
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-021-04150-7
Commun. Math. Phys. 386, 749–780 (2021) Communications in

Mathematical
Physics

Fluctuation and entropy in spectrally constrained random
fields

Kartick Adhikari1, Subhroshekhar Ghosh2 , Joel L. Lebowitz3

1 Department of Electrical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
E-mail: kartickmath@gmail.com

2 Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road,
Singapore 119076, Singapore. E-mail: subhrowork@gmail.com

3 Departments of Mathematics and Physics, Rutgers University, Piscataway, NJ 08854, USA.
E-mail: lebowitz@math.rutgers.edu

Received: 6 March 2020 / Accepted: 17 June 2021
Published online: 12 July 2021 –©TheAuthor(s), under exclusive licence to Springer-VerlagGmbHGermany,
part of Springer Nature 2021

Abstract: We investigate the statistical properties of translation invariant random fields
(including point processes) on Euclidean spaces (or lattices) under constraints on their
spectrum or structure function. An important class of models that motivate our study are
hyperuniform and stealthy hyperuniform systems, which are characterised by the van-
ishing of the structure function at the origin (resp., vanishing in a neighbourhood of the
origin). We show that many key features of two classical statistical mechanical measures
of randomness—namely, fluctuations and entropy, are governed only by some particular
local aspects of their structure function. We obtain exponents for the fluctuations of the
local mass in domains of growing size, and show that spatial geometric considerations
play an important role—both the shape of the domain and the mode of spectral decay.
In doing so, we unveil intriguing oscillatory behaviour of spatial correlations of local
masses in adjacent box domains. We describe very general conditions under which we
show that the field of local masses exhibit Gaussian asymptotics, with an explicitly
described limit. We further demonstrate that stealthy hyperuniform systems with joint
densities exhibit degeneracy in their asymptotic entropy per site. In fact, our analysis
shows that entropic degeneracy sets in under much milder conditions than stealthiness,
as soon as the structure function fails to be logarithmically integrable.
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1. Introduction and Main Results

1.1. Setup and notations. Random fields with spectral constraints have attracted consid-
erable attention in recent years, both in themathematics and the statistical and condensed
matter physics communities. An important motivation, from the point of view of appli-
cations, comes from the investigation of hyperuniform point fields, whose structure
function vanishes at the origin. A sub-topic of particular interest recently in condensed
matter physics is the study of stealthy hyperuniform systems, whose structure function
vanishes in a region containing the origin.

In this work, we will concern ourselves with random fields that live on Euclidean
spaces. For ease of enunciating and analysing the statements of results, we will focus
on the situation where the random field (Xi )i∈Zd actually lives on a Euclidean lattice,
although most of our results have straightforward generalisations to the case of random
fields indexed by a continuum Euclidean space. Restricting ourselves to random fields
that are invariant under translations in Z

d implies that their spatial correlation function
depends only on their spatial separation. The spectrum, also known as the structure func-
tion, of the process can then be defined as the Fourier transform of this pair correlation
function. We are interested in investigating the properties of the random field X under
the assumption that the spectrum satisfies certain constraints.

We now introduce the exact definitions and concrete notations. Let X = (Xi )i∈Zd

be a real valued mean zero and variance one translation invariant random field with
covariance

E[Xi X j ] = K (i − j), for i, j ∈ Z
d ,

where K is defined onZ
d and {K ( j)} j∈Zd ∈ �1(Z

d). Note that K (0) = 1 as the variance
is one. Let S be the Fourier transform of K . Then S is defined on [−π, π ]d by

S(θ) =
∑

j∈Zd

eiθ · j K ( j), where θ ∈ [−π, π ]d . (1)
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Here θ · j = ∑d
k=1 θk jk , the usual dot product in the d-dimensional Euclidean space.

This function S is known as the diffraction spectrum or structure function of the field
X . Observe that S is symmetric, i.e., S(−θ) = S(θ), and Bochner’s theorem [Fol95,
Theorem 4.18] implies that S is non-negative.

For any � ⊂ R
d , we denote by Q� the charge (or the local mass) carried by the

random variables located in the region �, i.e.,

Q�(X) =
∑

i∈�

Xi .

It is clear that E[Q�(X)] = 0. We study the fluctuations of QCL (X) and QBL (X),
where, for x = (x1, . . . , xd),

CL = {x ∈ R
d : |x1|, . . . , |xd | ≤ L} and BL = {x ∈ R

d :
√
x21 + · · · + x2d ≤ L}.

More precisely, the asymptotic values of Var(QCL (X)) and Var(QBL (X)) are calcu-
lated, as L → ∞, where Var(Y ) denotes the variance of Y . This is done under various
conditions on the kernel function K , equivalently, on the structure function S. We also
show that under the appropriate condition on S

QBL (X) − E[QBL (X)]
√
Var(QBL (X))

→ N (0, 1), as L → ∞,

where N (0, 1) denotes the standard normal distribution.
Finally we study the asymptotic behaviour of the entropy of X |� := {Xi : i ∈ �},

as the size of the region � increases, in the setting where X has joint densities.

1.2. Fluctuations for constrained systems. A key measure of randomness that we will
focus on in this paper is fluctuations of the local field of masses. This is motivated by
the study of point processes, but as we shall see, it can be considered also in the context
of more general random fields, and with important structural consequences. While the
exact definitions will be given subsequently it suffices for our introductory discussion
to have in mind that the local field of masses of a random field (indexed by a Euclidean
lattice), pertaining to a given domain D, is the sum of the field values for indices that
belong to D. Clearly, if the field is 0–1 valued (in other words, a point process), then this
quantity reduces to the total number of particles in the domain D. In this work, without
loss of generality we focus on random fields with mean zero, since subtracting the mean
has no effect on the variance. The study of the statistical fluctuations of masses has a
long history, see e.g., [Bec87,BC87] and the references therein, and e.g. [GL17b] for a
more recent overview.

The starting point for examining the connection between spectral decay and reduced
fluctuations of the local mass is the fact, alluded to earlier, that hyperuniformity is
equivalent to vanishing of the structure function at the origin. For the Gaussian Unitary
Ensemble (GUE) in 1D or the Ginibre ensemble in 2D (equivalently, the one component
2D Coulomb gas at the inverse temperature β = 2), this amounts to a quadratic decay at
the origin, and fluctuation of local mass that is logarithmic (for GUE) and of the order
of the perimeter of the domain (for Ginibre). In both cases, asymptotic normality of the
fluctuations is also well-understood.

In this paper we investigate the precise quantitative nature of the relationship between
the mode of spectral decay on one hand, and the asymptotic statistical distribution of
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fluctuation on the other.We demonstrate that the correspondence between spectral decay
and the statistical behaviour of the fluctuations is very general, and is largely independent
of other properties of the stochastic process.

1.2.1. Fluctuations in Balls Our first result provides a functional of the structure func-
tion that, on one hand, is asymptotically comparable to the variance of the mass in a ball,
and, on the other hand, is amenable to simple analytical determination of the growth ex-
ponent. This result holds in great generality, in particular, both for random fields indexed
by Z

d and by R
d . We state the precise result below.

Let BL denote the ball of radius L in R
d , i.e., BL = {x ∈ R

d : ‖x‖ ≤ L}.
Furthermore, let S

d−1 denote the (d − 1)-dimensional unit sphere in R
d and dVSd−1

denote the (d − 1)-dimensional spherical measure. Let T
d = [−π, π ]d . We call a

function f : T
d (or R

d) �→ R regular at the origin if there exists an enveloping function
A : T

d (or R
d) �→ R such that, on some neighbourhood B(0; ε) of the origin, we have

cA(ξ) ≤ f (ξ) ≤ CA(ξ) for some constants c,C > 0, and the enveloping function A is
such that ‖ξ‖−2

(∫
Sd−1 A(‖ξ‖ω)dVSd−1(ω)

)
is monotone for 0 ≤ ‖ξ‖ ≤ ε. In general,

the function f can possibly have highly fluctuating behaviour, it might be difficult to
work with such functions. On the other hand the enveloping function has nicer properties
in the context of the estimate that we need, which helps in the calculations.

For example, f might be highly fluctuating near the origin but f (ξ)/‖ξ‖ might
be bounded by two positive constants. In that case A(ξ) = ‖ξ‖, which implies that
‖ξ‖−2

(∫
Sd−1 A(‖ξ‖ω)dVSd−1(ω)

) = const./‖ξ‖ which is clearly monotone.
Furthermore, we recall the notation f (L) = 
(g(L)) as L → ∞ to mean that there

exist constants c1, c2, L0 > 0 such that

c1g(L) ≤ f (L) ≤ c2g(L), for all L > L0.

More generally, we write f (x) = 
(g(x)) as x → x0 if and only if there exist constants
c1, c2, δ > 0 such that

c1g(x) ≤ f (x) ≤ c2g(x), for all ‖x − x0‖ ≤ δ.

We establish that

Theorem 1. Suppose the structure function S of a random field on Z
d is regular at the

origin and bounded in [−π, π ]d . Then, as L → ∞,

Var(QBL (X)) = 


(
L2d

∫

‖ξ‖≤c/L
S(ξ)dξ + Ld−1

∫

‖ξ‖>c/L

S(ξ)

‖ξ‖d+1 dξ

)
. (2)

The regularity assumption in Theorem 1 holds true in great generality. It is trivially
true in situations where the structure function S is itself monotone in ‖ξ‖ near the origin,
which is the case for the Poisson process and the standard examples of hyperuniform
systems. More generally, by a Taylor expansion of S near the origin, such regularity will
be true as soon as S has bounded derivatives near the origin.

We observe that the asymptotic formula in Theorem 1 provides a very general and
complete description for the fluctuation exponent in a ball that is valid in any dimension,
and covers all settings where this exponent is believed to be understood. Moreover,
the right hand side of (2) lends itself to relatively simple estimation of its order in L
as soon as the behaviour of the structure function near the origin is known. E.g., for
Poissonian systems, the structure function does not vanish near the origin (in fact, it is a
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positive constant), and as such, the first term in (2) provides the dominant contribution,
resulting in fluctuations of the order of the volume. On the other hand, for well-known
hyperuniform systems like the GUE in 1D (where S is linear near the origin) and the
Ginibre ensemble in 2D (where S behaves like a quadratic near the origin), the second
terms in (2) makes the dominant contribution, and the variance grows like log L and L
respectively.

1.3. The geometry of spectral decay and its consequences. Themost intensively studied
setting for hyperuniform systems is the 1D case, which includes the famous example of
the GUE process from random matrix theory. However, in 1D, the variety of ways in
which the spectrum can vanish at the origin is relatively limited. In higher dimensions,
the mode of decay of the spectrum becomes important, and the physical manifestations
of the various decay modes is a significant question.

1.3.1. Fluctuations under spectral decay Letn1, . . . , nd ∈ N∪{0} andn = (n1, . . . , nd).
Denote

C(n)
L = [n1L , (n1 + 1)L] × · · · × [nd L , (nd + 1)L].

Note that C(n)
L is a cube/box in R

d with side length L . In particular C(0)
L = [0, L]d . We

have the following result.

Theorem 2. Suppose the structure function S of a random field on Z
d satisfies σ 2

d :=
2d

∫ π

−π
· · · ∫ π

−π
S(x)

x21 ···x2d
dx1 · · · dxd < ∞. Then

lim
L→∞Cov(QC(0)

L
(X), QC(n)

L
(X)) =

⎧
⎪⎨

⎪⎩

(−1) j
σ 2
d
2 j if dim(C(0)

L ∩ C(n)
L ) = d − j,

0 if C(0)
L ∩ C(n)

L = ∅.

In particular, Var(QC(0)
L

(X)) → σ 2
d as L → ∞.

Here dim(C(0)
L ∩ C(n)

L ) = 0 means the two cubes/boxes have only a common vertex
point.

In particular for d = 1 we have the following corollary. The importance of the 1D
case is that, besides being the most studied setting, it is also the situation where we can
examine the effect of stealth or other spectral constraints without having to consider the
intricacies of geometric effects.

Corollary 3. Suppose the structure function S of a random field on Z satisfies σ 2 :=
2

∫ π

−π
S(x)
x2

dx < ∞. Then

Var(Q[0,L](X)) → σ 2 and Cov(Q[0,L](X), Q[L ,2L](X)) → −σ 2

2
, as L → ∞,

where Cov(X,Y ) denotes the covariance of X and Y . Moreover, for k ≥ 2,

Cov(Q[0,L](X), Q[kL ,(k+1)L](X)) → 0, as L → ∞.
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Note that if S is bounded and vanishing in a neighbourhood of the origin then∫ S(x)
x2

dx < ∞. In this case the covariance converges to the half of the variance with
negative sign when two intervals are adjacent to each other. Moreover, the covariance
converges to 0 when two intervals are not adjacent.

The Riemann Lebesgue lemma plays a crucial role in proving these results. The
assumption σ 2

d < ∞ is required to apply the Riemann Lebesgue lemma. In the next
subsection we show that if σ 2

d is not finite then the variances and covariances do not
have finite limits as L → ∞. We calculate the asymptotic behaviour of the variances
and covariances under suitable conditions on S.

Note that Theorem 2 implies that if σd is finite then Var(QCL (X)) remains bounded
in L , whereas Theorem 1 implies that the order of Var(QBL (X)) is at least Ld−1 (also
c.f. [Bec87]). A heuristic explanation for this phenomenon is given in Sect. 3.

It is worth mentioning here that the similar results for Ginibre ensembles were estab-
lished in [Leb83]. The similar problems for the zeros of Gaussian entire functions were
consider in [BS17].

1.3.2. Growth of variances under spectral decay We have the following result. We use
x = (x1, . . . , xd) ∈ R

d and CL = C(0)
L .

Theorem 4. Let α1, . . . , αd ∈ [0, 1]. Suppose the structure function S of a random field
on Z

d satisfies

(C1) For all k = 1, . . . , d and all 1 ≤ i1 < · · · < ik ≤ d, S(x) = 
(|xi1 |αi1 . . . |xik |αik )
whenever xi1 , . . . , xik → 0 and the other co-ordinates are away from the axes.

(C2) For δ > 0,
∫ π

δ
· · · ∫ π

δ
S(x)

x21 ...x2d
dx1 · · · dxd < ∞.

Then we have

Var(QCL (X)) = 
((log L)τd Ld−md ), as L → ∞,

where τd = |{k ∈ {1, . . . , d} : αk = 1}| and md = ∑d
k=1 αk .

Remark 1. Condition (C1) can be written in the following way: for 1 ≤ i1, . . . , ik ≤ d
and δ > 0, let Aδ

i1....,ik
be the set {x = (x1, . . . , xd) : |xi | < δ iff i ∈ {i1, . . . , ik}}. Then

S(x) = 
(|xi1 |αi1 · · · |xik |αik ) whenever x ∈ Aδ
i1....,ik

.

Note that if S is bounded on [−π, π ]d then (C2) holds. Also if αi > 1 for all
i = 1, . . . , k then S(x)

x21 ···x2d
is integrable . In this case we get the variance from Theorem 2.

So the variances are bounded when α1, . . . , αd > 1.
Observe that the implying constants for the variance may depend on the dimension

d.

It would be of interest to understand the various modes of spectral decay, especially
in the context of hyperuniform behaviour of the stochastic process in physical space.
Hyperuniformity, or equivalently the vanishing of the structure function at the origin,
implies that the correlation function K (i) (which is a function of one variable because
of translation invariance) sums to 0 over i ∈ Z

d . In particular, this implies that some
of the correlations must be negative (since K (0) is a variance and therefore necessar-
ily positive), which explains the natural connections between hyperuniform systems
and negatively associated processes. Decay of the structure function “along the axes”
amounts to saying that K (i) sums to 0 even when we sum i over any one co-ordinate,
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keeping the values of the other co-ordinates of i fixed. It is a somewhat stronger notion
of hyperuniformity than mere vanishing of the structure function at the origin, and it
covers examples as simple as products of statistically independent 1D hyperuniform
systems along each co-ordinate direction. More generally, by the Bochner–Khinchine
correspondence, we can have Gaussian stochastic processes with any given functional
form for the decay of the structure function, as long as we remain within the realm of
non-negative spectral measures.

The following result can be seen as a corollary of Theorem 4. For x = (x1, . . . , xd) ∈
R
d , the L2-norm is defined by

‖x‖2 = (|x1|2 + · · · + |xd |2) 1
2 .

Corollary 5. Let 0 ≤ α ≤ 1. Suppose the structure function S = 
(‖x‖α
2 ) as ‖x‖p →

0, and
∫
‖x‖2>δ

S(x)
x21 ...x2d

dx < ∞ for δ > 0. Then

Var(QCL (X)) =
⎧
⎨

⎩


((Ld−α)) if 0 ≤ α < 1,


((Ld−1 log L)) if α = 1.

Roughly speaking, we get Corollary 5 by putting α1 = α and α2 = · · · = αd = 0 in
Theorem 4.

1.3.3. The effect of domain shape An important consequence of our investigations is
how the fluctuation exponent depends on shape of the growing domain (e.g., a ball vis-a-
vis a cube). In fact, depending on the domain shape, even under relatively mild decay of
the structure function, the fluctuations of the local mass can be bounded as the domain
size grows to infinity.

1.3.4. The anomaly of oscillating correlations As seen in Theorem 2 the spatial corre-
lations of the field of local masses (i.e., the masses in adjacent growing cubes of similar
sizes) exhibits a remarkable oscillating behaviour. To understand this phenomenon, we
recall that hyperuniformity is often associated with repulsive interaction (or negatively
correlated systems). Naturally, we expect this to be reflected in the spatial statistics of
the field of local masses. E.g., for Coulomb systems in 3D, the leading order interactions
among local masses in adjacent cubes that meet in a face have been shown to be negative
(c.f. [Leb83,BS17]). This is in tune with the heuristic connection between hyperunifor-
mity and negative dependence, and is similar in flavour to the j = 1 case in Theorem 2.
However, Theorem 2 goes further and unveils a more elaborate correlation landscape,
depending on finer adjacency geometry of neighbouring domains for strongly hyper-
uniform systems. In fact, even the sign of the correlation can be positive or negative,
depending on the dimension of the surface where two neighbouring domains intersect.

In Sect. 3, we explain this seemingly physically anomalous behaviour of the fluctu-
ations (and the correlations of the local field of masses) from a microscopic statistical
mechanical point of view, by showing that not only are these differential growth ex-
ponents and oscillating signs of correlations consistent with each other, but also are
necessary from a statistical physics perspective, and correspond naturally with the con-
sideration of effects like Debye screening.
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1.4. Central limit theorem. The next result show that QBL (X) is asymptotically normal,
as L → ∞, under appropriate conditions on the truncated correlation functions of X .
The k-th truncated correlation function ρT

k of X is defined by

ρT
k (i1, . . . , ik) =

∑

π∈P(k)

(|π | − 1)!(−1)|π |−1
∏

B∈π

ρB[i1, . . . , ik],

where P(k) denotes the set of all partitions of {1, . . . , k}, |π | is the number of parts in
the partition, ρB[i1, . . . , ik] = ρ|B|(i j : i j ∈ B). The k-th intensity function ρk of X
with respect to counting measure on Z

kd is given by

ρk(i1, . . . , ik) = E[Xi1 · · · Xik ], for i1, . . . , ik ∈ Z
d .

Weelaborate further details of correlation and truncated correlation functions inSects. 7.1
and 7.2.

Theorem 6. Let X = (Xi )i∈Zd be a random field with structure function S as in Theo-
rem 1. Let ρT (i1, . . . , ik), for i1, . . . , ik ∈ Z

d , be the truncated correlation functions of
X. Suppose for each k we have

sup
i1

∑

i2,...,in∈Zd

ρT (i1, . . . , ik) < ∞. (3)

Let N (0, 1) denote the standard normal distribution. Then

QBL (X) − E[QBL (X)]
√
Var(QBL (X))

→ N (0, 1), as L → ∞.

Theorem 6 in general, and condition (3) in particular, connects to the classical theory
of particle number fluctuations, as developed in [MY80,JLM93,CL95] and references
therein. It is explained in [MY80, P. 446] that the condition (3) holds for a class of
one-dimensional Coulomb systems (these systems have exponential clustering), [EL62,
AM80]. The notion of clustering and its relation to the truncated k-point function in
rigorously introduced in [NS12].

1.5. Entropy and entropic degeneracy for constrained systems. A key parameter of
randomness, or the lack thereof, is that of entropy per unit volume (in other words,
entropy per site). We can envisage this as the entropy per unit volume of the field
restricted to a finite domain of space, considered in the limit as the domain size grows
to cover all space. For a system to be deficient in randomness, one measure would be its
entropy per site to be degenerate in some appropriate sense.

One angle from which to look at maximal rigidity for stealthy random fields would
be to consider it from the perspective of the tail sigma field. In one dimension, the notion
of maximal rigidity under spatial conditioning can be demonstrated to be equivalent to
the fullness of the two-sided spatial tail sigma field. It may be mentioned here that the
well-known Rokhlin-Sinai Theorem [Gla03, p. 322] connects the spatial tail sigma field
with the entropy per site. However, an extremely important caveat to the Rokhlin-Sinai
Theorem is that it demands themuch stronger assumption of fullness of one-sided spatial
tail sigma field (and not two-sided, as we have in the models of our interest in 1D). In
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fact, the one-sidedness of the tail sigma field is known to be necessary for the Rokhlin–
Sinai Theorem, and the lack of this particular characteristic makes an approach via
Rokhlin-Sinai not tenable in our setting. In particular, it compels us to undertake a direct
investigation of the entropy per site of stealthy (and indeed, other spectrally constrained)
stochastic systems, invoking results connected to disparate areas of classical analysis
and probability theory.

We will investigate the question of entropic degeneracy in the context of random
fields having joint densities, that is, for any finite set � ⊂ Z

d , the finite collection of
random variables (X i)i∈� has a joint density on R

|�|. Next, we revisit the concept of
entropy for such random variables.

Let X be a continuous random variable with probability density function f . Then the
entropy of X is defined by

h(X) = E[− log f (X)] = −
∫

f (x) log f (x)dx .

Let � ⊂ R
d and �′ = � ∩ Z

d . The cardinality of �′ is denoted by |�′|. Define
X |� := {Xi : i ∈ �′}. The entropy of X |� is defined by

h(X |�) = −
∫

R|�′|
f�(x) log f�(x)dx,

where f� denotes the joint density function of X |�. Denote �L := {Lx : x ∈ �} for
L > 0. In the next result we assume that the boundary of � is 2-smooth with positive
Gaussian curvature, the Gaussian curvature of a boundary at a point is the product of the
principal curvatures. A boundary is said to be 2-smooth boundary if it is locally given
by a level of a 2-smooth function.

Theorem 7. Let X = (Xi )i∈Zd be a real valued mean zero and variance one translation
invariant random field with joint densities on finite domains. Let � be a bounded con-
nected domain in R

d with 2-smooth boundary ∂� each connected component of which
has positive Gaussian curvature. Suppose |�L ∩ Z

d | = �(Ld) as L → ∞. Then, if the
structure function S of X vanishes near the origin and satisfies the Sobolev condition,∑

j∈Zd |Ŝ( j)|,∑ j∈Zd || j |Ŝ( j)|2 < ∞,

H(X) := lim
L→∞

h(X |�L )

|�L ∩ Zd | = −∞.

Remark 2. More generally, the proof of Theorem 7 demonstrates that entropic degener-
acy is much more general than the vanishing of the structure function near the origin,
and sets in as soon as the structure function fails to be logarithmically integrable.

2. Statistical Physics Connections

2.1. Hyperuniformity. Hyperuniform (also known as super homogeneous) processes
are statistical mechanical systems that exhibit a higher level of uniformity than pro-
cesses that can be considered to be purely random. In the domain of random point
fields, the role of “pure randomness” is played by the Poisson process, which entails
that points in disjoint spatial domains are statistically independent of each other. To the
contrary, hyperuniform processes exhibit strong spatial correlation, which in particular
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acts to provide a measure of regularity that is noticably higher than the Poisson pro-
cess. Thus, hyperuniform systems lie somewhere in between purely random and purely
crystalline states of matter, which explains the interest in them from the perspective of
condensed matter physics. A large gamut of literature has emerged in recent years that
address the investigation of such systems, see e.g. [AM81,MY80,GLS06,GL18,TS03,
MST13,JLH+14,JT11,FTS09,BFN15,HMS13,DSM+15,HL15,HCL17], to provide a
partial list. For an overview of this fairly large body of literature, we refer the interested
reader to [Tor,GL17b], and the references therein.

An important aspect of hyperuniform point processes is the fluctuations of the particle
count in a large domain of space. For the Poisson process, this scales like the volume,
while for a hyperuniform system it grows slower than the volume, e.g., it may scale
like the surface area (or even slower) of the domain. Hyperuniform processes cover a
wide class of examples of natural statistical mechanical systems, principal among them
being (one component)Coulomb systems, determinantal processes, and their derivatives.
Hyperuniform processes arise naturally in the investigation of spectrally constrained
random fields. For translation invariant processes, hyperuniformity can be shown to be
equivalent to the vanishing of the spectrum at the origin of the frequency domain, and
thus spectral considerations are naturally motivated in the study of such systems (see,
e.g., [GL18,GL17b,BBM10]).

2.2. Stealthy hyperuniform systems. As alluded to earlier, an important category of pro-
cesses with spectral constraints is that of stealthy hyperuniform processes (SHP). Origi-
nating in the study of random point fields, these processes pertain to the situation where
the spectrum vanishes in a neighbourhood of the origin. The nomenclature “stealthy”
originates from the fact that such a point configuration is invisible to diffraction ex-
periments involving frequencies that fall in the “spectral gap”. Stealthy hyperuniform
processes have been the subject of intensive investigations in the recent past, see e.g.
[TZS15,ZST15a,ZST15b,ZST16,CDJZ+16,GL18] for a partial list, and the references
therein . SHP are naturally hyperuniform, they are a natural class of models for investi-
gation under the ambit of spectrally constrained stochastic systems.

In [GL18], a rigorous mathematical investigation of SHP was undertaken. In fact,
most of the results therein are applicable to a wider class of models, which the authors
referred to as generalized stealthy processes. These are translation invariant random
fields (or more generally, random measures) whose spectrum vanishes in some open
subset of the frequency domain (significantly relaxing the requirement that the “spectral
gap” be a neighbourhood of the origin). An important theme of the results in [GL18] is a
very high degree of “orderliness” exhibited by SHP. This can be observed, for instance, in
the bounded holes conjecture of Torquato, Zhang and Stillinger, which was established
in the affirmative in [GL18]. This result entails that the “holes” (i.e., regions in the
physical space that are devoid of particles), are at most of a deterministically fixed size.
Moreover, it was shown that this deterministic upper bound on hole sizes in inversely
proportional to the size of the spectral gap.

2.3. Maximal Rigidity and its consequences. The most intriguing property of general-
ized stealthy systems, established in [GL18], is perhaps the result that such systems ex-
hibit “maximal rigidity”. That is, the exact configuration (in the case of particle systems)
or the exact realisation of the randomfield/randommeasure ,when restricted to a bounded
domain of the physical space, is a deterministic function of the configuration (realisation
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of the random field) outside the domain. This caps a fairly long line of work on “rigidity
phenomena” in randompoint fields [Gho15,GP17,GL17a,Buf16,BQ18,KN+19],which
entails that certain statistics of local particle configurations (like local mass, local center
of mass, etc) are degenerate (that is, non-random) under spatial conditioning. With the
natural understanding that the complete determination (or degeneracy) of the field under
spatial conditioning is justifiably referred to as maximal rigidity, SHP form an important
class of models from this perspective.

The true physical interpretation or implication of the maximal rigidity exhibited
by stealthy systems is not well-understood. Rigidity under spatial conditioning is one
of several possible ways to address the question of statistical degeneracy in a spatial
system, and it naturally begs the question, exactly how degenerate are stealthy random
fields? While it might be tempting to contemplate a complete or nearly complete lack of
randomness (in some appropriate sense), a cautionary example is provided by the class of
stealthy Gaussian random fields. It is known from classical Gaussian process theory that
thanks to theBochner–KhinchineTheorem [Luk60,Theorem4.2.2], there is a one-to-one
correspondence between translation invariant Gaussian random fields and non-negative
spectral measures. Using this dictionary, a Gaussian random field is stealthy as soon as
the spectralmeasure vanishes on some neighbourhood of the frequency domain—a fairly
mild condition in the context of the Bochner–Khinchine theorem, thereby ensuring that
a vast category of Gaussian random fields are, in fact, stealthy. However, the mildness
of this constraint in view of Bochner–Khinchine also guarantees at the same time that
these processes can be hardly viewed to be devoid of or lacking in randomness in any
significant sense.

2.4. Spectral constraints and measuring the lack of randomness. In view of these con-
siderations, the question of describing the nature of the “lack of randomness” in stealthy
processes becomes an intriguing and challenging one. In this work, we investigate var-
ious aspects of stealthy random fields that touch upon this question. More generally,
we extend our investigation to spectrally constrained random fields that are not stealthy
but exhibit hyperuniformity in the sense of a vanishing spectrum at some point (usu-
ally the origin in the frequency space). Taking a refined view-point, we investigate the
degree of such spectral vanishing, particularly with regard to its consequences for sta-
tistical constraints on the random field in the physical space. In our investigations, we
focus attention on two classical measures of orderliness in random processes, namely
fluctuations and entropy.

3. Comparison of Fluctuations

Let Aδ = {x ∈ R : there exists i such that |xi | < δ} for δ > 0. Suppose S(x) = 0
when x ∈ Aδ for some δ > 0, and S is bounded function in [−π, π ]d . Then it is clear
that

∫ S(x)
x21 ···x2d

dx < ∞. Therefore Theorem 2 implies that

lim
L→∞Var(QCL (X)) < ∞. (4)

On the other hand, the same assumption on S implies that there exists L0 such that∫
‖ξ‖≤ c

L
S(ξ)dξ = 0 and

∫
‖ξ‖> c

L

S(ξ)

‖ξ‖d+1 dξ < ∞ for L > L0. Therefore Proposition 2
implies that

Var(QBL (X)) � Ld−1. (5)
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Fig. 1. Each box in the shaded area is surrounded by 8-complete boxes, other boxes do not satisfy this condition

In this section we give an intuitive explanation for the different behaviour observed in
(4) and (5) for d = 2. See Fig. 1.

To see this phenomenon, we first divide the ball of radius of L in grids of length
√
L ,

as shown in the figure. We denote

A(k,l) = [k√L, (k + 1)
√
L] × [�√L, (� + 1)

√
L], for k, � ∈ Z.

Note that A(k,�) are squares with side lengths
√
L . Let ϕL = 1BL . Then

QBL (X) =
∑

k,�

Yk,�, where Yk,� =
∑

i∈Ak,�∩BL

Xi .

If Ak,� ∩ BL = ∅ then Yk,� = 0. Therefore

QBL (X)2 =
∑

k,�

∑

p,q

Yk,�Yp,q .
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Since E[QBL (X)] = 0, we have

Var(QBL (X)) =
∑

k,�

∑

p,q

E[Yk,�Yp,q ].

Nowconsider the termwhen k = 0 and � = 0, i.e.,
∑

p,q E[Y0,0Yp,q ].Roughly speaking,
Theorem 2 implies that, for large L ,

E[Y0,0Yp,q ] ≈ 0 if ‖(0, 0), (p, q)‖∞ ≥ 2.

Therefore we have
∑

p,q

E[Y0,0Yp,q ] ≈
∑

|p|,|q|≤1

E[Y0,0Yp,q ]

= E[Y0,0Y0,0] + 4E[Y0,0Y0,1] + 4E[Y0,0Y1,1]
= σ 2 − 4

σ 2

2
+ 4

σ 2

4
= 0.

Let Z0 = {(k, �) ∈ Z
2 : Ak,� is surrounded by 8 complete boxes}. For example in

Fig. 1, each shaded box in the figure is surrounded by 8 complete boxes. But, the boxes
which are not shaded do not satisfy this condition. Then, for (k, �) ∈ Z0, we have

∑

p,q

E[Yk,�Yp,q ] ≈ 0.

Let Z1 = {(k, �) ∈ Z
2 : Ak,� ∩ BL �= ∅}. It is clear that if (k, �) ∈ Z1\Z0 then

∑

p,q

E[Yk,�Yp,q ] �= 0.

Again observe that |Z1\Z0| ≈ L . Which shows that Var(QBL (X)) is growing like L ,
not constant.

Carrying out a similar analysis for an L × L square shows that only the corner√
L × √

L squares contribute. Thus Var(QCL ) = 4 × σ 2

4 = σ 2. The same is true for
rectangles with sides of lengths proportional to L .

4. Proof of Theorem 1

This section is dedicated to prove Theorem 1. The following lemma will be used repeat-
edly in the paper.

Lemma 1. Let X = (Xi )i∈Zd be a translation invariant random field with covariance
kernel K . Suppose S is the Fourier transform of the covariance kernel K . Then

Var(ϕ(X)) = 1

(2π)d

∫
|ϕ̂(ζ )|2S(ζ )dζ and

Cov(ϕ(X), ψ(X)) = 1

(2π)d

∫
ϕ̂(ζ )ψ̂(ζ )S(ζ )dζ,

where ϕ and ψ are two functions in (L1 ∩ L2)(Rd), and ϕ(X) = ∑
i∈Zd ϕ(i)Xi . The ϕ̂

and ψ̂ are the Fourier transforms of ϕ and ψ respectively.
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Proof of Lemma 1. Recall ϕ(X) = ∑
i∈Zd ϕ(i)Xi . Therefore we have

Var(ϕ(X)) =
∑

p,q

ϕ(p)ϕ(q)E[X pXq ] =
∑

p,q

ϕ(p)ϕ(q)K (p − q).

By the definition of S we have K (p) = Ŝ(p) for p ∈ Z
d , i.e.,

K (p) = 1

(2π)d

∫

[−π,π ]d
S(ζ )e−iζ ·pdθ.

Therefore we get

Var(ϕ(X)) = 1

(2π)d

∑

p,q

ϕ(p)ϕ(q)

∫

[−π,π ]d
S(ζ )e−iζ ·(p−q)dζ

= 1

(2π)d

∫

[−π,π ]d
S(ζ )

∑

p,q

ϕ(p)ϕ(q)e−iζ ·(p−q)dζ

= 1

(2π)d

∫

[−π,π ]d
S(ζ )

(
∑

p

ϕ(p)e−iζ ·p
)(

∑

q

ϕ(q)e−iζ ·q
)
dζ

= 1

(2π)d

∫
S(ζ )|ϕ̂(ζ )|2dζ.

Similarly it can be shown, we skip the details here, that

Cov(ϕ(X), ψ(X)) = 1

(2π)d

∫
ϕ̂(ζ )ψ̂(ζ )S(ζ )dζ.

Hence the result. ��
We write f (L) � g(L) for all L if and only if there exists a constant C such that

f (L) ≤ Cg(L) for all L . We have the following result.

Proposition 1. For large L,

Var(QBL (X)) � L2d
∫

‖ξ‖≤ c
L

S(ξ)dξ + Ld−1
∫

‖ξ‖> c
L

S(ξ)

‖ξ‖d+1 dξ,

for some positive constant c.

Note that there is no assumption on S for the upper bound. The next result shows that
the upper bound is tight under a mild condition on S.

Proposition 2. Suppose S satisfies the condition as in Theorem 1. Then,

Var(QBL (X)) � L2d
∫

‖ξ‖≤ c
L

S(ξ)dξ + Ld−1
∫

‖ξ‖> c
L

S(ξ)

‖ξ‖d+1 dξ, for large L ,

for some positive constant c.

Proof of Theorem 1. The result follows from Propositions 1 and 2. ��
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The rest of this section is dedicated to provePropositions 1 and2. TheBessel functions
play a crucial role in proving the propositions. We first recall the definition of Bessel
functions. If �(ν) > − 1

2 then Jν(z), the Bessel function of order ν, is defined (see
[Eps08, p. 128]) by the integral

Jν(z) = ( z2 )
ν

�(ν + 1
2 )�( 12 )

∫ π

0
eiz cos θ sin2ν(θ)dθ. (6)

Proposition 3. Suppose ϕL = 1BL . Then

ϕ̂L(ξ) = c′
d L

d
∫ π

0
ei L‖ξ‖ cos θ sind(θ)dθ, (7)

where c′
d is a constant depending on d.

Proof of Proposition 3. Observe that ϕL(x) = ϕ1(x/L). Therefore we have

ϕ̂L(ξ) = ̂ϕ1(x/L)(ξ) = Ld ϕ̂1(Lξ). (8)

Again, the Fourier transform of the characteristic function of the unit ball B1 ⊂ R
d is

given by, see [Eps08, Example 4.5.3],

ϕ̂1(ξ) = cd

‖ξ‖ d
2

Jd
2
(‖ξ‖). (9)

Using (9) in (8) we get

ϕ̂L(ξ) = cd L
d
2

‖ξ‖ d
2

Jd
2
(L‖ξ‖). (10)

Then from (6) we get

Jd
2
(L‖ξ‖) = (

L‖ξ‖
2 )

d
2

�( d2 + 1
2 )�( 12 )

∫ π

0
ei L‖ξ‖ cos θ sind(θ)dθ. (11)

The result follows from (10) and (11). ��
We also use the following asymptotic of Bessel functions.

4.1. Asymptotic behavior of Bessel functions. We have, see [AS92, p. 364, 9.2.1],

Jα(z) =
√

2

π z

(
cos(z − απ

2
− π

4
) + e|Im(z)|O(|z|−1)

)
, for|arg(z)| < π.

In particular if Im(z) = 0 then we have

Jα(z) =
√

2

π z

(
cos(z − απ

2
− π

4
) + O(|z|−1)

)
, for z ∈ R.

Then there exists a large c > 0 such that

Jα(z) =
√

2

π z

(
cos(z − απ

2
− π

4
) + g(z)

)
, for z ∈ R. (12)

where |g(z)| � |z|−1 for all |z| > c.
Now we proceed to prove Propositions 1 and 2.
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Proof of Proposition 1. Let ϕL = 1BL . By Lemma 1 we have

Var(QBL (X)) = 1

(2π)d

∫
|ϕ̂L(ξ)|2S(ξ)dξ

= 1

(2π)d

∫

‖ξ‖≤ c
L

|ϕ̂L(ξ)|2S(ξ)dξ +
1

(2π)d

∫

‖ξ‖> c
L

|ϕ̂L(ξ)|2S(ξ)dξ.

Note that from (7) we have

|ϕ̂L(ξ)|2 � L2d , for ξ ∈ [−π, π ]d .
Therefore we get

∫

‖ξ‖≤ c
L

|ϕ̂L(ξ)|2S(ξ)dξ � L2d
∫

‖ξ‖≤ c
L

S(ξ)dξ. (13)

Choose c such that (12) holds. Then, for large L , we have

Jd
2
(L‖ξ‖) � 1√

L‖ξ‖ , for ‖ξ‖ >
c

L
.

Then from (10), for ‖ξ‖ > c
L , we get

|ϕ̂L(ξ)|2 � Ld−1

‖ξ‖d+1 .

Therefore we have
∫

‖ξ‖> c
L

|ϕ̂L(ξ)|2S(ξ)dξ � Ld−1
∫

‖ξ‖> c
L

S(ξ)

‖ξ‖d+1 dξ. (14)

The result follows from (13) and (14). ��
Proof of Proposition 2. From (7) we have

|ϕ̂L(ξ)|2 ≥ c′2
d L

2d
(∫ π

0
cos(L‖ξ‖ cos θ) sind(θ)dθ

)2

.

Note that, for L‖ξ‖ ≤ c, there exists δc such that

L‖ξ‖ cos θ ≤ π

4
, for θ ∈ [π

2
− δc,

π

2
+ δc].

Therefore, for L‖ξ‖ ≤ c, we have

cos(L‖ξ‖ cos θ) sind(θ) ≥ cosd(δc)√
2

, for θ ∈ [π
2

− δc,
π

2
+ δc].

Hence we get

|ϕ̂L(ξ)|2 � L2d , for L‖ξ‖ ≤ c.



Fluctuation and entropy in spectrally constrained random fields 765

Which implies, as S ≥ 0, that
∫

‖ξ‖≤ c
L

|ϕ̂L(ξ)|2S(ξ)dξ � L2d
∫

‖ξ‖≤ c
L

S(ξ)dξ. (15)

Now choose c > 0 such that (12) holds. Then by (12) from (10) we get

|ϕ̂L(ξ)|2 = Cd Ld−1

‖ξ‖d+1
(
cos(L‖ξ‖ − dπ

4
− π

4
) + g(L‖ξ‖)

)2

, (16)

where Cd is a constant depending on d. Note that, as |g(L‖ξ‖)| � 1
L‖ξ‖ ,

∣∣∣∣∣

∫

‖ξ‖> c
L

Cd Ld−1g(L‖ξ‖)
‖ξ‖d+1 S(ξ)dξ

∣∣∣∣∣ � Ld−2
∫

‖ξ‖> c
L

S(ξ)

‖ξ‖d+2 dξ.

Let φ = dπ
4 + π

4 . Therefore form (16) we have

∫

‖ξ‖> c
L

|ϕ̂L(ξ)|2S(ξ)dξ = Cd L
d−1I1 + O(Ld−2)I2, (17)

where

I1 =
∫

‖ξ‖> c
L

S(ξ)

‖ξ‖d+1 cos
2(L‖ξ‖ − φ)dξ and I2 =

∫

‖ξ‖> c
L

S(ξ)

‖ξ‖d+2 dξ.

The rest of proof is dedicated to estimate I1. Let ξ = ‖ξ‖ω, where ω ∈ S
d−1. Then

dξ = ‖ξ‖d−1d‖ξ‖dVSd−1(ω) and

I1 =
∫

Sd−1

∫

‖ξ‖> c
L

S(‖ξ‖ω)

‖ξ‖2 cos2(L‖ξ‖ − φ)d‖ξ‖dVSd−1(ω).

Since S is bounded on [−π, π ]d , for fixed ε > 0, we have

0 ≤
∫

Sd−1

∫

‖ξ‖>ε

S(‖ξ‖ω)

‖ξ‖2 cos2(L‖ξ‖ − φ)d‖ξ‖dVSd−1(ω) � 1

ε
. (18)

Since S is regular, there exists a function A such that

c1A(ξ) ≤ S(ξ) ≤ c2A(ξ) and

∫
Sd−1 A(‖ξ‖ω)dVSd−1(ω)

‖ξ‖2
is monotone for 0 ≤ ‖ξ‖ ≤ ε, where c1, c2, ε > 0. Note that A is bounded and positive,
as S is bounded and positive. Therefore

I1 �
∫

Sd−1

∫

c
L <‖ξ‖<ε

A(‖ξ‖ω)

‖ξ‖2 cos2(L‖ξ‖ − φ)d‖ξ‖dVSd−1(ω).

Suppose Ais radial. For simplicity, we first assume that A is radial, i.e., A(ξ) = A(‖ξ‖).
Then the regularity condition implies that A(‖ξ‖)

‖ξ‖2 ismonotone for 0 ≤ ‖ξ‖ ≤ ε. Let A(‖ξ‖)
‖ξ‖2
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be monotone decreasing. Let k0 ∈ N be such that c ≤ k0π , and rk = πk
L , k = 1, 2, . . ..

Then

∫

c
L <‖ξ‖<ε

A(‖ξ‖)
‖ξ‖2 cos2(L‖ξ‖ − φ)d‖ξ‖ ≥

� εL
π

�∑

k=k0

∫ rk+1

rk

A(‖ξ‖)
‖ξ‖2 cos2(L‖ξ‖ − φ)d‖ξ‖

≥
� εL

π
�∑

k=k0

A(rk+1)

(rk+1)2

∫ rk+1

rk
cos2(L‖ξ‖ − φ)d‖ξ‖

=
� εL

π
�∑

k=k0

A(rk+1)

(rk+1)2
π

2L
.

The last equality follows from the fact that
∫ rk+1

rk
cos2(L‖ξ‖ − φ)d‖ξ‖ = π

2L
, for k = 1, 2, . . . .

As A(‖ξ‖)
‖ξ‖2 is monotone decreasing for 0 ≤ ‖ξ‖ ≤ ε, by the Riemann integration

� εL
π

�∑

k=k0

A(rk+1)

(rk+1)2
π

L
�

∫ ε

c
L

A(‖ξ‖)
‖ξ‖2 d‖ξ‖, for large L ,

as monotone functions are integrable. Thus, for large L , we have

I1 �
∫

c
L <‖ξ‖<ε

A(‖ξ‖)
‖ξ‖2 cos2(L‖ξ‖ − φ)d‖ξ‖ �

∫ ε

c
L

A(‖ξ‖)
‖ξ‖2 d‖ξ‖. (19)

Combining (17), (18) and (19) we get, for large L ,

∫

‖ξ‖> c
L

|ϕ̂L(ξ)|2S(ξ)dξ � Ld−1

(∫ ε

c
L

A(‖ξ‖)
‖ξ‖2 d‖ξ‖ + O(1)

)
.

Since A is bounded and A(ξ) = A(‖ξ‖), we get
∫

‖ξ‖> c
L

|ϕ̂L(ξ)|2S(ξ)dξ � Ld−1
∫

‖ξ‖> c
L

A(ξ)

‖ξ‖d+1 dξ.

Using the regularity condition of S we have
∫

‖ξ‖> c
L

|ϕ̂L(ξ)|2S(ξ)dξ � Ld−1
∫

‖ξ‖> c
L

S(ξ)

‖ξ‖d+1 dξ, for large L .

The inequalities also hold when A(‖ξ‖)
‖ξ‖2 is monotone increasing for 0 ≤ ‖ξ‖ ≤ ε.

Suppose Ais not radial.
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Let h(‖ξ‖) :=
∫
Sd−1 A(‖ξ‖ω)dV

Sd−1 (ω)

‖ξ‖2 . Then by change of variables we get

∫

c
L <‖ξ‖<ε

A(ξ)

‖ξ‖d+1 cos
2(L‖ξ‖ − φ)dξ =

∫

c
L <‖ξ‖<ε

h(‖ξ‖) cos2(L‖ξ‖ − φ)d‖ξ‖.

Now suppose h is decreasing for 0 ≤ ‖ξ‖ ≤ ε, using the same arguments as before it
can be shown that

∫

c
L <‖ξ‖<ε

h(‖ξ‖) cos2(L‖ξ‖ − φ)d‖ξ‖ �
∫ ε

c
L

h(‖ξ‖)d‖ξ‖

=
∫

Sd−1

∫ ε

c
L

A(‖ξ‖ω)

‖ξ‖2 d‖ξ‖dVSd−1(ω)

=
∫

c
L <‖ξ‖<ε

A(ξ)

‖ξ‖d+1 dξ.

We get the last equality by the change of variables. Thus we have

I1 �
∫

c
L <‖ξ‖<ε

A(ξ)

‖ξ‖d+1 dξ �
∫

c
L <‖ξ‖<ε

S(ξ)

‖ξ‖d+1 dξ.

Therefore, by (17) and (18), we get
∫

‖ξ‖> c
L

|ϕ̂L(ξ)|2S(ξ)dξ � Ld−1
∫

‖ξ‖> c
L

S(ξ)

‖ξ‖d+1 dξ. (20)

Therefore (15) and (20) give the result. ��

5. Proof of Theorem 2

In this section we give the proof of Theorem 2.

Proof of Theorem 2. Let ϕ0,L(x) = 1C(0)
L

(x) and ϕn,L(x) = 1C(n)
L

(x). Then

QC(0)
L

(X) = ϕ0,L(X) and QC(n)
L

(X) = ϕn,L(X).

Therefore using Lemma 1 we have

E[QC(0)
L

(X)QC(n)
L

(X)] = 1

(2π)d

∫ π

−π

· · ·
∫ π

−π

ϕ̂0,L(x)ϕ̂n,L(x)S(x)dx, (21)

wheredx = dx1 · · · dxd .Observe thatϕn,L(x) = ϕ0,L(x−nL). Therefore, as ̂f (· − a) =
e−i〈·,a〉 f̂ (·), we have

ϕ̂n,L(x) = ̂ϕ1(· − nL)(x) = e−i〈nL ,x〉ϕ̂0,L(x) =
d∏

k=1

(1 − e−i Lxk )e−i Lnk xk

i xk
,
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as the Fourier transform of ϕ0,L is given by, for x ∈ R
d ,

ϕ̂0,L(x) =
∫

· · ·
∫

e−i x ·t1C(n)
L

(t)dt =
d∏

k=1

∫ L

0
e−i xk tk dtk =

d∏

k=1

(1 − e−i Lxk )

i xk
.

Therefore, for x ∈ R
d and n ∈ (N ∪ {0})d , we get

ϕ̂0,L(x)ϕ̂n,L(x) =
∏d

k=1(1 − e−i Lxk )(1 − ei Lxk )ei Lnk xk

x21 · · · x2d
.

Let ε(1)
k,1 = 0, ε(2)

k,1 = 1, ε(1)
k,2 = 0, ε(2)

k,2 = −1 for k = 1, . . . , d. Then we can write

(1 − e−i Lxk )(1 − ei Lxk ) =
∑

pk ,qk∈{1,2}
(−1)

(
ε
(pk )

k,1 +ε
(qk )

k,2

)

e
i L

(
ε
(pk )

k,1 +ε
(qk )

k,2

)

,

for k = 1, . . . , d. Let p = (p1, . . . , pd), q = (q1, . . . , qd) ∈ {1, 2}d . Then
ϕ̂0,L(x)ϕ̂n,L(x)

= 1

x21 . . . x2d

∑

p,q

(−1)
∑d

k=1

(
ε
(pk )

k,1 +ε
(qk )

k,2

)

e
i L

∑d
k=1

(
ε
(pk )

k,1 +ε
(qk )

k,2 +nk
)
xk

. (22)

The sum is taken over all possible values of p and q. Let f (x) = S(x)
x21 ···x2d

. The assumption

on S implies that
∫
Rd | f (x)|dx < ∞. Therefore

1

(2π)d

∫

[−π,π ]d
e
i L

∑d
k=1

(
ε
(pk )

k,1 +ε
(qk )

k,2 +nk
)
xk f (x)dx

= f̂
(
−L(ε

(p1)
1,1 + ε

(q1)
1,2 + n1, . . . , ε

(pd )
d,1 + ε

(qd )
d,2 + nd)

)
,

where f̂ denotes the Fourier transform of f . Thus, from (21) and (22),

E[QC(0)
L

(X)QC(n)
L

(X)]

=
∑

p,q

(−1)
∑d

k=1

(
ε
(pk )

k,1 +ε
(qk )

k,2

)

f̂
(
−L(ε

(p1)
1,1 + ε

(q1)
1,2 + n1, . . . , ε

(pd )
d,1 + ε

(qd )
d,2 + nd)

)
.

If (ε
(p1)
1,1 + ε

(q1)
1,2 + n1, . . . , ε

(pd )
d,1 + ε

(qd )
d,2 + nd) �= 0 then Lemma 4 implies that

lim
L→∞ f̂

(
−L(ε

(p1)
1,1 + ε

(q1)
1,2 + n1, . . . , ε

(pd )
d,1 + ε

(qd )
d,2 + nd)

)
= 0. (23)

Suppose C(0)
L and C(n)

L are disjoint. Then there exists k ∈ {1, . . . , d} such that nk ≥ 2.
In this case we have

ε
(pk )
k,1 + ε

(qk)
k,2 + nk ≥ 1.

Therefore (23) implies that if C(0)
L and C(n)

L are disjoint then

lim
L→∞E[QC(0)

L
(X)QC(n)

L
(X)] = 0.
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It remains to show that if dim(C(0)
L ∩ C(n)

L ) = d − j , for j = 0, 1, . . . , d, then

lim
L→∞E[QC(0)

L
(X)QC(n)

L
(X)] = (−1) j

σ 2
d

2 j
.

Let n ∈ (N ∪ {0})d such that (ε
(p1)
1,1 + ε

(q1)
1,2 + n1, . . . , ε

(pd )
d,1 + ε

(qd )
d,2 + nd) = 0 for some

p, q ∈ {1, 2}d . In this case, Lemma 4 implies that

lim
L→∞E[QC(0)

L
(X)QC(n)

L
(X)] =

∑

p,q

(−1)
∑d

k=1

(
ε
(pk )

k,1 +ε
(qk )

k,2

)

f̂ (0). (24)

Now we need to find the cardinality of the following set

Cn = {(p, q) ∈ {1, 2}d : ε
(pk )
k,1 + ε

(qk)
k,2 + nk = 0, k = 1, . . . , d}.

Note that if nk = 0 then ε
(pk )
k,1 + ε

(qk)
k,2 + nk = 0 when (pk, qk) ∈ {(1, 1), (2, 2)}, and if

nk = 1 then ε
(pk )
1,1 + ε

(qk)
1,2 + nk = 0 when (pk, qk) = (1, 2).

Observe that if dim(C(0)
L ∩ C(n)

L ) = d − j then there exists j indices i1, . . . , i j such
that nik = 1 for k = 1, . . . , j and the rest of the d − j coordinates of n are 0. Therefore
the cardinality of Cn is

|Cn| = 2d− j .

Since f̂ (0) = 1
(2π)d

∫
[−π,π ]d

S(x)
x21 ···x2d

dx = σ 2
d
2d
. Therefore from (24) we get

lim
L→∞E[QC(0)

L
(X)QC(n)

L
(X)] = (−1) j

σ 2
d

2 j
.

The factor (−1) j appears because j many coordinates of n are 1. ��

6. Proofs of Theorem 4 and Corollary 5

In this section we prove Theorem 4 and Corollary 5.

Proof of Theorem 4. We have ϕL = 1CL . Then

ϕ̂L(x) =
∫ L

−L
· · ·

∫ L

−L
e−i t ·xdt1 · · · dtd =

d∏

k=1

ei Lxk − e−i Lxk

i xk
=

d∏

k=1

2 sin Lxk
xk

.

Note that QCL (X) = ϕL(X). Therefore by Lemma 1 we have

Var(QCL (X)) = 1

(2π)d

∫ π

−π

· · ·
∫ π

−π

|ϕ̂L(x)|2S(x)dx

= 1

(2π)d

∫ π

−π

· · ·
∫ π

−π

d∏

k=1

4 sin2 Lxk
x2k

S(x)dx,
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where x = (x1, . . . , xd) and dx = dx1 · · · dxd . As S is symmetric, then

Var(QCL (X)) = 8d J, whereJ = 1

(2π)d

∫ π

0
· · ·

∫ π

0

d∏

k=1

sin2 Lxk
x2k

S(x)dx . (25)

Let Aδ
i1,...,ik

= {x ∈ [0, π ]d : |xi | < δ iff i ∈ {i1, . . . , ik}} and [d] = {1, . . . , d} Then
define

Aδ = ∪d
k=1 ∪{i1,...,ik }⊂[d] Aδ

i1....,ik .

Note that Ac
δ = [0, π ]d\Aδ = {x ∈ [0, π ]d : x1, . . . , xd ≥ δ}. Then

J = J1 + J2, where

J1 = 1

(2π)d

∫

Aδ

d∏

k=1

sin2 Lxk
x2k

S(x)dx, J2 = 1

(2π)d

∫

Ac
δ

d∏

k=1

sin2 Lxk
x2k

S(x)dx .

Since sin2 Lx ≤ 1, by (C2) we have

|J2| < ∞, for δ > 0. (26)

Now we estimate J1. We have

J1 ≤
d∑

k=1

∑

1≤i1,...,ik≤d

Ii1,...,ik , where Ii1,...,ik = 1

(2π)d

∫

Aδ
i1 ....,ik

d∏

k=1

sin2 Lxk
x2k

S(x)dx .

The assumption on S implies that there exists c1, c2, δ > 0 such that

c1x
αi1
i1

. . . x
αik
ik

≤ S(x) ≤ c2x
αi1
i1

. . . x
αik
ik

, forx ∈ Aδ
i1....,ik .

Using the last equation we get

c1 J
′
i1,...,ik ≤ Ii1,...,ik ≤ c2 J

′
i1,...,ik ,

with

J ′
i1,...,ik =

k∏

j=1

∫ δ

0

sin2 Lx j

x
2−αi j
j

dx j

d∏

j=k+1

∫ π

δ

1

x2j
dx j = c

k∏

j=1

∫ δ

0

sin2 Lx j

x
2−αi j
j

dx j .

where c = (
∫ π

δ
x−2dx)d−k is a constant. Now we show the following lemma.

Lemma 2. Given δ > 0, as L → ∞,

∫ δL

0

sin2 x

x2−α
dx =

⎧
⎨

⎩


(1) if α ∈ [0, 1),

(log L) if α = 1.

Proof of Lemma 2. It is clear that, as | sin x/x | ≤ 1 and | sin x | ≤ 1,
∫ δL

0

sin2 x

x2−α
dx <

∫ 1

0
xαdx +

∫ δL

1
x−2+αdx .

The first integral is obviously bounded, whereas the second is bounded for α < 1 and
behaves like log L for α = 1. Hence the lemma. ��
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Now observe that by a change of variables and Lemma 2 it follows that

∫ δ

0

sin2 Lx j

x
2−αi j
j

dx j =
⎧
⎨

⎩


(1) if α ∈ [0, 1),

(log L) if α = 1.

Let τi1,...,ik = |{ j ∈ [k] : αi j = 1}|. Then it follows that

Ii1,...,ik = 
(L
∑k

j=1(1−αi j )(log L)τi1,...,ik )

Clearly,
∑k

j=1(1 − αi j ) ≤ md and τi1,...,id ≤ τd so that Ii1,...,id ≤ I1,...,d and

I1,...,d = 
(Ld−md (log L)τd ).

Therefore we have

I1,...,d � J1 � I1,...,d �⇒ J1 = 
(Ld−md (log L)τd ). (27)

The left hand side follows from the fact that Aδ
1,...,d ⊂ Aδ . Therefore (26) and (27) give

the result. ��
Proof of Corollary 5. Let ϕL = 1[−1,1]d . Then from (25) we have

Var(QCL (X)) = 8d J, where J = 1

(2π)d

∫ π

0
· · ·

∫ π

0

d∏

k=1

sin2 Lxk
x2k

S(x)dx .

Let B(0, δ) := {x ∈ [0, π ]d : ‖x‖2 < δ}. Observe that
{x ∈ [0, π ]d : (∀k = 1, . . . , d) |xk | ≤ δd−1/2} ⊂ B(0, δ) ⊂ [−δ, δ]d .

Then we have J = J1 + J2, where

J1 = 1

(2π)d

∫

B(0,δ)

d∏

k=1

sin2 Lxk
x2k

S(x)dx, J2 = 1

(2π)d

∫

B(0,δ)c

d∏

k=1

sin2 Lxk
x2k

S(x)dx .

By the assumption of S implies that

|J2| < ∞.

So it remains to estimate J1. Since S(x) = 
(‖x‖α
2 ) as ‖x‖2 → 0, there exist c1, c2, δ >

0 such that

c1‖x‖α
2 ≤ S(x) ≤ c2‖x‖α

2 , for x ∈ B(0, δ).

Note that ‖x‖α
2 ≥ |x1|α . Therefore we have

J1 ≥
∫

B(0,δ)

d∏

k=1

sin2 Lxk
x2k

dxk � 1

(2π)d

d∏

k=1

∫ δ/d1/2

0

sin2 Lxk

x2−αk
k

dxk
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where α1 = α and α2 = · · · = αd = 0. Therefore by Lemma 2 we get

J1 �

⎧
⎨

⎩

Ld−α if 0 ≤ α < 1,

Ld−1 log L if α = 1.
(28)

Again, observe that

‖x‖α
2 ≤ dα/2(max{|x1|, . . . , |xk |})α ≤ dα/2(|x1|α + · · · + |xd |α).

Therefore by Lemma 2, for α j = α and αk = 0 for k �= j , we get

J1 �
d∏

k=1

∫ δ

0

sin2 Lxk

x2−αk
k

dxk �

⎧
⎨

⎩

Ld−α if 0 ≤ α < 1,

Ld−1 log L if α = 1.
(29)

The result follows from (28) and (29), as |J2| < ∞. ��

7. Proof of Theorem 6

We prove Theorem 6 in this section. First, we recall the definitions of correlation, trun-
cated correlation functions and their properties.

7.1. Joint intensity functions. Let X = (Xi )i∈Zd be a random field. Let Cc(Rd) be the
space of compactly supported continuous functions on R

d . Let

ρk(i1, . . . , ik) = E[Xi1 · · · Xik ], for i1, . . . , ik ∈ Z
d . (30)

Next, for the sake of completeness, we show that ρk is the k-th intensity function of
X with respect to counting measure on Z

kd . See [DRS18,CL95, Section 3.3] for the
details.

(1) The first intensity function. Let ϕ be a continuous function on R
d . Define ϕ(X) :=∑

i∈Zd ϕ(i)Xi and T1(ϕ) = E(ϕ(X)). Note that T1 is a continuous linear form on
Cc(Rd). Then by the Riesz-Markov (-Kakutani) theorem there is a unique positive
Borel measure μ1 in Z

d such that

T1(ϕ) =
∫

ϕ(x)dμ1(x), for all ϕ ∈ Cc(Rd). (31)

See [HKPV09, p. 10]. The measure μ1 is called the first intensity measure. Ob-
serve that the measure

∑
i∈Zd ρ(i)δi , where δx (·) denotes the Dirac-delta mea-

sure at x , satisfies the relation (31). By the uniqueness of first intensity measure,
μ1 = ∑

i∈Zd ρ(i)δi . Therefore ρ(i) is the first intensity function of X with respect
to the counting measure on Z

d .



Fluctuation and entropy in spectrally constrained random fields 773

(2) The second intensity function. Define a positive bilinear functional on Cc(R
d) ×

Cc(R
d) by

T2(ϕ, ψ) = E[ϕ(X)ψ(X)],

which induces a positive linear functional on Cc(R
2). Then there exists a unique

positive regular Borel measure μ2 such that

T2(ϕ, ψ) =
∫

R2d
ϕ(x)ψ(y)dμ2(x, y).

See [HKPV09, p. 11]. Again the measure
∑

i, j∈Zd ρ2(i, j)δiδ j satisfies the last equa-
tion. Therefore by uniqueness μ2 = ∑

i, j∈Zd ρ2(i, j)δiδ j , and ρ2 is the second in-

tensity function of X with respect to the counting measure on Z
2d . In particular if

ρ2(i, j) = K (i − j)with {K ( j)} ∈ L1(Zd) then there exists S ∈ L1([−π, π ]d) such
that

S(θ) =
∑

j∈Zd

eiθ. j K ( j), where θ ∈ [−π, π ]d .

(3) The k-th intensity function. Similarly, we have the k-th intensity function ρk with
respect to the counting measure on Z

kd , and given by (30).

Note that if Xi ∈ {0, 1} for i ∈ � then X = (Xi )i∈� is a simple point process in �.
If the k-th intensity measure μk is absolutely continuous with respect to the Lebesgue
measure, then we get the joint intensity function in � in usual sense, as considered in
[MY80]. See [HKPV09, Definition 1.2.2] for more details.

7.2. Truncated (connected) correlation functions. Correlations between particles are
better described by truncated (connected) correlation functions. These functions are
defined recursively, see [DRS18,CL95, Section 3.4], by

ρT
1 (i1) := ρ1(i1),

ρn(i1, . . . , in) =
∑

π∈P(n)

∏

B∈π

ρT
B [i1, . . . , in], (32)

where ρT
B [i1, . . . , in] = ρT|B|(i j : j ∈ B), and P(n) denotes the set of all partitions of

{1, . . . , n}, B runs through the list of blocks of the partition π . The truncated correlation
functions can also be written explicitly in terms of the correlation functions as follows

ρT
n (i1, . . . , in) =

∑

π∈P(n)

(|π | − 1)!(−1)|π |−1
∏

B∈π

ρB[i1, . . . , in], (33)

where |π | is the number of parts in the partition. Note that (32) and (33) implies that
correlation functions are the analogue of themoments and truncated correlation functions
are the analogue of the cumulants of a measure.
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7.3. Cumulants. Recall that the joint cumulant of X1, . . . , Xn is given by

κ(X1, . . . , Xn) =
∑

π∈P(n)

(|π | − 1)!(−1)|π |−1
∏

B∈π

E

(
∏

i∈B
Xi

)
, (34)

which can be found in https://en.wikipedia.org/wiki/Cumulant. If some of the random
variables are independent of all of the others, then any cumulant involving two (or more)
independent random variables is zero. If all n random variables are the same, then the
joint cumulant is the n-th ordinary cumulant. The joint cumulant holds the multilinearity
property, i.e.,

κ(X1, . . . , c1Xk + c2X
′
k, . . . , Xn)

= c1κ(X1, . . . , Xk, . . . , Xn) + c2κ(X1, . . . , X
′
k, . . . , Xn) (35)

for all k = 1, . . . , n.

Now we proceed to prove the theorem.

Proof of Theorem 6. Marcinkiewicz showed that the normal distribution is the only dis-
tribution whose cumulant generating function is a polynomial, i.e. the only distribution
having a finite number of non-zero cumulants. See Theorem 9, [Kat04, p. 152]. Let

Q̄BL (X) = QBL (X) − E[QBL (X)]
√
Var(QBL (X))

.

It is enough to show that all but finitely many cumulants of Q̄BL (X) are asymptotically
zero. Recall QBL (X) = ∑

i∈B′
L
Xi , where B′

L = {i ∈ Z
d : i ∈ BL}. Equations (33)

and (34) imply that

ρT
n (i1, . . . , in) = κ(Xi1, . . . , Xin ), (36)

and by the multilinearity (35) we have

κn(QBL (X)) =
∑

i1,...,in∈B′
L

κ(Xi1 , . . . , Xin ) =
∑

i1,...,in∈B′
L

ρT
n (i1, . . . , in).

Since κn(cY ) = cnκn(Y ), by (35), for any random variable Y andE[QBL (X)] = 0, then

κn(Q̄BL (X)) = 1

(Var(QBL (X)))n/2

∑

i1,...,in∈B′
L

ρT
n (i1, . . . , in).

Recall that we assume that

sup
i1

∑

i2,...,in∈B′
L

ρT
n (i1, . . . , in) < ∞.

There exists a positive constant C such that

κn(Q̄BL (X)) ≤ C |B′
L |

(Var(QBL (X)))n/2 .

https://en.wikipedia.org/wiki/Cumulant
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By Proposition 2 we get

κn(Q̄BL (X)) � Ld

L(d−1)n/2
= L− nd

2 (1− 1
d − 2

n ).

Note that, for d > 3 and n ≥ 3, we have 1 − 1
d − 2

n > 0, and

κn(Q̄BL (X)) → 0, as L → ∞.

This completes the proof for d > 3.
If d = 2, 3 then we have 1− 1

d − 2
n > 0 when n ≥ 5. Therefore, for n ≥ 5, we have

κn(Q̄BL (X)) → 0, as L → ∞.

Therefore we have

κ1(Q̄BL (X)) = E[Q̄BL (X)] = 0, κ1(Q̄BL (X)) = E[(Q̄BL (X))2] = 1

and

lim
L→∞ κn(Q̄BL (X)) = 0

for all n ≥ 5. If we already knew that Q̄BL (X) converges in distribution, then this would
demonstrate, via Marcinkiewicz’s Theorem, that the limit must be Gaussian, since we
would have only finitely many non-zero cumulants in limit.

Since we do not know a priori that Q̄BL (X) converges in distribution, we proceed
via a compactness argument as follows. First, we observe that Var[Q̄BL (X)] = 1, which
implies that the random variables Q̄BL (X) give rise to a tight family of distributions.
This implies that, for any sequence Li → ∞, there exists a sub-sequence Li j such that
Q̄BLi j

(X) converges to a limiting random variable χ . Using our investigation of the

cumulants for the sequence of random variables Q̄BLi j
(X), we may deduce that such χ

must be a standard Gaussian.
Now, let if possible Q̄BL (X) not converge to a standard Gaussian (for d = 2, 3). Let

δ be a metric that metrizes the topology of distributional convergence in the space of
probability measures on R

d (for instance, the Levy-Prokhorov metric). Let μL denote
the probability measure corresponding to the random variable Q̄BL (X), and μ be the
distribution of a standard normal. Then, for some ε > 0, there must be a sequence Li →
∞ such that δ(μLi , μ) > ε for all i . But, using the subsequential argument of the previous
paragraph, we may conclude that there is a subsequence {Li j } j≥1 ⊆ {Li }i≥1 such that
Q̄BLi j

(X) converges to a standard Gaussian. But this would imply that δ(μLi j
, μ) → 0,

whereas we have already noted that wemust have δ(μLi j
, μ) > ε ∀ j . This leads us to a

contradiction, implying that Q̄BL (X) must converge to a standard Gaussian as L → ∞
also for d = 2, 3.

This completes the proof. ��
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8. Proof of Theorem 7

In this section we prove Theorem 7 using Szegő’s theorem. Let F be a real integrable
function on [−π, π ]d , and let its Fourier transform is given by

F̂(k) = 1

(2π)d

∫

[−π,π ]d
e−ik·θ F(θ)dθ,

where k · θ = ∑d
j=1 k jθ j . Let TL(F) = (F̂(i − j))|�′

L |×|�′
L |. Recall �L = {Lx : x ∈

�} and�′
L = Z

d ∩�L . A multidimensional version of Szegő’s theorem is stated below,
which will be used in the proof of Theorem 7.

Theorem 8 ([Lin75, Theorem 2]). Let F > 0 be a function on [−π, π ]d such that
∑

k∈Zd

|F̂(k)|,
∑

k∈Zd

|k||F̂(k)|2 < ∞,

where |k|2 = ∑d
j=1 k

2
j . Let � ⊂ R

d be as in Theorem 7. Then as L → ∞

lim
L→∞

1

|�′
L | log det(TL(F)) = 1

(2π)d

∫

[−π,π ]d
log F(θ)dθ.

For the classical Szegő’s theorem, we refer to [Sze52,Ibr68,Sim05] and references
there in. The following well known fact will be used in the proof of Theorem 7. For the
sake of completeness we give a proof.

Lemma 3. Let X = (X1, . . . , Xd)bea vector of randomvariables inR
d with continuous

density, and G = (G1, . . . ,Gd) be a vector of Gaussian random variables in R
d .

Suppose E[Xi ] = E[Gi ] = 0 and E[Xi X j ] = E[GiG j ] for all i, j ∈ {1, . . . , d}. Then
h(X) ≤ h(G).

Proof of Theorem 7. Lemma 3 implies that

h(X |�L )

|�′
L | ≤ h(G|�L )

|�′
L | , (37)

where (Gi )i∈Zd be the mean zero variance one Gaussian field with the given covariance
kernel K . Now we show that the right hand side diverges to −∞ as L → ∞.

Note that G|�L can be thought as a vector of |�′
L | many Gaussian random variables

with mean zero and variance one. Again the joint distribution of Gaussian random
variables determined by its kernel. Therefore the joint density of the random variables
G|�L is given by

fL(xL) = 1√
det(2π�L)

e− 1
2 x

t
L�−1

L xL ,

where xL is a vector of length |�′
L | and �L is the covariance kernel matrix for the

random variables {Gi : i ∈ �′
L}. In other words �L = (K (i − j))|�′

L |×|�′
L |. Then

log fL(xL) = −|�′
L | log(2π)

2
− log det(�L)

2
− 1

2
xtL�−1

L xL .
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Therefore the entropy of G|�L is given by

h(G|�L ) = −
∫

R
|�′

L | fL(x) log fL(x)dx

= |�′
L | log(2π)

2
+
log det(�L)

2
+

1√
det(2π�L)

∫
(
1

2
xt�−1

L x)e− 1
2 x

t�−1
L xdx . (38)

By the change of variables formula, putting y = �1/2x , we get

1√
det(2π�L)

∫

R
|�′

L |(x
t�−1

L x)e−xt�−1
L xdx = 1

2

1√
(2π)|�′

L |

∫

R
|�′

L |(y
t y)e− 1

2 y
t ydy

= 1

2

∑

i∈�′
L

1√
2π

∫

R

y2i e
− y2i

2 dyi = |�′
L |
2

.

(39)

Therefore, using (39), from (38) we get

h(G|�L ) = |�′
L | log(2π)

2
+
log det(�L)

2
+

|�′
L |
2

,

which implies that

lim
L→∞

h(G|�L )

|�′
L | = 1

2
+
log(2π)

2
+ lim

L→∞
log det(�L)

2|�′
L | . (40)

Next we calculate det(�L) using the strong Szegő’s theorem. Note that we have
�L = (K (i − j))�′

L×�′
L
. Recall (1), we have

S(θ) =
∑

j∈Zd

K ( j)ei j ·θ , where θ ∈ [−π, π ]d

and S ≥ 0 on [−π, π ]d . Theorem 8 can not be applied directly for�L as S vanishes near
the origin. We perturb the structure function to apply the Szegő’s theorem. Let ε > 0
and Sε(θ) = S(θ)+ ε be a modified structure function. Its Fourier coefficients are given
by

Kε( j) = 1

(2π)d

∫

[−π,π ]d
e−i j ·θ Sε(θ)dθ = K ( j) + εδ0( j).

Let �ε
L = (Kε(i − j))|�′

L |×|�′
L |. Then �ε

L = �L + ε I . Therefore we have

det(�L) ≤ det(�ε
L),

as �L is non-negative definite. Therefore using Theorem 8 we get

lim sup
L→∞

log det(�L)

|�′
L | ≤ lim sup

L→∞
log det(�ε

L)

|�′
L | = 1

(2π)d

∫

[−π,π ]d
log Sε(θ)dθ. (41)
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The right hand side of (41) goes to −∞ as ε → 0, since S is bounded and zero in a
neighbourhood of the origin. Therefore from (41) we get

lim
L→∞

h(G|�L )

|�′
L | = −∞. (42)

We conclude the result from (37) and (42).
We note in the passing that, even if the structure function S does not vanish near the

origin, as soon as S fails to be logarithmically integrable, sending ε → 0 in (41) we
may deduce that the asymptotic entropy per site is still −∞. Thus, entropic degeneracy
already sets in under milder conditions than actual vanishing of the structure function in
a neighbourhood of the origin. ��
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Appendix

For the sake of completeness, the Riemann-Lebesgue lemma is stated below, see [Eps08,
Lemma 4.2.1].

Lemma 4 (Riemann Lebesgue lemma). If f is L1 integrable on R
d , that is to say, if the

Lebesgue integral of | f | is finite, then the Fourier transform of f satisfies

f̂ (z) :=
∫

Rd
f (x) exp(−i z · x) dx → 0 as |z| → ∞.

Theorem 9 ([Kat04, P. 152]). If eP(ξ) is the Fourier-Stieltjes transform of a positive
measure, with P a polynomial, then deg P ≤ 2.

For the sake of completeness, the proof of Lemma 3 is given below.

Proof of Lemma 3. Let g be the joint density function of the random vector G. Then g
is given by

g(x) = 1

det(
√
2π�d)

e− 1
2 x

t�−1
d x ,

where �d = (σ (i, j))d×d with σ(i, j) = E[Xi X j ] and x = (x1, . . . , xd). Let f be the
continuous density function of the random variable X . The relative entropy (also known
as Kullback-Leibler divergence) between f and g is given by

0 ≤ DKL( f ‖g) =
∫

f (x) log(
f (x)

g(x)
)dx = −h(X) −

∫
f (x) log(g(x))dx .

Note that we have

log(g(x)) = −1

2
log det(2π�d) − 1

2
xt�−1

d x .
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Which implies that, as E[Xi X j ] = E[GiG j ] for all i, j ,
∫ ∞

−∞
f (x) log(g(x))dx = −1

2
log det(2π�d) − 1

2

∫
f (x)(xt�−1

d x)dx

= −1

2
log det(2π�d) − 1

2

∫
g(x)(xt�−1

d x)dx = −h(G).

Thus we have h(G) − h(X) ≥ 0. Moreover, the properties of Kullback-Leibler diver-
gence imply that h(X) = h(G) when f = g. Hence the result. ��
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