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Abstract
We study the time evolution of the Boltzmann entropy of a microstate during the non-
equilibrium free expansion of a one-dimensional quantum ideal gas. This quantumBoltzmann
entropy, SB , essentially counts the “number” of independentwavefunctions (microstates) giv-
ing rise to a specified macrostate. It generally depends on the choice of macrovariables, such
as the type and amount of coarse-graining, specifying a non-equilibrium macrostate of the
system, but its extensive part agrees with the thermodynamic entropy in thermal equilibrium
macrostates. We examine two choices of macrovariables: the U -macrovariables are local
observables in position space, while the f -macrovariables also include structure in momen-
tum space. For the quantum gas, we use a non-classical choice of the f -macrovariables. For
both choices, the corresponding entropies s f

B and sUB grow and eventually saturate. As in

the classical case, the growth rate of s f
B depends on the momentum coarse-graining scale.

If the gas is initially at equilibrium and is then released to expand to occupy twice the ini-
tial volume, the per-particle increase in the entropy for the f -macrostate, �s f

B , satisfies

log 2 ≤ �s f
B ≤ 2 log 2 for fermions, and 0 ≤ �s f

B ≤ log 2 for bosons. For the same initial

conditions, the change in the entropy �sUB for the U -macrostate is greater than �s f
B when

the gas is in the quantum regime where the final stationary state is not at thermal equilibrium.

Keywords Boltzmann entropy · Non-equilibrium · Macrovariables · Quantum gas

1 Introduction

Understanding the emergence of the second law for macroscopic systems from the reversible
microscopic dynamics was the remarkable achievement of Boltzmann [1–9]. He constructed
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an entropy function, satisfying the second law, for a typical individual microstate X of a
macroscopic system that is in amacrostate specified by the values of a collection ofmacrovari-
ables. This Boltzmann entropy is defined for systems both in and out of equilibrium as the
logarithm of the “number” of microstates corresponding to the system’s macrostate. For a
classical system, the microstates are specified by points X in phase space, and the Boltzmann
entropy of X is, up to an additive constant, the logarithm of the phase space volume of the
set of all microstates for which the macrovariables have the same values as they do for X .
For a quantum system, the microstates are specified by wave functions |�〉. This difference,
which allows observables to have indeterminate values in the quantum microstate, can make
the precise definition of quantum macrovariables and macrostates somewhat subtle [10–13],
and also allows for new non-classical choices of macrovariables, as we illustrate below. The
Boltzmann entropy of |�〉 is then the logarithm of the number of independent wave functions
that have the same values of the chosen macrovariables as |�〉 does. At thermal equilibrium,
for all proper choices of macrovariables this definition coincides, in its extensive part, with
the thermodynamic entropy of Clausius [14].

In a previous paper some of the authors investigated the time evolution of the Boltzmann
entropy for a freely expanding classical ideal gas, using two different choices of macrovari-
ables [15]. In the present paper, we extend this to a freely expanding quantum ideal gas.
We provide numerical results for the evolution of the microstates and the associated entropy
functions during free expansion. We consider both fermions and bosons and present results
in the low and high-temperature regimes.

Before moving on, we mention some of the earlier works relevant to our study. Quantum
quench of non-interacting fermions under various protocols have been studied using Wigner
functions in [16, 17]. Lattice fermions evolving from domainwall initial conditions have been
studied with a focus on the evolution of the density profile and the growth of entanglement
entropy [18, 19]. The diagonal entropy for isolated quantum systems has been studied [20] for
both integrable and non-integrable cases. Some other recent relevant discussions of entropy
in quantum systems in the nonequilibrium setting can be found in Refs. [21–25].

The rest of the paper is organized as follows. In Sect. (2) we discuss ideas related to the
definition of macrovariables, macrostates and the Boltzmann entropy in quantum systems. In
Sect. (3) we introduce the specific example that we will be analyzing in the paper. In Sect. (4)
we define our model of a quantum ideal gas and discuss aspects of its microscopic evolution.
In particular, we discuss properties of the single-particle density matrix in Sect. (4.1) and the
Wigner distribution function in Sect. (4.2). In Sect. (5.1) we discuss the U -macrovariables
and the corresponding Boltzmann entropy SUB . In Sect. (5.2) we define the single-particle
basis of states that are localized both in position and momentum space. This is then used to
define the f -macrovariables and the Boltzmann entropy S f

B for the quantum gas. In Sect. (6),
we present the numerical results. The results for fermions are presented in Sect. (6.1) and for
bosons in Sect. (6.2). We discuss and summarize our findings in Sect. (7).

2 Boltzmann Entropy for Quantum Systems

We now discuss the construction of macrostates and the Boltzmann entropy for isolated
macroscopic quantum systems. For a more detailed discussion see Refs. [10–13]. Consider
a quantum system with a Hilbert space H , whose wave function lies in an energy shell
HE of width �E � E . As macro observables, one option is to choose a set of commuting
coarse-grained operators {M̂k}, k = 1, . . . , J , meaning that the eigenvalues of each operator
are grouped into “bins” and all eigenvalues of that operator within each bin are set equal.
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The simultaneous diagonalization of all the M̂k operators then provides a decomposition of
the accessible Hilbert space into a sum of orthogonal subspaces Hν ,

HE =
⊕

ν

Hν, (1)

where ν = (ν1, . . . , νJ ) defines a macrostate, and Hν is the joint eigenspace of the M̂k

with eigenvalues νk . The Hν will be referred to as macro-spaces, with |Hν | = dim Hν

the dimension of the corresponding macro-space. One then associates a Boltzmann entropy
Sν = kB ln |Hν | to each of the macro-spaces. Let us denote by P̂ν the projector onto the
space Hν . Any microstate, which is a pure state |�〉, is said to be in the macrostate ν if
|�〉 is almost in Hν , i.e. if 〈�|P̂ν |�〉 ≈ 1, and then its Boltzmann entropy is given by
SB(|�〉) = Sν . It is expected for many systems, including the one we study here, that for
appropriate physical macrovariables if the initial pure state |�(0)〉 is in a given macrostate,
the time-evolved microstate |�(t)〉 will continue to be (at almost all times) in one single
macrostate, i.e. Schrodinger cat-like states will not occur. The exception being when the
system crosses from one macrostate to another.

As in the classical case, for a physical choice of the macrovariables, a particular macro-
space has by far the largest dimension, which we refer to as the equilibrium macro-space and
denote it by Heq. It is characterized by the fact |Heq| = (1 − ε)|HE |, ε � 1, which we
take as a physical requirement for any proper choice of the macrovariables. We also say that
a system is in equilibrium when its microstate |�〉 is in, or almost in, Heq.

Now consider the unitary time-evolution of a system that is initially prepared in a non-
equilibrium pure quantum state |�(0)〉. Non-equilibrium means that |�(0)〉 is not in, or not
almost in, the space Heq. It starts in one of the other macro-spaces Hν �=eq and with time it
moves between different macro-spaces until it eventually ends up in the equilibrium macro-
space and stays there for almost all subsequent times. It is expected that the non-equilibrium
system should evolve to macro-spaces of higher dimensions, leading to a monotonic growth
of entropy. This is what we would like to demonstrate in an explicit example. It is important
to note that we are able to define this Boltzmann entropy for the pure quantum state, |�(t)〉,
at any time [9].

2.1 Computing the Boltzmann Entropy

We note that the entropy Sν of the macrostate ν, and thus SB(|�(t)〉) for |�(t)〉 in Hν ,
is equal to the Gibbs-von Neumann entropy of a generalized microcanonical ensemble,
which is a mixed state that is uniform over (the unit sphere of) Hν . It is important to stress,
however, that this generalized microcanonical ensemble is not what we take as an accurate
microscopic description of the microstate; it is only being used as a construction to compute
the Boltzmann entropy of the microstate |�(t)〉 at time t . The Boltzmann entropy at a later
time t ′ > t is dictated by what macrostate the unitarily time-evolved microstate |�(t ′)〉
at that time corresponds to. If we were to instead unitarily time-evolve the density matrix
of this out-of-equilibrium generalized microcanonical ensemble, its Gibbs-von Neumann
entropy would not change in contrast to the second law of thermodynamics. A typical out-of-
equilibrium microstate will, as time advances, typically move to other macrostates of higher
Boltzmann entropy, so the Boltzmann entropy thereby does obey the second law for almost
all microstates. The macrostate does not time-evolve unitarily, due to it being constructed
via a coarse-graining with suitably chosen macrovariables.
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This generalizedmicrocanonical ensemble that is used to calculate the Boltzmann entropy
of the macrostate at time t may be replaced by an equilibrium ensemble for a fictitious system
where constraints have been imposed on all macrovariables to have particular values ν. Then,
since that is a macroscopic equilibrium system, the extensive part of its microcanonical
entropy should be equal to the extensive part of the Gibbs-von Neumann entropy of an
equivalent generalized canonical ensemble. This shows that we can arrive at a correct (to
leading order) count of the number of independentmicrostates inHν by calculating theGibbs-
von Neumann entropy of an equivalent generalized canonical ensemble. This is convenient
because in many cases, calculating properties is simpler in the canonical ensemble than in
the microcanonical ensemble.

If we accept, as is argued above, that the Boltzmann entropy of the microstate |�(t)〉 of
a macroscopic system is equal, to leading order in system size, to the Gibbs-von Neumann
entropy of a properly chosen generalized canonical ensemble, this allows us to skip the
step of defining the generalized microcanonical ensemble. We use the expectation values,
〈M̂k〉 = 〈�(t)|M̂k |�(t)〉, k = 1, . . . J , to define the “equivalent” generalized canonical
(GC) ensemble as

ρ̂GC = e−∑
k λk M̂k

ZGC
, (2)

where ZGC = Tr[e−∑
k λk M̂k ], (3)

and the Lagrange multipliers λk are obtained from the constraint equations

Tr [M̂k ρ̂GC] = 〈M̂k〉, k = 1, . . . , J . (4)

The resulting Boltzmann entropy SB for the microstate |�(t)〉 and the choice of {M̂k} is then
given by

SB = kB
∑

k

λk〈M̂k〉 + kB ln ZGC. (5)

We note that this is also equal to the maximum value of the Gibbs-von Neumann entropy

SGvN = −kBTr[ρ̂N ln ρ̂N ] (6)

over all ρ̂N , subject to the constraints Tr [M̂k ρ̂N ] = 〈M̂k〉 [26].
Using this generalized canonical approach to compute the Boltzmann entropy permits

more flexibility in the choice of macrovariables, as compared to those that adhere to the
conditions needed for the above construction of generalized microcanonical macrostates.
In particular, the spectra of the operators {M̂k} need not be coarse-grained, and for quan-
tum systems, these operators need not commute and may be microscopic operators, as we
demonstrate in the example below.

3 An Illustrative Example: A One-Dimensional Quantum Ideal Gas

In this work, we consider a quantum ideal gas of N particles on a circle of length L . We
examine the Boltzmann entropy for two different choices of macrovariables, schematically
described in Fig. 1, that are quantum analogs of those used for the classical ideal gas in Ref.
[15]:
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Fig. 1 Schematic of the macrovariables that we consider. (Top panel) U -macrovariables in which, the box
of length L is divided into cells of length δ. By U -macrovariables, we mean coarse-grained particle number,
momentum, and energy within each cell. (Bottom panel) f -macrovariables in which the macrovariables are
defined by coarse-graining in the single-particle phase space. By f -macrovariables we mean coarse-grained
particle numbers within each box of area �x�p. A macrostate corresponds to a specification of the values of
the macrovariables

1. U -macrovariables: These are specified by the three conserved fields of particle number,
momentum, and energy and are direct analogs of the corresponding classical macrovari-
ables [15]. They correspond to the usual fields that are used in the hydrodynamic
description of interacting systems — our non-interacting system has further conserved
quantities but we can choose to consider the coarse-grained description in terms of these
fields alone. More specifically, we divide our system of length L into A spatial cells of
size δ = L/A. We consider a set of operators {N̂	, P̂	, Ê	}, 	 = 1, 2 . . . A, correspond-
ing to the total number of particles, the total momentum, and the total energy in the 	th

cell. The precise definitions of these operators are given in Sect. (5.1). Given that the
system is in a microstate |�(t)〉, let 〈B̂〉 = 〈�|B̂|�〉 denote the expectation value of
any operator B̂. Then, the set of expectation values {N	, P	, E	} = {〈N̂	〉, 〈P̂	〉, 〈Ê	〉}
specify, as we argued in the preceding paragraphs, the U -macrostate.

2. f -macrovariables: For the classical gas, the f -macrovariables are the distribution f (x, p)
of the single-particle positions and momenta [15]. Here we do not use a direct quantum
analog of the classical macrovariables, but instead use a more microscopic choice, which
is permitted for the quantum gas: We choose a complete and orthonormal basis of single-
particle wavefunctions, each of which is approximately localized in position space within
a width �x and in momentum space with width �p. Such states will necessarily have
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to satisfy the uncertainty relation �x�p � �. As we will show in Sect. (5.2), it is
possible to construct such an orthonormal basis set on the circle with states that are
approximately localized in position space with �x = L/K and in momentum space
with �p = 2π�K/L , where K is an integer. We denote these single-particle basis states
by |ψα〉 with α ≡ (r , v), where r = 1, . . . , K and v = ϑK where ϑ ∈ Z. These
states are localized around x = r�x and p = ϑ�p. Let n̂α be the number operator
corresponding to the occupation of the state |ψα〉. The commuting operators {n̂α} form
a set of microvariables, since specifying all of their eigenvalues specifies the microstate
completely.
To define macrovariables for the quantum gas, we consider the expectation values {Dα =〈
n̂α

〉} in themicrostate |�〉. Since a pure state wavefunction of a quantum system implies a
probabilistic description, specifying only the {Dα} implies a coarse-graining, in the sense
that they do not specify the microstate. In fact, these expectation values {Dα} constitute
a good set of macrovariables that can be used to define a corresponding generalized
canonical ensemble and Boltzmann entropy, following the procedure outlined above.
The resulting Boltzmann entropy is [see Sect. (5.2) for details]

S f
B =

∑

α

[−Dα ln Dα∓(1∓Dα) ln(1∓Dα)] , (7)

where the negative and positive signs in the ∓ are for fermions and bosons, respectively.
This entropy can also be described from a generalized grand canonical ensemble, where
each of the single-particle states α has its own chemical potential μα in order to set Dα .
For the classical gas, the cells �x�p used to define the f -macrovariables must be large
enough so that they are typically occupied by many particles, in order to have enough
coarse-graining [15]. For the quantum gas, on the other hand, fully microscopic cells
may be used, and the needed coarse-graining is provided by using the expectation values
as the macrovariables.

4 Microscopic Model and Dynamical Evolution

Our system is a quantum ideal gas of N particles on a circle of length L . The microstate
of the system is a pure state |�(t)〉 or, using the position representation, the wavefunction
�(x1, x2, . . . , xN , t). This state evolves in time via the Schrödinger equation i�∂t� = Ĥ�

with the free circle Hamiltonian Ĥ = −[�2/(2m)]∑N
	=1 ∂2x	

. The gas is initially confined
to a part of the circle, of length aL with 0 < a < 1 (usually a = 1/2), which we refer to as a
“box”. The initial N -particle state |�(0)〉may be taken to be an eigenstate of the occupations
of the single-particle energy eigenstates in the box. We also compare our results to the initial
grand canonical mixed states in the box. At t = 0, the box walls are removed at both ends and
the gas is allowed to freely expand on the full circle. As the gas expands, we are interested
in the time evolution of the macrovariables U and f and of the corresponding entropies.

The single-particle energy eigenstates and eigenvalues on the circle are given by

ϕn(x) = 1√
L
e2π inx/L for x ∈ [0, L), (8)

εn = 1

2m

(
2πn�

L

)2

, (9)
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where n runs over all integers. These are also momentum eigenstates with eigenvalues
pn = 2πn�/L . A complete N particle basis of Fock states is specified by the occupa-
tions |{Nn}〉 with Nn ∈ {0, 1} for fermions and Nn ∈ {0, 1, . . . ,∞} for bosons, constrained
so that

∑
n Nn = N . We will find it useful sometimes to use the language of second quanti-

zation and so we define the particle creation and annihilation operators �̂†(x), �̂(x) which
create or annihilate, respectively, a particle at position x . For fermions, they satisfy the
anti-commutation relation {�̂(x), �̂†(x ′)} = δ(x − x ′), while for bosons they satisfy the
commutation relation [�̂(x), �̂†(x ′)] = δ(x − x ′). We also define the creation and annihi-
lation operators b̂†n , b̂n , corresponding to the single-particle energy eigenstate ϕn . These are
related to the position operators as �̂(x) = ∑

n b̂nϕn(x). In the Heisenberg representation,
these operators have simple time evolution for our noninteracting gas

b̂n(t) = e−iεn t/�b̂n(0). (10)

As we will see in the subsequent sections, for our purposes, it suffices to study the single-
particle density matrix and the corresponding Wigner function. Therefore, in the following
subsections, we discuss the evolution of the density matrix and the Wigner function.

4.1 Density Matrix

For our analysis of the dynamics, we will use the single-particle density operator ρ̂1. In the
Heisenberg picture, and in the basis of the single-particle energy eigenstates, ρ̂1 is a matrix
of operators, with operator-valued matrix elements

ρ̂1,mn(t) ≡ ρ̂1(pm, pn, t) = b̂†n(t)b̂m(t) . (11)

Note that this is normalized so
∑

n ρ̂1,nn(t) = N̂ is the operator for the total particle number.
In the position basis, the matrix elements of ρ̂1(t) are given by

ρ1(x, x
′, t) ≡ 〈x |ρ̂1(t)|x ′〉 = N

∫
dx2dx3 . . . dxN

�∗(x ′, x2, x3, . . . xN , t)�(x, x2, x3, . . . xN , t)

= Tr[�̂†(x ′)�̂(x)ρ̂N (t)], (12)

where ρ̂N (t) is the many-particle density matrix. For this given many-particle state ρ̂N , the
single-particle density matrix is the matrix of expectation values of the single-particle density
operator, which in the single-particle momentum eigenbasis we write as

ρ̃1(pm, pn, t) ≡ Tr
[
b̂†n(t)b̂m(t)ρ̂N

]

≡
〈
b̂†n(t)b̂m(t)

〉
= e−i(εm−εn)t/�ρ̃1(pm, pn, 0). (13)

Thus we can compute the evolution of ρ̂1 once we know the initial value, ρ̃1(pm, pn, 0),
which we now evaluate.

For the description of the initial state where the gas is confined to a box of length aL , we
will need the following single-particle “box” energy eigenspectrum

χs(x) =
√

2

aL
sin

sπx

aL
for x ∈ [0, aL], (14)

es = π2
�
2s2

2ma2L2 , (15)
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where s runs over all positive integers. The box and circle states are related by the transfor-
mation

χs(x) =
∞∑

n=−∞
Vsn ϕn(x), (16a)

Vsn =
aL∫

0

χs(x)ϕ
�
n(x) dx

=
√
2as

π(4a2n2 − s2)
[e−2π ina cos sπ − 1]. (16b)

Note that since {χs(x), s = 1, . . . ,∞} do not form a complete set for states on the circle, V
is not an invertible matrix.

As mentioned before, we are interested in the evolution of an N particle Fock state with
energy E . In our numerical implementation, we use the following protocol. We prepare the
system in a pure state |�(t = 0)〉 = |{ns}〉where the set {ns} is chosen such that∑s ns = N
and

∑
s nses = E . We would like to choose a pure state that is typical of a microcanonical

ensemble with specified E and N . One way to prepare such a typical state is to choose the
set {ns} from the the grand-canonical distribution

P({ns}) = 1

Z
e
−β

∑
s

(es−μ)ns
, (17a)

Z =
∏

s

[1 ± e−β(es−μ)]±1, (17b)

subject to the constraints
∑

s ns = N and
∑

s nses = E , where β and μ are such that
∑

s

f (es, β, μ) = N (18a)

∑

s

f (es, β, μ)es = E, (18b)

with f (e, β, μ) = 1

eβ(e−μ) ± 1
being the Fermi (+) /Bose (-) function. Here ns ∈ {0, 1} for

fermions (+) and ns ∈ {0, 1, . . . ,∞} for bosons (-). In practice, the constraints
∑

s ns = N
and

∑
s nses = E are difficult to satisfy exactly. Hence we chose the set {ns} such that the

constraints are satisfied within some desired tolerance. For this pure state, the single-particle
density matrix is given by

ρ̂P
1 (0) =

∞∑

s=1

ns |χs〉〈χs |, (19)

where the superscript “P” denotes a pure state.
We compare our results for the pure initial state with the mixed (thermal) state described

by the single-particle density matrix

ρ̂M
1 (0) =

∞∑

s=1

f (es, β, μ) |χs〉〈χs |, (20)

where the superscript “M” in Eq. (20) denotes mixed thermal state. Using the box-to-circle
transformation in Eq. (16a), we can write the density matrix in Eq. (20) in terms of the circle
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eigenfunctions to give

ρ̃M
1 (pm, pn, 0) =

∞∑

s=1

f (es, β, μ)VsmV
�
sn . (21)

Using Eq. (13), the evolution of the density matrix in Eq. (21) is thus given by:

ρ̂M
1 (t) =

∞∑

s=1

f (es, β, μ)

∞∑

m,n=−∞
VsmV

�
sn e

−i(εm−εn)t/� |ϕm〉〈ϕn |. (22)

The pure state density matrix ρ̂P
1 has a similar representation with f (es, β, μ) replaced

by ns in Eqs. (21) and (22). Note that the normalization condition Trρ̂1(t) = N implies
(VV †)ss = 1. The density matrix in Eq. (22) and the corresponding representation of ρ̂P

1 (t)
are used to calculate local densities corresponding to conserved quantities.

4.2 Wigner Distribution Function

The Wigner distribution function (WDF) was introduced by Wigner [27, 28] as a quantum
analogue of the phase space distribution in classical systems. In 1-d, on the infinite line, the
WDF, denoted by w(x, p, t), is defined as

w(x, p, t) = 1

2π�

∞∫

−∞
dy ρ1

(
x + y

2
, x − y

2
, t

)
eipy/�. (23)

We point out that the above transformation is one-to-one, thus the WDF and the density
matrix contain the same information. For noninteracting systems in the absence of external
potentials, w(x, p, t) satisfies the simple equation

∂tw(x, p, t) + p

m
∂xw(x, p, t) = 0, (24)

which is identical to the evolution equation of the single-particle phase space density in
classical non-interacting systems. The solution of Eq .(24) is simply given by boosting the
initial profile

w(x, p, t) = w

(
x − pt

m
, p, 0

)
. (25)

In our model, the gas is confined to a circle of length L instead of the infinite line. Therefore,
we have x ∈ [0, L) and the allowed momenta, pn = 2πn�/L , with integer n, are discrete.
A natural extension of the definition in Eq. (23) to the case of circular coordinates would be
to replace p by pn and restrict the integral from 0 to L [29–31]. However, this extension does
not satisfy Eq. (24) with p replaced by pn . It can be shown [32] that a modified definition of
the WDF on the circle, that obeys Eq. (24), can be obtained. For this one needs to define a
new momentum variable:

qn = πn�

L
= pn

2
, (26)

123



142 Page 10 of 29 S. Pandeyet al.

that takes both integer as well as half-integer values. The modified WDF on the circle is thus
defined as

w(x, qn, t) = 1

2L

L∫

−L

dy ρ1

(
x + y

2
, x − y

2
, t

)
eiqn y/�, (27)

= 1

L

∞∑

m=−∞
ρ̃1

(
qn + pm

2
, qn − pm

2
, t

)
eipmx/�, (28)

where, in Eq. (28), the sum is over even values of m if qn is an integer and odd values of m
is qn is a half-integer. The inverse transform is given by

ρ̃1(pm, pn, t) =
L∫

0

dx w

(
x,

pm + pn
2

, t

)
e−i(pm−pn)x/�. (29)

It is easy to check that the Wigner function in Eq. (27) satisfies Eq. (24) on the circle with
p replaced by qn and thus has a solution of the form in Eq. (25) with periodicity L . Using
Eq. (22) in Eq. (28), we get

w(x, qn, t) =
∞∑

s=1

f (es, β, μ)

∞∑

	,m=−∞
Vs	V

�
smϕ	(x)ϕ

�
m(x)

× e−i(ε	−εm )t/�δ(	 + m − n), (30)

for the mixed state and a similar expression for the pure state with f (es, β, μ) replaced by
ns . As we shall see in the next section, the WDF provides a simple way to define particle,
momentum, and energy densities which are needed for defining the U -macrostate.

5 Choices of Macrostates and the Corresponding Entropies

5.1 U-Macrostate and SUB

In this section, we present the details of the construction of theU -macrostate. In this descrip-
tion, the observables that define the system’s macrostate are the expectation values of the
three conserved macroscopic fields, namely the particle, momentum, and energy densities.
We first motivate the basic definition of the operators corresponding to these observables and
then show that their expectation values can be written in a simple and physically intuitive
form in terms of the WDF. We then discuss the corresponding entropy SUB .

Using second quantized notation, the operators corresponding to the total number of
particles, total momentum, and total energy on the circle, in units of � = m = 1, are given
by

N̂ =
L∫

0

dx �̂†(x, t)�̂(x, t), (31a)

P̂ = −i

L∫

0

dx �̂†(x, t)∂x �̂(x, t), (31b)
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Ê = −1

2

L∫

0

dx �̂†(x, t)∂2x �̂(x, t). (31c)

It is then natural to define the following local density operators for the three fields:

n̂(x, t) = �̂†(x, t)�̂(x, t), (32a)

p̂(x, t) = i

2

[
(∂x�

†(x, t))�(x, t) − �†(x, t)∂x�(x, t)

]
, (32b)

ê(x, t) = −1

8

[
�̂†(x, t)∂2x �̂(x, t) + (∂2x �̂

†(x, t))�̂(x, t)

− 2(∂x �̂
†(x, t))(∂x �̂(x, t))

]
. (32c)

The forms above follow the requirement that the operators are self-adjoint, though, for the
case of energy density, the choice is not unique. Our choice is motivated by the simple form
it takes when we write the expectation value in terms of the WDF and it satisfies conditions
on the form of the density profile, that we expect on physical grounds. To define our coarse-
grained macrovariables, we divide the circle into A cells of size δ = L/A and label them by
the index 	 = 1, 2, . . . , A with the 	th cell beginning at x = (	 − 1)δ. Our macrovariables
are then the set of operators

{N̂	, P̂	, Ê	} =
	δ∫

(	−1)δ

dx
{
n̂(x), p̂(x), ê(x)

}
. (33)

To find the values of the macrovariables for a given microstate, we need the expectation
values of the above operators. We find that the expectation values for the densities take the
following simple forms when written in terms of the WDF:

n(x, t) =
∞∑

n=−∞
w(x, qn, t), (34a)

p(x, t) =
∞∑

n=−∞
qnw(x, qn, t), (34b)

e(x, t) =
∞∑

n=−∞
(q2n/2)w(x, qn, t). (34c)

As is clear from the above equations, the densities take a physically intuitive form as the
marginals of the Wigner function. The expectation values of the macrovariables in Eq. (33)
are denoted by {N	, P	, E	} and are readily obtained by integrating Eq. (34) across cells.

Entropy of the U -macrostate We now return to our goal of defining the entropy for the
U -macrostate. Given the set {N	, P	, E	}, 	 = 1, 2, . . . , A, we need to find the number of
microstates consistent with a given specification for the values of the set. Assuming small
correlations between cells, the number of microstates with these constraints is simply the
product of the number of possible microstates in each cell (with the local constraints). Hence
we get for the entropy

SUB =
A∑

	=1

S(N	, P	, E	), (35)
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where S(N	, P	, E	) is the equilibrium entropy of the 	th cell of size δ = L/A with the
specified values of the conserved quantities N	, P	, E	.

5.2 f-Macrostate and SfB

As discussed in Sec. (2) the construction of the f -macrostate requires us to find a basis set
of single particle wavefunctions that are localized both in position and momentum space.
We now discuss its construction. The ϕ-basis, defined in Eq. (8), consists of momentum
eigenstates on the circle that are completely delocalized in position space. To construct
our localized basis, we superimpose K number of successive ϕ-states labelled by a central
momentum p = 2π�v/L , and generate K new states

|ψα〉 ≡ |r , v〉 = 1√
K

∑

n ε R v

|ϕn〉 e−in 2πr
K , (36)

where Rv = {v − (K − 1)/2, . . . , v + (K − 1)/2} and α ≡ (r , v) is a collective index for
the basis states. Note that r = 1, . . . , K and v = ϑK where ϑ takes all integer values. The K
resulting |r , v〉 states for a given v are localized around r L/K , r = 1, . . . , K in the position
space and around 2π�v/L in the momentum space. For this reason, we shall refer to the
ψ-basis in Eq. (36) as the wavepacket basis.

We now define the wavepacket density, denoted by Dα(t) = 〈
n̂α

〉 ≡ D(r , v, t), as the
diagonal of the single-particle density matrix ρ̂1(t) in the wavepacket basis

Dα(t) ≡ D(r , v, t) = 〈r , v|ρ̂1(t)|r , v〉. (37)

It turns out that one can write down the wavepacket density in terms of the Wigner function
as

D(r , v, t) = 1

K

∑

	,m∈R v

L∫

0

dx w

(
x,

	 + m

2
, t

)
e−2π i(	−m)z, (38)

where z = x/L − r/K . Making the variable transformation q = (	 +m)/2 and n = 	 −m,
we can rewrite Eq. (38) as

D(r , v, t) = 1

K

v+∑

q=v−

L∫

0

dx w(x, q, t)
2(q−v−)∑

n=2(q−v+)

e−2π inz, (39)

where v± = v ± (K − 1)/2. Summing over n yields

D(r , v, t) = 1

K

v+∑

q=v−

L∫

0

dx w(x, q, t)GK (q − v, x), (40)

GK (q, x) = e−4π iqz sin(2K − 1)π z

sin π z
, (41)

where recall z = x/L − r/K . Equation (40) suggests that the wavepacket density is nothing
but a coarse-grained WDF. It is also instructive to look at the marginals of the wavepacket
density. The momentum marginal is given by the expression (see Appendix A)

Dv(v) =
K∑

r=1

D(r , v, t) =
∑

n∈R v

ρ̃1(pn, pn, 0), (42)
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where recallRv denotes set of momenta centered around v. Similarly, the position marginal
is given by (see Appendix A)

Dr (r , t) =
∑

v

D(r , v, t) =
L∫

0

dx hK
( x

L
− r

K

)
ρ1(x, x, t), (43)

with hK (x) = 1

K 2

(
sin πKz

sin π z

)2

. (44)

Note that Eqs. (42, 43) represent coarse-grained versions of the diagonal elements of the
density matrix in the momentum and position basis.

Entropy of the f -macrostate: We now discuss the entropy formula in Eq. (7) for a given
specification of the set {Dα}. To derive this formula, one maximizes the Gibbs-von Neumann
entropy, SGvN = −Tr[ρ̂N log ρ̂N ], subject to the constraint

Dα(t) = 〈ψα|ρ̂1(t)|ψα〉 = Tr[ρ̂N (t)�̂†
α�̂α], (45)

where �̂α creates a particle in the state |ψα〉. The density matrix ρ̂�
N that maximizes SGvN is

given by

ρ̂�
N = 1

Z
e
−∑

α
λα�̂

†
α�̂α

, (46)

Z =
∏

α

[1 ± e−λα ]±1, (47)

where + is for fermions and − is for bosons. Note that this is precisely the density matrix
that defines the equivalent generalized canonical ensemble ρ̂GC , as mentioned in Sec. (2).
The Lagrange multipliers λα are given by the relation

Dα = Tr[ρ̂�
N �̂†

α�̂α] = 1

eλα ± 1
. (48)

We can thus write down the maximal Gibbs-von Neumann entropy, S f
B = −Tr[ρ̂�

N log ρ̂�
N ],

in terms of Dα as

S f
B =

∑

α

[−Dα ln Dα∓(1∓Dα) ln(1∓Dα)] , (49)

where the − in the ∓ is for fermions and the + is for bosons.
In order to compute the final change in entropy �s f

B = (S f
B (∞) − S f

B (0))/N , we next
provide analytical estimates for the values of Dα(t) at t → ∞ and t = 0. Substituting the
expression for ρ̂1(t) from Eq. (22) into Eq. (37), we obtain an explicit expression for the
wavepacket density

Dα(t) =
∞∑

s=1

f (es, β, μ)

∞∑

m,n=−∞
VsmV

�
sne

−i(εm−εn)t/�〈ψα|ϕm〉〈ϕn |ψα〉. (50)

We first discuss the late time limit. As t → ∞, we only get contributions from the m = n
terms in Eq. (50)

Dα(∞) =
∞∑

s=1

f (es, β, μ)

∞∑

n=−∞
|Vsn |2 ||〈ϕn |ψα〉||2. (51)
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In the limit of large N and L (keeping N/L = ρ fixed), we use the explicit form of Vsn in
Eq. (16b) and find that |Vsn |2 is highly peaked around s ≈ 2an for large n. Hence the sum
can be approximated as

∑
s f (es, β, μ) |Vsn |2 ≈ f (e2an, β, μ)

∑
s |Vsn |2 = a f (εn, β, μ).

We thus get for the late time

Dα(∞) = a

K

∑

n=R v

f (εn, β, μ). (52)

To compute Dα(0) we start with the expression

Dα(0) =
∞∑

s=1

f (es, β, μ)

∞∑

m,n=−∞
VsmV

�
sn〈ψα|ϕm〉〈ϕn |ψα〉. (53)

Using Eq. (16b) for Vsm , we obtain the following simplified form:

Dα(0) = 1

K

∞∑

s=1

f (es, β, μ)|gv(s, r)|2, where (54)

gv(s, r) =
√
2

a

∫ a−r/K

−r/K
dz sin

[ sπ
a

(
z + r

K

)]
e−2π ivz sin πKz

sin π z
. (55)

Since the integrand in gv(s, r) is highly peaked about z = 0 for large K , we make the
replacement sin(π z) ≈ π z in the numerator whenever z = 0 falls inside the integration
limit i.e. for r < Ka. This allows us to make the following approximation gv(s, r) ≈
�(Ka − r)g̃v(s, r) where �(r) is the Heaviside Theta function and g̃v(s, r) is given by

g̃v(s, r) ≈
√
2

a

∫ ∞

−∞
dz sin

[ sπ
a

(
z + r

K

)]
e−2π ivz sin πKz

π z
. (56)

This finally implies

|g̃v(s, r)|2 ≈ 1

2a
�(s+ − s)�(s − s−), (57)

with s± = 2av ± Ka. Using this approximation in Eq. (54), we get

Dα(0) ≈ 1

2aK

s+∑

s=s−
f (es, β, μ)�(r < Ka). (58)

Note that while making the above approximations, we have ignored possible r dependence
near the edges of the initial box of size aL . As a result, the approximated density Dα(0)
slightly underestimates the initial entropy.

Using Dα(∞) from Eq. (52) and Dα(0) from Eq. (58), in Eq. (49) one can numerically
compute �s f

B for different T and μ. However the above procedure does not remain valid for
bosons at very low temperatures because the particles occupy only a few low-lying energy
states and consequently they do not relax.On the other hand for fermions, the above procedure
works for all T , and specifically at T = 0, one can obtain an explicit expression of �s f

B .
To obtain this expression we first note that for T = 0, Eq. (52) gives Dα(∞) = a for all α

except those which are very close to the Fermi surface. Using Dα(∞) ≈ a in Eq. (49), we
find

S f
B (∞) = −

∑

α

[a ln a + (1 − a) ln(1 − a)], (59)
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where the summation extends over 2nmax terms such that εnmax = μ. Given that es = εs/2a
and eN = μ, we get nmax = N/2a. The number of terms in the α-sum is thus N/a and
hence, the late time entropy per particle is given by

s f
B (∞) = −1

a
[a ln a + (1 − a) ln(1 − a)]. (60)

For a = 1/2, we obtain s f
B (∞) = 2 ln 2. The initial density in Eq. (58) simplifies in a similar

manner and we get

Dα(0) = 1

2aK

s+∑

s=s−
�(es < μ) ≈ 1, (61)

which results in the initial entropy at T = 0 being zero (neglecting edge contributions as
mentioned earlier). We therefore get �s f

B (T = 0) = 2 ln 2 for the Fermi gas expanding to
twice the initial volume.

6 Numerical Results

In this section, we present the results of the evolution of the two macrovariables f and U ,
and the corresponding entropies for fermions in Sect. (6.1) and for bosons in Sect. (6.2).

The equilibrium state of an ideal gas is described by its temperature T and density ρ =
N/L . For a quantum system, a relevant parameter that tells us whether we are in the quantum
or classical regime is the ratio of the interparticle distance 1/ρ to the thermal de Broglie
wavelength, λth = h/(2πmkBT )1/2. With our choice of units with m = kB = � = 1
and density fixed at ρ = 1, we take the square of this ratio, (λthρ)−2 = T /(2π) to be the
controlling parameter. In the following, we will present results for two sets of parameters:
(i) low-temperature highly quantum regime T = 2π/5; (ii) high-temperature regime T =
10π . In Fig. 2 we show the mean energy-level occupation number and their fluctuations for
fermions and bosons at different temperatures.

We recall the two different initial conditions [see Sect. (4.1)] for which we present our
results.

1. We consider the initial state to be a single pure many-body Fock state given by the box
eigenstate:

|�〉 = |{ns}〉 , (62)

where the single-particle level box occupancies, {ns}, are chosen with probabilities given
by the grand-canonical distribution [in the box x ∈ (0, L/2)] with T , μ fixed at the
desired values corresponding to our specified initial T , ρ [see Eqs. (17–19)]. We sample
only one initial state this way; for large N , this comes close to “self-averaging”.

2. We consider an initial state whose one-particle density matrix is identical to that of the
grand-canonical distribution in the box.

6.1 Fermions

In this section, we present results for fermions first for theU -macrovariable and then for the
f -macrovariable.
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Fig. 2 Fermi and Bose distribution functions showing the mean occupation numbers of energy levels at the
low and high temperatures (along with an intermediate temperature for comparison) used in our numerical
study. The particle density was set to ρ = 1. The insets show the relative number fluctuations

Fig. 3 Fermions—evolution ofU -macrovariables: Plots showing the spatial profiles of the number of particles,
the total momentum, and the total energy in each of the A = 20 cells for N = L = 1024 at different times. The
dots represent results for the pure state initial condition while the solid lines correspond to a thermal mixed
state. Results are presented for two different temperatures T = 2π/5, 10π (top and bottom row respectively),
and chemical potentials are fixed so that the mean density is set at ρ = 1. We see a good agreement between
the pure state and the thermal state results

6.1.1 U-macrostate

In this case, we set L = N = 1024 in all our numerics. Some of our main observations are:

(i) In Fig. 3 we show the spatial profiles of theU -macrovariables, given by the expectation
values of the operators in Eq. (33), at different times starting with the gas in the region
(0, L/2) and with A = 20 partitions of the system. Results are shown for both the pure
state and the thermal state initial conditions and we find a very good agreement between
the two. We observe that at late times, all three fields approach uniform profiles which
characterize our equilibrium state.
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Fig. 4 Fermions: Time evolution of the number of particles inside the 5th and 15th cells out of a total of
A = 20 cells for N = L = 1024. As in Fig. 3, we see a good agreement between the pure state (dots)
and the thermal state results (solid line). We see marked oscillations at low temperatures with a time period
τp = L/v f (see text)

(ii) In Fig. 4 we consider two fixed cells centered at x = L/4 and 3 L/4 and plot the
time-evolution of the number of particles in these cells. We again see a good agreement
between the pure state and the thermal state initial conditions. An oscillatory relaxation
to the uniform equilibrium state is observed. We note that the oscillation period in
the low-temperature limit is given by τp = L/vf where vf is the Fermi velocity. The
amplitude of the oscillations decreases with increasing temperature.

(iii) The evolution of the Boltzmann entropy SUB at the two temperatures are shown in Fig. 5,
for two choices of cell sizes, with A = 20, 40. We see a convergence of the growth
curve with decreasing cell size. A monotonic growth of the entropy and an eventual
saturation to the expected equilibrium value (corresponding to uniform values of the
conserved fields) is observed. In the low-temperature case, we observe an initial jump
in the SUB followed by a small flat regime and then a sharp increase. The initial jump
size is smaller for finer coarse-graining. On the other hand, the initial flat profile seen
in Fig. 5a is a result of the sharp cutoff in the momentum distribution in the low-
temperature Fermi gas. The flat region is observed till time (L/4)/vf , where vf is the
Fermi velocity,which corresponds to the time taken by the gas tofill the circle for thefirst
time.
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Fig. 5 Fermions:U -macrostate entropy growth for fermions for N = L = 1024 at two different temperatures
and for two different coarse-graining scales with A = 20 (blue lines) and A = 40 (red lines). Results are
presented for the pure state (dots) and thermal state (solid lines) initial conditions. The initial sharp rise
corresponds to the filling of the two empty cells on either side of the unfilled part of the circle. This jump
is smaller for finer coarse-graining size. We also observe an initial flat profile in (a) which persists till time
(L/4)/vf , where vf is the Fermi velocity.At large times, in all cases, the entropy saturates to the thermodynamic
entropy of the new equilibrium state (corresponding to uniform values of the three conserved fields on the
circle). The sub-captions give the values for the change in entropy per particle, �s, for the two cases

Fig. 6 Fermions—evolution of f -macrovariables. Top left: Heat map plot of the wave packet density for
parameters T = 2π , μ = 21.53, N = L = 2048, and K = 201. Top right: The wave packet density as a
function of momentum at two values of r = K/4 (red) and r = 3K/4 (blue), at the same time instances as in
the heat map. Bottom left: The entropy evolution with time where the points a − f correspond to the same
time snapshots as in the top row. The relative values of the entropy at these points are consistent with the
presence of structures (or lack thereof) in the heat map and the cross-sectional profiles
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Fig. 7 Fermions: Time evolution of the f -macrostate entropy per particle, s fB , at two different temperatures
and for two coarse-graining scales K at each temperature. We see very good agreement between results for the
pure state (red dots) and thermal state (solid lines) initial conditions. The inset in each plot shows the collapse
of different K curves on re-scaling time

6.1.2 f -macrostate

In this case, we set L = N = 2048 in all our numerics. Some of our main observations are:

(i) To see the evolution of the f -macrovariables, we plot heat maps in the top left of
Fig. 6 showing the values of wavepacket density Dα in the two-dimensional α = (r , v)

plane for an intermediate temperature T = 2π . We present six different time snapshots
indicated by (a)-(e). The wavepacket density is initially flat in the box and there is an
oscillatory relaxation to an eventual flat profile over the circle. We see an interference
pattern that disappears in (d) and reappears in (e) and then again disappears in (f). This
feature is more manifest in the top right panel of Fig. 6 which shows the wave packet
density as a function of momentum at two values of r = K/4 (red) and r = 3K/4
(blue), at the same time instances as in the heatmap. These features lead to an oscillatory
relaxation of the entropy growth curve as seen in the bottom left panel of Fig. 6 where
we find that the time for the entropy to first reach the saturation value, i.e, the point
(d) is given by L2/(2πK ). This is also the period of the subsequent oscillations seen
in the entropy evolution. This time scale can be understood within a semi-classical
framework and using the results from Ref. [15]. There it was shown that the time scale
of oscillations of s f

B is given by τ = L/�v, where�v is themomentum coarse-graining
scale. In the quantum case, we replace this by �v = �p/m = 2π�K/(mL). With our
choice of units � = m = 1, we therefore get τ = L2/(2πK ).

(ii) In Fig. 7, we plot the entropy growth for the two temperatures (low and high) and for
two different K values corresponding to each temperature. At both coarse graining
scales, K , we see a good agreement between the entropy calculated from the pure state
and the thermal state initial conditions. The entropy saturates to a value as predicted
from Eqs. (49, 52). In the inset, we see a collapse of the data for different K on scaling
time by K , consistent with the expression for τ mentioned above. Note that similar
oscillations and collapse of data were seen in the entropy growth in the free expansion
of the non-interacting classical ideal gas [15].
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Fig. 8 Bosons—evolution ofU -macrovariables: Plots showing the spatial profiles of the number of particles,
the total momentum, and the total energy in each of the A = 20 cells for N = L = 1024 at different times.
Results are presented for two different temperatures T = 2π/5, 10π , and chemical potentials are fixed so
that the mean density is set at ρ = 1. We see a reasonable agreement between the pure state (red dots) and
the thermal state (solid lines) results, but significant deviations (due to finite-size effects) are observed at the
latest times

6.2 Bosons

We now present results for bosons for the U and f macrovariables. Except at very low
temperatures, we find that several features are the same as that of fermions irrespective of
the difference in statistics. We also highlight the striking differences between bosons and
fermions. For bosons at very low temperatures, only levels with the energy of order � kBT
will be occupied. The number of occupied levels is thus small unless we consider very large
N . Therefore it is difficult to see relaxation at such low temperatures and we do not consider
such temperatures.

6.2.1 U-macrostate

In Fig. 8 we show the spatial profiles of the U -macrovariables, given by the expectation
values of the operators in Eq. (33), at different times starting with the gas in the left half of
the box. We again consider a partition of the box into A = 20 cells. Results are shown for
both the pure state and the thermal state initial conditions and as before we find reasonable
agreement between the two though we find significant differences at long times. In general,
we find that for bosons the agreement is not as good as that of fermions due to stronger finite
size effects. This is because, for a fixed total particle number and temperature, the typical
number of occupied levels in the pure state is less for bosons compared to that for fermions
and fluctuations are larger [see Fig. 2].

In Fig. 9 we consider two fixed cells located on the two halves of the circle centered at
x = L/4 and 3 L/4 and plot the time-evolution of the number of particles inside these cells.
We again see a reasonable agreement between the results from the pure and thermal states,
though the differences are significantly larger than what was seen for fermions. It is worth
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Fig. 9 Bosons: Time evolution of the number of particles inside the 5th and 15th cells out of a total of A = 20
cells for N = L = 1024. As in Fig. 8, we see a reasonable agreement, at early times, between the pure state
(dots) and the thermal state results (solid line) while at longer times there are significant deviations. Note that
the thermal data shows the absence of oscillations while in the pure state data, we see fluctuations that are
expected to decrease with increasing system size

noting that unlike in the case of fermions, here we do not see any oscillations but rather
a monotonic relaxation to the uniform equilibrium state. The oscillations in the fermionic
case arise due to the sharpness of the distribution near the Fermi energy at low temperatures
which allows one to define a typical velocity vf – hence a period of oscillation τp = L/vf .
On the other hand in the case of bosons, we cannot identify such a typical velocity. Note that
even though the evolution equation for the Wigner function is formally identical for bosons
and fermions (as also classical particles), differences arise due to the form of the initial
conditions. More precisely, for a typical pure state corresponding to thermal equilibrium,
the form of the initial state is entirely different for bosons and fermions. The evolution of
the Boltzmann entropy per particle sUB at the two temperatures is shown in Fig. 10, for two
choices of cell sizes A = 20, 40. We observe: (i) a convergence of the growth curve with
decreasing cell size; (ii) a monotonic growth of the entropy and an eventual saturation to the
expected equilibrium value (corresponding to uniform values of the conserved fields).

6.2.2 f -macrostate

For the f -macrostate, we again plot the heat map of the wavepacket density and the corre-
sponding entropy growth curve in Fig. 11. The results look similar to fermions, except for
the fact that the wavepacket density for bosons is more smeared out as compared to fermions.
This is due to the usual difference between the Bose and the Fermi function at low tempera-
tures. However, in the entropy growth curves for bosons in Fig (12), the saturation value of
the entropy depends rather strongly on K , especially in the low-temperature case [see details
in appendix (B)].

7 Discussions and Conclusions

Themain aim of this paper has been to use Boltzmann’s ideas to construct an entropy function
that can be defined for a pure quantum state andwhich allows us to characterize irreversibility
in macroscopic systems. For the example of the quantum ideal gas, two sets of macroscopic
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Fig. 10 Bosons: U -macrostate entropy growth for N = L = 1024 at two different temperatures and for two
different coarse-graining scales with A = 20 (blue lines) and A = 40 (red lines). Results are presented for the
pure state (dots) and thermal state (solid lines) initial conditions. Unlike for fermions, the initial sharp rise is
not seen in the case of bosons. At large times, in all cases, the entropy saturates to the thermodynamic entropy
of the new equilibrium state (corresponding to uniform values of the three conserved fields on the circle). The
sub-captions give the values for the change in entropy per particle, �s, for the two cases

Fig. 11 Bosons - evolution of f -macrovariables. Top left: Heat map plot of the wave packet density at
T = 2π , μ = −1.7, N = L = 2048, and K = 201. Top right: The wave packet density as a function of
momentum at two values of r = K/4 (red) and r = 3K/4 (blue), at the same time instances as in the heat map.
Bottom left: The entropy evolution with time where the points a − f correspond to the same time snapshots
as in the top row. Like fermions, here also the relative values of the entropy at these points are consistent with
the presence of structures (or lack thereof) in the heat map and the cross-sectional profiles
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Fig. 12 Bosons: Time evolution of the f -macrostate entropy per particle, s fB , at two different temperatures
and for two coarse-graining scales K at each temperature. We see a good agreement between results for the
pure state (red dots) and thermal state (solid lines) initial conditions. The inset in each plot shows the collapse
of different K curves on re-scaling time

descriptions (calledU and f ) were defined that provide a coarse-grained view of the system,
which is in a pure quantum state. The evolution of the entropy functions associated with
these macrostates was studied for the case where the gas, initially in a pure state and spatially
confined, was allowed to expand to twice its volume. We summarize and comment on some
of our main results.

1. The U -macrovariables are the coarse-grained operators corresponding to the number,
momentum, and energy of particles in spatial cells of size δ = L/A. For both fermions
and bosons, we see that the macrostates reach a steady state characterized by the three
fields reaching homogeneous spatial profiles. Depending on the parameter values, we
see either damped or oscillatory relaxation of the fields to the steady state. However, we
always observe a monotonic increase of the associated entropy, sUB .

2. The definition of our f -macrostate is aimed at obtaining an analogue of the single-particle
phase space density in classical systems. A natural candidate for this are the number oper-
ators corresponding to a localized wavepacket set of basis states. While these operators
are not bonafide macrovariables, we nevertheless can use their expectation values as
macrovariables to identify macrostates and compute an entropy function by maximizing
the Gibbs-von Neumann entropy, given those expectation values.
The wavepackets that we construct are located at discrete space and momentum points,

denoted α ≡ (r , v), and localized on a scale of �. We show that the average occupancy of
these states denoted Dα , constitute a coarse-graining of theWigner function on a scale of
�. Unlike the Wigner function, Dα is positive and is thus similar to the so-called Husimi
function [33]. However, the Husimi function has the full information on the one-particle
density matrix and so for non-interacting systems, it cannot be used for the construc-
tion of an entropy function. The function Dα incorporates coarse-graining required to
demonstrate entropy growth in the quantum ideal gas. We note that the Wehrl entropy
[34] uses the Husimi function and has been used to study irreversibility in interacting
quantum systems [35–37].

Our f -macrostate entropy, S f
B , also increases with time and reaches a steady state

saturation value. In this case, the entropy growth is oscillatory with a period given by
L/�p where �p is the momentum coarse-graining scale – this can be understood from
semi-classical considerations. The change in entropy per particle satisfies the bound
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ln 2 ≤ �s f
B ≤ 2 ln 2 for fermions and 0 ≤ �s f

B ≤ ln 2 for bosons. This can be understood
from the momentum distribution in the final state.

3. Results obtained for the evolution of pure states were compared with those of corre-
sponding thermal initial states and we showed evidence of their equivalence at larger
system sizes. This demonstrates typicality in the dynamical evolution. Bosons showed
larger finite size effects at low temperatures because of the fact that a relatively smaller
number of single-particle levels are occupied and number fluctuations are larger.

4. From the single-particle spectrum on the circle, it is clear that the system has an exact
recurrence at a time τrec = L2/π (in units of m = � = 1). However for both our
macrovariables, relaxation to the steady state occurs on a time scale τeq ∼ L and so,
in the thermodynamic limit L, N → ∞ with L/N constant, there is a clear separation
between the relaxation and recurrence time-scales. This kind of recurrence is expected
whenever the single-particle spectrum is given in terms of integers andwould be observed
in quantum particles in harmonic traps but would not be present in generic anharmonic
potentials (see for e.g [38]).

As expected, our system does not reach a Gibbs equilibrium state. The final effective
temperature and chemical potential corresponding to the final particle and energy density
do not determine the true single-particle momentum distribution, which is not able to attain
thermal equilibrium for the quantum ideal gas. This is different from the classical gas, where
an initial Maxwell velocity distribution would continue to be the correct equilibrium velocity
distribution for the expanded gas. In the quantum gas, it would be necessary to include
interactions to allow the momentum distribution to relax to thermal equilibrium; this does not
happen for the ideal quantum gas. A recent study considered Boltzmann’s entropy growth in a
classical interacting gas and interesting differences with the non-interacting case were noted
[39]. The effect of interactions in the quantum case would be interesting to explore, however,
this would then become a highly-entangled many-body system and thus very challenging to
treat accurately.
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A Marginals of the wavepacket density

Here we establish the fact mentioned in Sec. (5.2) that the marginals of the wave-packet
density, Dα , after integrating either over momentum or space, correspond respectively to
the coarse-grained particle density and momentum density. Let us consider the momentum
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marginal first i.e. sum over r

Dv(v, t) =
∑

r

D(r , v, t) =
∑

r ,m,n

〈r , v|m〉ρ̃1(pm, pn, t)〈n|r , v〉

= 1

K

K∑

r=1

∑

m,n∈R v

e2π i(m−n)r/K ρ̃1(pm, pn, t)

=
∑

n∈R v

ρ̃1(pn, pn, 0).

(63)

Let us now consider the r-marginal i.e. sum over v

Dr (r , t) =
∑

v

D(r , v, t) =
∫

dxdx ′

LK

∑

v

∑

m,n∈R v

Qmn(x, x
′, t), (64)

Qmn(x, x
′, t) = e2π i(−mx+nx ′)/Lei(m−n)2πr/Kρ1(x, x

′, t). (65)

Note that m, n ∈ Rv which is given by

Rv =
{
v − K − 1

2
, . . . , v + K − 1

2

}
. (66)

We substitute m = v + m̃ and n = v + ñ to get rid of the v dependence in the sums over m
and n. We thus get

Dr (r , t) =
∫

dxdx ′

LK

∑

v

∑

m̃,ñ∈R 0

e2π iv(x ′−x)/L Qm̃ñ(x, x
′, t). (67)

Now since v takes values ϑK where ϑ is an integer that runs from −∞ to +∞, the sum over
v can be done and gives

Dr (r , t) =
∫

dxdx ′

K 2

∑

m̃,ñ∈R 0

δ(x − x ′)Qm̃ñ(x, x
′, t)

=
L∫

0

dx

K 2 |
(K−1)/2∑

ñ=−(K−1)/2

exp[2π i ñ
( x

L
− r

K

)
]|2ρ1(x, x, t)

=
L∫

0

dx hK
( x

L
− r

K

)
n(x, t),

(68)

where n(x, t) is the particle density and hK (x) = 1

K 2

(
sin πKz

sin π z

)2

.

B Dependence on K

Here we briefly discuss the dependence of our results on the coarse-graining parameter K .
Fermions: In Fig. 13, we plot the saturation value s f

B (∞) for different K and for the low
and intermediate temperatures. We observe that as long as K � L , the saturation value does
not vary strongly with K . Also, the variation becomes smaller with increasing temperature.
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Fig. 13 Fermions: The late time value of the f-macrostate entropy per particle, s fB (∞) as a function of the
coarse-graining scale K for the low and intermediate temperatures. It seems that we require K/L � 1 for the
final value to not vary strongly with K . The variation also goes down with increasing temperature

Fig. 14 Bosons: The late time value of the f-macrostate entropy per particle, s fB (∞) as a function of the
coarse-graining scale K for the low and intermediate temperatures. It seems that we require K/L � 1 for the
final value to not vary strongly with K . Also note that the variation with K is stronger for bosons as compared
to fermions, so a relatively smaller K/L may be required for bosons. Here also, the variation goes down with
increasing temperature

Bosons: The strong dependence on K can be understood from Fig. 14 which shows the
variation of the saturation value of the f-macrostate entropy per particle with K . Here, we
can clearly see that the variation is stronger for bosons as compared to fermions. As a result,
the K values used in our numerical study are not small enough compared to the system size
L for bosons, especially in the low-temperature case.

C Glossary

• f ,U : denote the two macrovariables studied in this work.
• S f

B , SUB : the Boltzmann entropies corresponding to the two macrovariables.

• s f
B , sUB : Boltzmann entropies per particle.

• X : Phase space point.
• |�〉: Pure state wavefunction.
• N , E, L: The total number of particles, the total energy, and the system size (Circle

perimeter) respectively.
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• T , β, μ: The temperature, the inverse temperature, and the chemical potential respec-
tively.

• a: Fraction of the circle occupied by the gas at time t = 0. In most cases a = 1/2.
• m: Mass of the particles.
• H : Hilbert space.
• HE : Subspace of the full Hilbert space corresponding to the energy E .
• M̂k : Generic self-adjoint operators.
• ν,Hν : Generic macrostate and the corresponding macro-space.
• |Hν |: Denotes the dimension of the Hν macro-space.
• P̂ν : Projection operator onto the Hν macro-space.
• Sν : Boltzmann entropy corresponding to the ν macrostate.
• Heq : Equilibrium macro-space.
• ρ̂GC, ZGC: Generalized canonical density operator and the corresponding partition func-

tion.
• λk : Lagrange multipliers (for satisfying the constraints) in the expression for ρ̂GC.
• SGvN: The Gibbs-von Neumann entropy of the system
• δ, A: Denote the size and number respectively of the coarse-grained cells in the U -

macrostate.
• 	: Labels the coarse-grained cells in the U -macrostate.
• N̂	, P̂	, Ê	: Denote the particle number, themomentum, and the energy operators respec-

tively corresponding to the 	th cell in the U -macrostate.
• K : Denotes the coarse-graining scale in the f -macrostate.
• |ψα〉 ≡ |r , v〉: The wavepacket basis state localized in position around x = r L/K and

in momentum around p = 2π�v/L .
• n̂α, Dα(t) ≡ D(r , v, t): Denote the occupation number operator and the average occu-

pancy (wavepacket density) respectively of the wavepacket basis state |ψα〉.
• |χs〉, es, ns : Denote the box energy eigenfunction, eigenvalue, and occupancy of the sth

level respectively.
• |ϕn〉, pn, εn : Denote the circle energy eigenfunction, momentum, and energy eigenvalue

of the nth level respectively.
• �̂x , b̂n : Denote the annihilation operator in the position and in momentum space respec-

tively.
• ρ̂N : The N -particle density operator.
• ρ̂1, ρ1(x, x ′), ρ̃1(pm, pn): The single-particle density operator and its matrix elements

in the position and momentum space respectively.
• V : Transformation matrix from the box to the circle basis.
• f (es, β, μ): Denotes the Fermi/Bose function.
• ρ̂P

1 , ρ̂M
1 : Denote the single-particle density operator corresponding to the pure andmixed

state initial conditions respectively.
• P({ns}): Denotes the grand canonical probability distribution of the configuration {ns}.
• w(x, p, t): The Wigner function on the real line.
• qn : Denotes the half-integer momenta on the circle.
• w(x, qn, t): The Wigner function on the circle.
• N̂ , P̂, Ê : Denote the total particle number, the total momentum, and the total energy

operators respectively.
• n̂(x, t), p̂(x, t), ê(x, t): Denote the local particle, momentum, and energy density oper-

ators respectively.
• n(x, t), p(x, t), e(x, t): Denote the expectation values of the local particle, momentum,

and energy density operators respectively.
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• Rv: The set of K integers centered around v.
• v±: The two end points of the set Rv .
• GK (q, x): The localized kernel that, when integrated over the Wigner function, yields

the wavepacket density.
• Dr (r , t), Dv(v, t): The respective marginals of D(r , v, t).
• hK (x): The localized kernel that, when integrated with the particle density n(x, t), yields

the coarse-grained marginal Dr (r , t).
• ρ̂�

N : Maximal N-particle density operator subject to the wavepacket density constraints.
• λα: Lagrange multipliers (for satisfying the constraints) in the expression for ρ̂�

N .

• �s f
B ,�sUB : The final change in the entropies of f and U macrostates respectively.

• ρ: Particle density N/L .
• λth: The thermal De-Broglie wavelength.
• τp: The period of oscillations of the particle density.
• vf : Fermi velocity.
• τ : The period of oscillations of the Boltzmann entropy S f

B .• τrec: The recurrence period.
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