case with two arrows,
(x, y), (y, z). We denote by ηx,y,z ∈ {0, 1} the indicator of this set, thus

ηx,y,z = 1|t(x,y)|=11|t(y,z)|=11C2={(x,y),(y,z)}

We call

F = 1

N

∑

x∈C

∑

y∈D

∑

z

ηx,y,z

We first compute the expectation recalling that the clocks are independent (see the paragraph
A realization of the process: the clock process) and using (3.4) we get

E
[
F
] = 1

N 3

∑

x∈C

∑

y∈D

∑

z

e−λ∗δ(Aγ (x,y)+Aγ (y,z))(λ∗δ)2N Aγ (x, y)N Aγ (y, z))

≤ cξdδ2

We next compute the variance and using independence we get

Eγ
[
(F − Eγ [F])2

]

= 1

N 4

∑

x∈C,y∈D

∑

z

e−λ∗δ(Aγ (x,y)+Aγ (y,z))(λ∗δ)2N Aγ (x, y)N Aγ (y, z))

− Eγ [F]2

≤ 1

N
cξdδ2

Thus (5.10) follows from Chebishev inequality. �
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Proof of Theorem 5.1 We fix x̄ and ȳ as in the hypothesis of the Theorem and we call C̄ =
C(x̄) and D̄ = D(ȳ).

We write (recall (5.6))

|N−1MC̄,D̄;i − λ∗δN Aγ (x̄, ȳ)vk,nδ(x̄)vi,nδ(ȳ)|
≤ |SN − λ∗δN Aγ (x̄, ȳ)vk,nδ(x̄)vi,nδ(ȳ)| + 1

N
RC̄,D̄;i + 1

N
TC̄,D̄ (5.11)

where

SN = 1

N

∑

x∈C̄

∑

y∈D̄
1|t(x,y)|=1, (5.12)

The term RC̄,D̄;i has been treated in Lemma 5.2 and the one with TC̄,D̄ is estimated in (5.8)
for j = 3 and Lemma 5.3 for j = 2.

We first compute Eγ [SN ], from (5.4) we get

Eγ [SN ] = e−λ∗δAγ (x̄,ȳ)λ∗δN Aγ (x̄, ȳ)
|C̄ |
N

|D̄|
N

= e−λ∗δAγ (x̄,ȳ)λ∗δN Aγ (x̄, ȳ)vk,nδ(x̄)vi,nδ(ȳ) (5.13)

By (3.4) N Aγ (x̄, ȳ) ≤ cλ∗ξd so that the right hand side of (5.13) is bounded by δλ∗cξd .
Since the clocks are independent we get

E
γ
[(
SN − E

γ [SN ])2
]

= 1

N 2

∑

x∈C̄

∑

y∈D̄

{
Pγ (|t(x, y)| = 1) − Pγ (|t(x, y)| = 1)2}

≤ c
δλ∗ξd

N
(5.14)

By (3.4)

1 − e−λ∗δAγ (x̄,ȳ) ≤ c
δξd

N
(5.15)

Thus, given any θ > 0 by Chebishev inequality and using(5.14) and (5.15) we get

Pγ
[
|SN − λ∗δN Aγ (x̄, ȳ)vk,nδ(x̄)vi,nδ(ȳ)| > N−θ

]
≤ c

δξd

N
+ c

δλ∗ξd

N 1−2θ (5.16)

We thus get the theorem. �
Probabili t y estimates o f MD

The analysis of MD defined in (4.6) is very similar to the one we did for MC,D;i and
sketched below. The analogue of Theorem 5.1 is:

Theorem 5.4 For any θ ∈ (0, 1), a ∈ ( 12 , 1), b ∈ ( 13 ,
2
3a) and ε < 1−a

2 there is a constant c
so that for all x such that Unδ(x) = k

Pγ
[
|N−1MD(x) − δvk,nδ(x)| ≤ c(N−ε + δN−1 + N−θ + δ3b + δ−2a)

]

≥ 1 − c
( δ2

N 1−ε
+ δ

N
+ δλ∗

N 1−2θ + δ1+2a−3b−2ε + δa

N

)
(5.17)
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We write

MD =
∑

x∈D
κx1|t(x |=1 + RD, RD =

∑

x∈D
κx1|t(x)|>1 (5.18)

Proceeding as in the proof of Lemma 5.2 we have (proof is omitted):

Lemma 5.5 For all ε > 0 we have

Pγ [ 1
N
RD > N−ε] ≤ c

δ2

N 1−ε
(5.19)

Analagously to (5.5) we write

κx1|t(x)|=1 = 1|t(x)|=11{x=C1} + κx1|t(x)|=1

∑

j≥2

∑

C j

1{x∈C j }

= 1|t(x)|=1 + 1|t(x)|=1[κx − 1]
∑

j≥2

∑

C j

1{x∈C j } (5.20)

Thus

| 1
N
MD − 1

N

∑

x∈D
1|t(x)|=1| ≤ 1

N
RD + 1

N
TD (5.21)

where

TD = T (2)
C,D +

∑

x∈D

∑

j≥3

∑

C j

1{x∈C j } (5.22)

The following lemma is a consequence of Corollary 4.4 and an argument very similar to
the one of Lemma 5.3:

Lemma 5.6 For any a ∈ ( 12 , 1) and b ∈ ( 13 ,
2
3a) we have

Pγ

⎡

⎣ 1

N

∑

x∈D

∑

j≥3

∑

C j

1{x∈C j } > δ3b

⎤

⎦ ≤ cδ1+2a−3b−2ε, Pγ

[
1

N
T (2)
D > δ2−a

]

≤ c
δa

N

(5.23)

Proof The first inequality is the estimate in (4.4) for j∗ = 3. We thus prove only the second
one. A cluster C2 which contains the marked point x is equal to

{x, (x, y)} ∪ {x, (y, x)}
We only examine the case {x, (x, y)} the other being similar. We call

F = 1

N

∑

x∈D

∑

y∈D
ηx,y, ηx,y = 1|t(x,y)|=11|t(x)|=1

Using that the clocks are independent and (3.4) we get

Eγ
[
F
] = 1

N

∑

x∈D

∑

y∈D

(
e−δδ{e−λ∗δAγ (x,y)λ∗δAγ (x, y)}

)
≤ cξdδ2
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We next compute the variance and using independence we get

Eγ
[
(F − Eγ [F])2

]
= 1

N 2

∑

x∈D

∑

y∈D
δe−δe−λ∗δAγ (x,y)λ∗δAγ (x, y) ≤ 1

N
cξdδ2

The Lemma follows from the Chebishev inequality. �
Proof of Theorem 5.4 We fix x̄ as in the hypothesis of the Theorem and we call D̄ = D(x̄).

Recalling (5.21) we write

|N−1MD − δvk,nδ(x)| ≤ |SN − δvk,nδ(x)| + 1

N
RD̄ + 1

N
TD̄ (5.24)

where

SN = 1

N

∑

x∈D̄
1|t(x)|=1, (5.25)

The term RD̄ has been treated in Lemma 5.5 and the one with TD̄ in Lemma 5.6.
We first compute Eγ [SN ]

Eγ [SN ] = e−δδ
|D̄|
N

= e−δδvk,nδ(x̄) (5.26)

Since the clocks are independent we get

E
γ
[(
SN − E

γ [SN ])2
]

= 1

N 2

∑

x∈D̄

{
Pγ (|t(x)| = 1) − Pγ (|t(x)| = 1)2} ≤ c

δ

N
(5.27)

Since 1 − e−δ ≤ c δ
N , given any θ > 0 and using (5.27) we get

Pγ
[
|SN − δvk,nδ(x))| > N−θ

]
≤ c

δ

N
+ c

δ

N 1−2θ (5.28)

�

6 Proof of Theorem 3.2

The aim in this section is to study the time-continuum limit of the densities when first
N = (γ −1ξ)d → ∞ and then δ → 0. To this end we study the process in the time interval
[0, T ] =

⋃

n<δ−1T

[nδ, (n + 1)δ).

Define

X ′
N ,δ(n) =

⋂

i<k

⋂

x,y∈�γ

{
|N−1MC(x),D(y);i (n)

− λ∗δN Aγ (x, y)vk,nδ(x)vi,nδ(y)| ≤ c(N−θ + δ1+ε)
}

(6.1)

X ′′
N ,δ(n) =

⋂

x∈�γ

{
|N−1MD(x)(n) − δvk,nδ(x)| ≤ c(N−θ + δ1+ε)

}
, (6.2)
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Lemma 6.1 Let

Gγ =
⋂

nδ≤T

(X ′
N ,δ(n) ∩ X ′′

N ,δ(n)) (6.3)

then

Pγ [Gγ ] ≥ 1 − δ−1T c(N−1+2θ + δ1+ε) (6.4)

Proof Observe that the sets in the curly brackets in (6.1) and (6.2) are constant on the cubes,
then the lemma follows from Theorems 5.1 and 5.4. �

We first take N → ∞ and then δ → 0, thus the probability of Gγ is as close to 1 as we
want if for any δ small enough we take N sufficiently large.

To underline the dependence of v on γ we write below v
γ

i,nδ(y) and we rewrite (3.5) as

v
γ

i,nδ(x) = 1

N

∑

y∈C(x)

1{Unδ(y)=i},

vγ (nδ) = {vγ

i;nδ
(x), x ∈ �γ , i ∈ {0, . . . , k}}, nδ ∈ [0, T ]. (6.5)

For 1 ≤ i ≤ k we call

Fγ (x, i; vγ (nδ)) :=
{vγ

i−1;nδ
(x) − v

γ

i;nδ
(x)}

∑

y

λ∗Aγ (y, x)vγ

k;nδ
(y) − v

γ

k;nδ
(x)1i=k (6.6)

Fγ (x, 0; vγ (nδ)) := −v
γ

0;nδ

∑

y

λ∗Aγ (y, x)vγ

k;nδ
(y) + v

γ

k;nδ
(x) (6.7)

Recalling (4.7), (4.8) and (4.9) in Gγ we have that for any n ≤ δ−1T and i ∈ {0, 1, .., k},
|vγ

i;nδ
(x) − {vγ

i;(n−1)δ(x) + δFγ (x, i; vγ ((n − 1)δ))}| ≤ c(N−θ + δ1+ε) (6.8)

having used that
∑

y

Aγ (y, x)vγ

k;nδ
(y) =

∑

C

N Aγ (yC , x)vγ

k;nδ
(yC ), with yC any point inC .

Define uγ (x, i; nδ), i ∈ {0, 1, .., k}, nδ ≤ T as the solution of the equations

uγ (x, i; nδ) = uγ (x, i; (n − 1)δ) + δFγ (x, i; uγ ((n − 1)δ))

uγ (x, i; 0) = v
γ

i;0(x) (6.9)

Observe that since the initial datum is constant on the cubes C of the partition then also
uγ (x, i; nδ) is constant on the cubes for any n. We thus may call ui (C, n) = uγ (x, i; nδ)

with any x ∈ C .

Lemma 6.2 Let ε < uγ (x, i; 0) < 1 − ε (see Definition 3.1), let T > 0 and ε′ such that

(1 − δ)δ
−1T ε =: ε′ (6.10)

Then ε′ < uγ (x, i; nδ) < 1 − ε′ for all x, i and n ≤ δ−1T .

Proof Let C be a cube of the basic partition, and let

Kn(C) =
∑

x

λ∗Aγ (x, y)uγ (x, k; nδ), y ∈ C (6.11)
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observing that the right hand side does not depend on which y we take in C . We then have

ui (C, n + 1) − ui (C, n) = Kn(C)
(
ui−1(C, n) − ui (C, n)

)
δ − δui (C, n)1i=k (6.12)

with u−1(C, n) ≡ 0. We call

θ(n) = min
i

ui (C, n), �(n) = max
i

ui (C, n) (6.13)

The upper bound

Let i such that �(n + 1) = ui (C, n + 1) and j such that �(n) = u j (C, n). By (6.12)
bounding ui−1(C, n) ≤ u j (C, n) and dropping the last term −δui (C, n)1i=k ≤ 0 we get

ui (C, n + 1) − u j (C, n) ≤ ui (C, n) − u j (C, n) + Kn(C)[u j (C, n) − ui (C, n)] δ
≤ −(u j (C, n) − ui (C, n))

(
1 − Kn(C) δ

)
(6.14)

It follows by induction from (6.14) that Kn(C) ≤ λ∗ for all n. Thus the right hand side of
(6.14) is negative for δ small enough and therefore�(n) ≤ �(0) ≤ ε which proves the upper
bound.

The lower bound

Let i such that θ(n + 1) = ui (C, n + 1) and j such that θ(n) = u j (C, n). We prove below
that for δ small enough

ui (C, n + 1) ≥ u j (C, n) − u j (C, n)δ namely θ(n + 1) ≥ θ(n)(1 − δ) (6.15)

From (6.15) we get for any n such that nδ−1 ≤ T

θ(n) ≥ (1 − δ)δ
−1T ε =: ε′ (6.16)

having used Definition 3.1. �
Proof of (6.15) Recalling the definitions of i and j from (6.12) we have

ui (C, n + 1) − u j (C, n) = ui (C, n) − u j (C, n) + Kn(C)[ui−1(C, n) − ui (C, n)] δ
−δui (C, n)1i=k (6.17)

We bound from below ui−1(C, n) ≥ u j (C, n). We also write the last term as [(ui (C, n) −
u j (C, n)) + u j (C, N )] δ having bounded 1i=k ≤ 1 and get

θ(n + 1) − θ(n) ≥ {[ui (C, n) − u j (C, n)]
(
1 − Kn(C)δ − δ

)
} − u j (C, n)] δ (6.18)

For δ small enough the curly bracket term is positive and (6.15) is proved. �
Let

‖vγ (nδ) − uγ (nδ)‖ := max
x,i

|vγ

i;nδ
(x) − uγ (x, i; nδ)| (6.19)

Lemma 6.3 In Gγ we have

sup
n:nδ<T

‖vγ (nδ) − uγ (nδ)‖ ≤ cT δ−1(N−θ + δ1+ε) (6.20)

which vanishes in the limit N → ∞ and then δ → 0.
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Proof There is c so that

max
x,i

|Fγ (x, i; vγ (nδ)) − Fγ (x, i; uγ (nδ))| ≤ c‖vγ (nδ) − uγ (nδ)‖ (6.21)

and therefore by (6.8)

‖vγ (nδ) − uγ (nδ)‖ ≤ c(1 + δ)‖vγ ((n − 1)δ) − uγ ((n − 1)δ)‖ + c(N−θ + δ1+ε)

(6.22)

By iteration

‖vδ(n) − uδ(n)‖ ≤
n∑

m=2

[c(1 + δ)]m(N−θ + δ1+ε) (6.23)

Since

[c(1 + δ)]T δ−1 ≤ c′ ≡ c′(T ) (6.24)

and n ≤ T δ−1, we get

‖vγ (nδ) − uγ (nδ)‖ ≤ c′T δ−1(N−2θ + δ1+ε) (6.25)

which concludes the prove the Lemma. �
We next define wγ (x, i; t), t ∈ [0, T ], which is the time continuous analogue of uγ , as

the solution of

d

dt
wγ (x, i; t) = Fγ (x, i;wγ (t)), wγ (t) = {wγ (x, i; t), x ∈ �γ , i ∈ {0, .., k}}

(6.26)

with initial condition wγ (0) = vγ (0). Then

|wγ (x, i; nδ) − {wγ (x, i; (n − 1)δ) + δFγ (x, i;wγ ((n − 1)δ)}| ≤ cδ2 (6.27)

and

‖wγ (nδ) − uγ (nδ)‖ ≤ c′T δ−1δ2 (6.28)

Therefore

‖wγ (nδ) − vγ (nδ)‖ ≤ cT
(
δ + δ−1N−θ + δε

)
, ∀n ≤ T δ−1 (6.29)

Proof of Theorem 3.2 We call

ωγ (r , i; t) := wγ (γ −1r , i; t), r ∈ �∗
γ (6.30)

and we observe that ωγ satisfies

d

dt
ωγ (r , i; t) = fγ (r , i;ωγ (t)), ωγ (t) = {ωγ (r , i; t), r ∈ �∗

γ , i = 0, .., k}, t ∈ [0, T ]
(6.31)

with initial condition ωγ (r , i; 0) = wγ (r , i; 0) and
fγ (r , i;ωγ (t))

:= {ωγ (r , i − 1; t) − ωγ (r , i; t)}
∑

Cξ

λ∗N Aγ (γ −1r ′, γ −1r)ωγ (r ′, k; t) (6.32)
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where r ′ is any point in Cξ . We have used that wγ is constant on the cubes Cγ,ξ as well as
Aγ . We now observe that (recall (3.6))

lim
γ→0

γ −d Aγ (γ −1r ′, γ −1r) = ξd Aξ (r
′, r) (6.33)

Thus, since N = (γ −1ξ)d we get that

lim
γ→0

‖ωγ (t) − ϕ
ξ
(t)‖ = 0, ϕ

ξ
(t) = {ϕξ (r , i, t), r ∈ �, i ∈ {0, . . . , k}} (6.34)

From Lemma 6.1, (6.29) and (6.34) we then get

lim
δ→0

lim
γ→0

Pγ
[
‖ϕ

ξ
(t) − vγ (nδ)‖ ≤ T

(
δ + δ−1N−θ + δε

)] = 1

which proves the Theorem. �

7 Stronger Version of Theorems 3.2 and 3.3

In this Section we prove Theorem 3.3 together with a stronger version of Theorem 3.2.
We introduce some new notation and definitions besides those in the previous sections.
We fix a time t = n0δ0 for some n0 and δ0. Since we consider the parameter δ of the form

2−n2 with n2 ∈ N we then have that for any δ < δ0 there is m so that t = mδ.
We define vC,i;t with C ∈ πξ , ξ = 2−n3 , n3 ∈ N, i ∈ {0, 1, .., k}.

vC,i;t = 1

|C |
∑

r∈C
1Ut (r)=i , |C | = ξd (7.1)

where by an abuse of notation we have calledU (r), r = γ x , the potentialU (x);Ut (r) is the
potential at time t .

So far we have studied the one-body correlation functions. In the next theorem we study
the many body space-time correlations, namely the law Pγ,δ,ξ

v of the finite dimensional
distribution v = (

vC�,i�;t� , � = 1, 2, . . . ,m
)
in the limit first γ → 0 then δ → 0 and finally

ξ → 0.

Theorem 7.1 With the above notation

lim
ξ→0

lim
δ→0

lim
γ→0

Pγ,δ,ξ
v = Pv (7.2)

where Pv is supported by w = (w1, .., wm) with

w� = 1

|C�|
∫

C�

drρ(r , i�; t�), � = 1, 2, . . . ,m (7.3)

ρ is the solution of (2.2)-(2.4).

Proof Recalling the definition of ωγ in (6.30) we write

vC�,i�;t� = {vC�,i�;t� − ωγ (r , i�; t�)} + ωγ (r , i�; t�) r ∈ C� (7.4)

In the set Gγ defined in (6.3) the curly bracket is uniformly bounded by c(N−θ + δε) and by
Lemma 6.1 Pγ (Gγ ) → 1 as γ → 0. Thus in the limits N → ∞ and then δ → 0 the curly
bracket goes to 0.
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From (6.34) ωγ (r , i�; t�) converges as γ → 0 to ϕ(r , i�; t�) ≡ ϕξ (r , i�; t�) solution of
(3.7), (3.8), (3.9) where the convolution term A ≡ Aξ is defined in (3.6) and

lim
ξ→0

Aξ (r , r
′) = lim

ξ→0

1

ξ2d

∫

Cξ (r)
dr1

∫

Dξ (r ′)
dr ′

1 J (r1, r
′
1) = J (r , r ′) (7.5)

From (7.5) it is easy to prove the

lim
ξ→0

ϕξ (r , i�; t�) = w(r , i�; t�)

and the Theorem is proved. �

7.1 Positive, Real Valued Times

Even though the set T is dense in [0, T ], yet it sounds non physical to restrict times to T .
The problem can be fixed easily using a variable time mesh.

To explain the idea we refer first to the simpler case of a single time t ∈ [0, T ] as in
Theorem 3.2. Suppose t /∈ T . We then consider a mesh δ ∈ {2−nt, n ∈ N}, and similarly a
second mesh δ′ ∈ {2−n(T − t), n ∈ N}. We can then use the proof of Theorem 3.2 in [0, t]
where the mesh is δ and again the proof of Theorem 3.2 in [t, T ] with the mesh δ′. The
extension to the case of Theorem 3.3 is similar. We have m times 0 < t1, · · · < tm < T we
then consider a mesh δ1 ∈ {2−nt1, n ∈ N}, . . . , δm+1 ∈ {2−ntm, n ∈ N}, and use the proof
of Theorem 3.2 in each one of the above time intervals.

8 Extensions

In this Section we study the macroscopic limit of other infection/recovery models.

8.1 Additional Recovery Jumps

Here we consider the case where also individual with potential i < k may recover i.e. the
individual at site x withU (x) = i recovers at rate λi and the potential after recovery becomes
U (x) = 0.

The macroscopic equations are:

d

dt
ρi (r , t) = −λiρi (r , t) + {ρi−1(r , t) − ρi (r , t)}

∫

�

dr ′λ∗ρk(r ′, t)J (r ′, r) (8.1)

when 1 ≤ i ≤ k − 1; for i = k

d

dt
ρk(r , t) = −ρk(r , t) + ρk−1(r , t)

∫

�

dr ′λ∗ρk(r ′, t)J (r ′, r) (8.2)

and for i = 0:

d

dt
ρ0(r , t) =

∑
λiρi (r , t) + ρk(r , t) − ρ0(r , t)

∫

�

dr ′λ∗ρk(r ′, t)J (r ′, r) (8.3)

The proof is similar to the proof of Theorem 7.1 and omitted.
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8.2 The Excitatory-Inhibitory NetworkModel

Referring to a neural network here we consider excitatory and inhibitory neurons; both
neurons have a potential in {0, .., k}. When a excitatory neuron with potential k fires the
potentials of all the other neurons with potential < k increase by 1. Similarly when an
inhibitory neuron with potential k fires the potentials of all the other neurons with potential
> 0 and < k decrease by 1. The rates of firing are λ∗

1k J
( j)
γ (x, y), j = 1 for excitatory and

j = 2 for inhibitory. Besides that neurons with potential k decay at rate 1 to a state with
potential 0.

For this model we derive the following macroscopic equations. We denote by ρ1
i (r , t) the

limit macroscopic density at position r and time t of the excitatory neurons with potential i
and by ρ2

i (r; t) the limit density of the inhibitory neurons with potential i .

d

dt
ρ

( j)
i (r , t) = {ρ( j)

i−1(r , t) − ρ
( j)
i (r , t)}

∫

�

dr ′λ∗
1ρ

(1)
k (r ′, t)J (1)(r ′, r)

+{ρ( j)
i+1(r , t) − ρ

( j)
i (r , t)}

∫

�

dr ′λ∗
2ρ

(2)
k (r ′, t)J (2)(r ′, r) (8.4)

when 1 ≤ i ≤ k − 1; for i = k

d

dt
ρ

( j)
k (r , t) = −ρ

( j)
k (r , t) + ρ

( j)
k−1(r , t)

∫

�

dr ′λ∗
1ρ

(1)
k (r ′, t)J (1)(r ′, r) (8.5)

for i = 0

d

dt
ρ

( j)
0 (r , t) = ρ

( j)
k (r , t) + ρ

( j)
1 (r , t)

∫

�

dr ′λ∗
2ρ

(2)
k (r ′, t)J (2)(r ′, r)

−ρ
( j)
0 (r , t)

∫

�

dr ′λ∗
1ρ

(1)
k (r ′, t)J (1)(r ′, r) (8.6)

Convergence is in the sense of the finite dimensional distributions as in Theorem 7.1.
It was shown in [1] that in the excitatory-only network, the only nontrivial steady states are

spatially uniform and linearly stable. Including inhibitory neurons introduces spatially non-
uniform steady states for certain values of the parameters. For such parameters, the spatially
uniform steady states become unstable. This can happen as symmetric inhibitory coupling
between two regions causes minor differences in activity levels to grow larger: an increase
in activity in one region will suppress the other, which in turn releases inhibition on the first
and causes its activity level to rise further.

8.3 General Microscopic Model

Place at each site x ∈ Z
d a finite-state, continuous-time Markov chain U (x, t) with state

space S = {0, . . . , k}. For any pair of states i and j there is an intrinsic transition rate from
i to j , denoted as gi jγ (x), dependent on the scaling parameter γ and location x . Any other

site y at any state U (y, t) = l ∈ {0, . . . , k} will have an additive effect λi jl J
i jl
γ (y, x) on

the transition rates at x from i to j . Then together, for any i �= j ∈ S, the time-dependent
transition rate from i to j , denoted qi j (x, t), is given by

qi j (x, t) = gi jγ (x) +
∑

l

λi jl
∑

y∈Zd

J i jlγ (y, x)δ(U (y, t) − l),
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where λi jl ≥ 0, gi jγ (x) = gi j (γ x), and J i jlγ (x, y) = γ d J i jl(γ x, γ y). The functions gi j (x)
and J i jl(x, y) describe the intrinsic transition rates and the site-to-site interactions in the
scaling limit. We take the assumptions on J i jl to be the same as before, and we assume gi j

to be continuous and bounded over x .
The Scaling Limit In the scaling limit γ → 0, the state of the system is described by local
state distributions �v(x, t) = (v1(x, t), . . . , vN (x, t)) which vary continuously in x ∈ R

d ,
and evolve in time according to macroscopic equations, for 0 ≤ i ≤ k,

v′
i =

∑

j �=i

[

g ji +
∑

l

λ j il R jil(x)

]

v j −
[

gi j +
∑

l

λi jl Ri jl(x)

]

vi (8.7)

with

Ri jl(x) =
∫

J i jl(y, x)vk(y)dy. (8.8)

Obtaining the Original, Generalized Contact Process The original, generalized contact
process can be recovered by choosing particular gi j and J i jl . Let gk0 = 1 and all other
gi j = 0 for i �= j . Next, for 0 ≤ i < k, let λi,i+1,k = λ∗ and all other λi jl = 0. Let J i,i+1,k

be defined as for the generalized contact process. Then the microscopic and macroscopic
equations are the same as for the generalized contact process.
Adding New Features The E-I neuron model from Sect. 8.2 can be recovered by letting
S = {0, . . . , k} × {0, . . . , k}, where the first coordinate corresponds to the E neuron voltage,
and second coordinate the I neuron voltage at a site. Excitatory interactions will correspond
to setting the terms λ(i, j),(i+1, j),(k,l), λ(i, j),(i, j+1),(k,l), as well at the associated J terms, and
inhibitory interactionswill correspond to setting the termsλ(i, j),(i−1, j),(l,k),λ(i, j),(i, j−1),(l,k),
as well as their associated J terms.

An external drive can be added bymaking nonzero the terms g(i, j),(i+1, j) and g(i, j),(i, j+1).
A neuronal leak could be modeled at least approximately by setting g(i, j),(i−1, j) and
g(i, j),(i, j−1).

The proofs of all these extensions follow the same steps as in the proof of Theorem 7.1
with new clock processes associated to gi jγ (x) and λi jk J

i jk
γ (y, x). As before all these clocks

are independent and we can repeat the arguments used in Sects. 3–7.
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Appendix A Clusters and Branching Processes

In this appendix wewill prove Theorem 4.3. For completeness we first recall some definitions
and notation.

A configuration is the set of arrows and marked points with their multiplicity which are
described respectively by integer valued functions m(z, z′) and m(z′′), m(z, z′) = 0 if the
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arrow (z, z′) is absent and m(z′′) = 0 if z′′ is not a marked point. Then the probability of a
configuration is

P({m(z, z′),m(z′′}) =
⎧
⎨

⎩

∏

(z,z′)
e−λ∗δA(z,z′) [λ∗δA(z, z′)]m(z,z′)

m(z, z′)!

⎫
⎬

⎭

⎧
⎨

⎩

∏

z′′
e−δ δm(z′′)

m(z′′)!

⎫
⎬

⎭
(A1)

where P = PAγ ,γ and A(z, z′) = Aγ (z, z′).
A cluster C is a maximal connected set of arrows with their multiplicity and marked

points with their multiplicity. Let V = V (C) be the set of arrows in C and let m(z, z′) the
multiplicity of the arrow (z, z′) and m(z′′) the multiplicity of the marked point z′′. Call TV
the union of starting and endpoints of the arrows in V . Maximality means that there is no
arrow starting from T c

V and ending at TV . Then

P(C) =
⎧
⎨

⎩

∏

(z,z′)∈V
e−λ∗δA(z,z′) [λ∗δA(z, z′)]m(z,z′)

m(z, z′)!

⎫
⎬

⎭

⎧
⎨

⎩

∏

z′′∈TV
e−δ δm(z′′)

m(z′′)!

⎫
⎬

⎭

⎧
⎨

⎩

∏

z∈T c
V ,z′∈TV

e−λ∗δA(z,z′)

⎫
⎬

⎭
(A2)

With reference to (4.1) we fix an arrow (x, y) and write
∑

j≥1

δ−aj
∑

C j�(x,y)

P
[
C j
] = S (A3)

where

S :=
∑

C�(x,y)

P
[
C
]
δ−a|C|, a ∈ (0, 1) (A4)

where |C| is the number of elements in C, namely

|C| =
∑

(z,z)∈V
m(z, z′) +

∑

z′′∈TV
m(z′′) (A5)

The purpose is to prove

S ≤ cδ1−a−2ε 1

N
(A6)

which then implies (4.1).
We perform the sum over C � (x, y) by first summing over the multiplicities and get

S =
∑

V�(x,y)

⎧
⎨

⎩

∏

(z,z′)∈V
e−λ∗δA(z,z′)

[
eλ∗δ1−a A(z,z′) − 1

]
⎫
⎬

⎭

⎧
⎨

⎩

∏

z′′∈TV
e−δeδ1−a

⎫
⎬

⎭

×
⎧
⎨

⎩

∏

z∈T c
V ,z′∈TV

e−λ∗δA(z,z′)

⎫
⎬

⎭
(A7)
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Since A(z, z′) ≤ c ξd

N ,

|eλ∗δ1−a A(z,z′) − 1| ≤ cλ∗δ1−a ξd

N
, e−δeδ1−a ≤ 1 + cδ1−a, e−λ∗δA(z,z′) ≤ 1 (A8)

We also split δ1−a = δ1−a−2εδ2ε , ε > 0 such that 1 − a − 2ε > 0, and get

S ≤ δ1−a−2ε
∑

V�(x,y)

⎧
⎨

⎩

∏

(z,z′)∈V

(
cλ∗δ2ε ξd

N

)
⎫
⎬

⎭

⎧
⎨

⎩

∏

z′′∈TV
(1 + cδ1−a)

⎫
⎬

⎭

≤ δ1−a−2ε
∑

V�(x,y)

⎧
⎨

⎩

∏

(z,z′)∈V

(
c′λ∗δ2ε ξd

N

)
⎫
⎬

⎭
(A9)

with c′ > c(1 + cδ1−a). The first factor because there is at least one arrow (namely (x, y)
which starts from x). We will prove that the term multiplying δ1−a−2ε is bounded by c/N
and thus prove (A6). The proof will exploit the branching structure of V .

We call x the root of the branching, (x, z11), .., (x, z
1
n1), z

1
1 = y, the arrows which start

from the root x (n1 ≥ 1 because V � (x, y)) and z11, .., z
1
n1 the nodes of the first generation.

From each node z1i of the first generation may or may not start new arrows: if no arrow starts
from all the nodes z1i then the branching ends, otherwise we call z21, .., z

2
n2 the nodes which

are the endpoints of the new arrows: these are the nodes of the second generation. Notice that
there may be arrow which go back to x , in that case that arrow will not produce descendants
because they are already included in the arrows of the first generation. Analogously we call
{zi1, .., zini } the endpoints of the arrows starting from nodes of the (i − 1)-th generation. The
branching ends when no arrow starts from the nodes of the last generation.

In terms of the branching the configuration are described by the following parameters:

k; (ni , 1 ≤ i ≤ k); (zij , 1 ≤ i ≤ k, 1 ≤ j ≤ ni );
(Ri

j , 1 ≤ i ≤ k − 1, 1 ≤ j ≤ ni )

which must satisfy

ni∑

j=1

Ri
j = ni+1 (A10)

where
• k ≥ 1 is the number of generations,
• zij are the position of the nodes,

• Ri
j is the number of arrows which start from zij .

Writing (A9) in terms of the branching we get

S ≤ δ1−a−2ε
∑

k≥1

∑

(ni )

∑

(zij )

∑

(Ri
j )

(
c′λ∗δ2ε ξd

N

)n1{
k−1∏

i=1

(
c′λ∗δ2ε ξd

N

)Ri
1+···+Ri

ni
}
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By (A10) and since zij is the endpoint of an arrow, so that it may have at most N values, then

the sum over (zij ) is bounded by Nn1−1+n2+..+nk (recall that z11 = y) we get

∑

(zij )

( 1

N

)n1{
k−1∏

i=1

( 1

N

)Ri
1+···+Ri

ni
}

≤ 1

N

We thus have

S ≤ 1

N
δ1−a−2ε

∑

k≥1

∑

(ni )

∑

(Ri
j )

(
c′λ∗δ2εξd

)n1
k−1∏

i=1

(
c′λ∗δ2εξd

)Ri
1+···+Ri

ni

≤ 1

N
δ1−a−2ε

∑

k≥1

∑

(ni )

[c′λ∗ξd ]n1+..nk
∑

(Ri
j )

δ2εn1
k−1∏

i=1

(
δ2ε
)Ri

1+···+Ri
ni

We first estimate the sum on (Rk−1
j ) which satisfy (A10) and get

∑

(Rk−1
j )

(δ2ε)
Rk−1
1 +···+Rk−1

nk−1 ≤
[ ∞∑

m=0

(δ2ε)m
]nk−1 ≤ (1 + cδ2ε)nk−1 (A11)

writing δ2ε = δεδε and using (A10) we get

∑

(Rk−2
j )

(δ2ε)
Rk−2
1 +···+Rk−2

nk−2 ≤ δεnk−1
[ ∞∑

m=0

(δε)m
]nk−2 ≤ δεnk−1(1 + cδε)nk−2 (A12)

The other sums on (Ri
j ) with i < k − 2 are estimated as in (A12) getting

S ≤ 1

N
δ1−a−2ε

∑

k≥1

∑

(ni )

[c′λ∗ξd ]n1+..nk [δε(1 + cδε)]n1+..+nk−1

= 1

N
δ1−a−2ε

∑

k≥1

∑

(ni )

[c′λ∗ξdδε/2]n1+..nk [δε/2(1 + cδε)]n1+..+nk−1

≤ 1

N
δ1−a−2ε

∑

k≥1

[ ∞∑

n=1

[δε/2(1 + cδε)]n]k

≤ 1

N
δ1−a−2ε

∑

k≥1

(cδε/2)k (A13)

where for δ small enough we have bounded c′λ∗ξdδε/2 < 1. Thus (A6) follows from (A13).
�

The proof of (4.2) is reduced to that of (4.1) when we write

l.h.s. of (4.2) = 1

N

∑

x

∑

m(x)≥1

e−δ δm(x)

m(x)! + 1

N

∑

x,y

Sx,y (A14)

where Sx,y ≡ S as in (A4), having made explicit its dependence on x, y.
The first term in (A14) is the contribution of clusters with only the marked point x , the

other clusters give rise to the second term in (A14). (4.2)then follows from (A14) and (A6).
�
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