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Abstract
We consider energy transport in the classical Toda chain in the presence of an additional
pinning potential. The pinning potential is expected to destroy the integrability of the system
and an interesting question is to see the signatures of this breaking of integrability on energy
transport. We investigate this by a study of the non-equilibrium steady state of the system
connected to heat baths as well as the study of equilibrium correlations. Typical signatures
of integrable systems are a size-independent energy current, a flat bulk temperature profile
and ballistic scaling of equilibrium dynamical correlations, these results being valid in the
thermodynamic limit. We find that, as expected, these properties change drastically on intro-
ducing the pinning potential in the Toda model. In particular, we find that the effect of a
harmonic pinning potential is drastically smaller at low temperatures, compared to a quartic
pinning potential. We explain this by noting that at low temperatures the Toda potential can
be approximated by a harmonic inter-particle potential for which the addition of harmonic
pinning does not destroy integrability.
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1 Introduction

The transport of thermal energy in Hamiltonian systems is a problem of great theoretical and
practical interest [1–4]. In its simplest form, one considers heat flow in the non-equilibrium
stationary state (NESS) of a system in contact with two thermal reservoirs at different tem-
peratures. Very little is known rigorously about this problem except in the case of harmonic
crystals [5] or hard rods in 1D [6]. These models are special cases of the larger class of
integrable models, whose extensive numbers of conserved quantities are expected in gen-
eral to lead to ballistic heat transport [7–9]. This means that if a system of length N (and
cross-section A) is put in contact with heat reservoirs at temperatures TL and TR , TL > TR ,
at its left and right ends, then the heat flow in the stationary state J would be (except for
boundary effects) independent of N . Another distinctive feature of the NESS of integrable
systems is the flat temperature profile observed in the bulk of the system. These features are
indeed observed for the harmonic chain and the hard particle gas and also for other integrable
models such as the Toda lattice [7,10–12].

In contrast, one finds a different picture for generic nonlinear non-integrable systems such
as Fermi-Pasta-Ulam chains [13–16], the diatomic Toda chain [17] and the alternate mass
hard particle gas [18–20] where, simulations and various phenomenological theories find
instead J ∼ N−α with 0 < α < 1. This appears to be the case for momentum conserving
systems and this is referred to as anomalous transport. When a non-integrable system does
not conserve momentum, for example, due to pinning by a one body potential, the transport
is generally expected to be diffusive, also called “normal” since it satisfies Fourier’s law, with
α = 1 and this has been seen in many simulations [4]. The temperature profiles observed in
non-integrable models are also completely different from the flat ones in integrable models,
here one finds instead that the temperature changes gradually from the hot end to the cold
end.

Apart from the non-equilibrium setups, signatures of non-integrability/integrability and
anomalous transport also manifest themselves in the form of dynamical equilibrium spa-
tiotemporal correlation functions. In fact, significant theoretical progress in understanding
anomalous transport inmomentum conserving systems has been obtained by using the frame-
work of nonlinear fluctuating hydrodynamics [21–24], which allows one to make specific
predictions for the form of equilibrium correlations of conserved quantities. Using ideas of
linear response theory, one can then relate anomalous features in equilibrium correlations to
those observed in the non-equilibrium set-up. For integrable systems, with a large number
of conserved quantities, there is much ongoing work to develop a hydrodynamic framework
[25]. One expects ’ballistic scaling’ of correlation functions for integrable systems and this
was observed in recent numerical work on the Toda chain [26]. A surprising exception to this
expectation is the recent observation of ballistic scaling, but also anomalous and diffusive
scaling of correlations in different parameter regimes of the integrable XX Z model [27].

An interesting question is the effect of adding extra terms to an integrable Hamiltonian
which generically one expects should make the system non-integrable. Several studies have
addressed this question. The pinned Toda system was studied in [28] where it was found that
energy transfer to high-frequency modes is slow and energy equipartition is not observed in
the studied time scale. Similar features were observed in the trapped hard rod system [29],
where it was observed that the system become chaotic after a characteristic time scale but fails
to thermalize even at extremely large times. For momentum-conserving systems surprising
features (e.g apparent diffusive transport) has been reported when a system is taken slightly
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out of integrability, for example in the Fermi-Pasta-Ulam chain at low temperatures [15,16]
and the alternate mass hard particle gas, at a mass ratio close to one [12].

The present work addresses the effect of adding a pinning potential to the integrable Toda
lattice, that is expected to make the system non-integrable. The system should then become
diffusive and we study how this crossover takes place, by studying the size-dependence of
current and the temperature profile in the NESS as well as the form of equilibrium dynamical
correlation functions. It has been observed in a few recent studies that depending on the form
of the integrability-breaking term and other parameters such as temperature, the crossover
can occur at extremely large system sizes. Following some preliminary results by two of
the present authors [30], this was further investigated in [31] which demonstrated that the
crossover to diffusive transport in the quadratically pinned Toda chain occurs at very large
length scales. This was then attributed to the fact that solitons are the main energy carriers
in this system and the quadratic pinning potential affects them rather weakly. In the present
study, we confirm the finding in [31] but propose a somewhat different understanding for the
slow crossover. We show that at low temperatures and small system sizes, the harmonically
pinned Toda chain, in fact, behaves like a pinned harmonic chain, and more so at strong
pinning. This then also provides some understanding as to why a quartic pinning leads to a
much faster approach to the diffusive regime.

The plan of the paper is as follows: in Sect. 2 we define the model and the various setups
that we use to study transport properties of the system. In Sect. 3 we discuss simulation
results for the NESS for the quadratic pinned Toda chain and the quartic pinned Toda chain,
and also present comparisons with a related pinned harmonic chain. In Sect. 4 we present
results for equilibrium dynamical correlation functions, while in Sec. 5 we compute the
Lyapunov exponent for various cases and try to see possible connections of the slow transition
to diffusion with chaotic properties of the system. Finally, we summarise and discuss our
findings in Sect. 6.

2 TheModel: Setups and Some Background

The model we consider is a 1-dimensional chain of N particles with positions {qi } and
momenta {pi } for i = 1, . . . , N , described by the classical Hamiltonian:

H =
N∑

i=1

[
p2i
2

+ ν2

z
qzi

]
+

N∑

i=0

V (qi+1 − qi ), where V (r) = a

b
exp(−br), (2.1)

the constants a, b, ν > 0, while z is taken to be an even positive integer. For ν = 0, the system
is the usual Toda chain [32], which is a well-known integrable model for both periodic and
fixed boundary conditions [33,34].

Unless otherwise specified, V (r) will refer to the Toda interaction for the remainder of
this work.

Although the purely Toda potential is integrable, an addition of on-site potential, i.e.,
ν �= 0 and z = 2, 4 is expected to break the integrability of the ν = 0 system when the
number of particles is greater than 2. Indeed, the only obvious conserved quantities when
ν �= 0 are H itself and the centre of mass term hc

hc = 1

2

( N+1∑

i=0

pi

)2

+ ν2

2

( N+1∑

i=0

qi

)2

. (2.2)
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We study transport properties of the system using the following probes.
(i) Properties in the NESS—In this setup, the system is connected to two heat reservoirs
at the boundaries: We take fixed boundary conditions q0 = 0, qN+1 = 0 and couple the
particles 1 and N of the chain to Langevin baths with a coupling constant μ, which act
as thermal reservoirs at temperatures TL and TR and induce a non-equilibrium steady state
(NESS). The equations of motion are now given by

q̇i = pi , 1 ≤ i ≤ N

ṗ1 = V ′(q2 − q1) − V ′(q1 − q0) − ν2qz−1
1 − μp1 + ηL ,

ṗi = V ′(qi+1 − qi ) − V ′(qi − qi−1) − ν2qz−1
i , 2 ≤ i ≤ N − 1,

ṗN = V ′(qN+1 − qN ) − V ′(qN − qN−1) − ν2qz−1
N − μpN + ηR, (2.3)

where V ′(r) ≡ dV (r)/dr and ηL , ηR are white Gaussian noise terms with zero mean and
variance 〈ηL(t)ηL(t ′)〉 = 2μkBTLδ(t − t ′), 〈ηR(t)ηR(t ′)〉 = 2μkBTRδ(t − t ′). In this setup,
the central quantity of interest are the bulk temperature (Ti = 〈p2i 〉, i ∈ [1, N ]) and the
average heat current J , which in the NESS is constant in time and equal to any of the
following quantities

Ji = −
〈
1

2
(pi + pi+1)V

′(qi+1 − qi )

〉
i ∈ [2, N − 1],

JL = μ
(
TL − 〈p21〉

)
, (2.4)

JR = μ
(〈p2N 〉 − TR

)
. (2.5)

where 〈·〉 refers to the NESS average, which in simulations is computed by first allowing
the system sufficient time to relax to the NESS before time averaging. In this work, we will
present results for the system-size-dependence of J and the form of the temperature profile
Ti in the NESS for the pinned potentials with the two cases z = 2 and z = 4.
(ii) Dynamical correlation functions in thermal equilibrium—The isolated set-up is used
to study the spatiotemporal decay of equilibrium correlations. In this set-up, one usually
considers a periodic ring with the N particles evolving with the Hamiltonian equations of
motion

q̇i = pi ,

ṗi = V ′(qi+1 − qi ) − V ′(qi − qi−1) − ν2qz−1
i , (2.6)

for i = 1, . . . , N and with the periodic boundary conditions qN+i = qi . The local energy is

defined as ei = 1
2 p

2
i + ν2

z q
z
i +V (qi+1−qi ). TheHamiltonian dynamics exactly conserves the

total energy,
∑N

i=1 ei . We then study the equilibrium spatio-temporal correlations of energy
fluctuations in this system given by

C(k, t) = 1

N

∑

i

[〈e(i + k, t)e(i, 0)〉 − 〈e〉2] , (2.7)

where we have used translation invariance of the problem to sum over sites. The spatio-
temporal nature of the spread of these correlations give us information about the nature
of underlying dynamics. It is expected that at large times, this will have the scaling form
C(k, t) = t−1/2 f (k/t1/2) for diffusive systems while for integrable systems one expects
the “ballistic” scaling form C(k, t) = t−1 f (k/t). For systems with anomalous transport,
this function has a more complicated structure [24]. In our simulations, the system is first
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equilibrated by attaching Langevin heat baths (at the same temperature T ) to all sites of
the lattice. After the system reaches equilibrium we draw random samples to create our
equilibrium initial conditions which are then evolved with the Hamiltonian dynamics. We
average over many such initial conditions to compute the equilibrium correlation functions
in Eq. 2.7.
(iii) Probing chaotic properties from the Lyapunov exponent— The largest Lyapunov
exponent in a system indicates how a small fluctuation grows in time. For a Hamiltonian
system evolving with Eq. 2.6, the following quantity can be used to quantify chaos in the
system:

λ(t) = 1

2Nt

N∑

i=1

〈
ln

[
∂qi (t)

∂q1(0)

]2〉
, (2.8)

where the average 〈...〉 denotes an average over initial conditions q,p chosen from the equi-
librium distribution. Note that our definition of the Lyapunov exponent differs from the
standard definition (see e.g [35]). It is expected that any generic perturbation of initial con-
ditions should have the same long time leading asymptotic growth form, hence the above
computation should give the correct largest Lyapunov exponent. This definition is motivated
by recent studies of chaos propagation in non-linear chains [36] where it was indeed verified
that the Lyapunov exponent from this definition agrees with that obtained from the standard
definition.

To evaluate this, consider a localized infinitesimal perturbation of a specified initial con-
dition q,p given by δq1(t = 0) = Q1(t = 0). Let the resulting change in the trajectory at
time by given by δqi (t) = Qi (t) and δ pi (t) = Pi (t) for i = 1, 2, . . . , N . The equations
satisfied by Q,P are given by

Q̇i = Pi ,

Ṗi = −ν2(z − 1)qz−2
i Qi + V ′′(qi+1(t) − qi (t))(Qi+1 − Qi )

− V ′′(qi (t) − qi−1(t))(Qi − Qi−1). (2.9)

We solve these equations along with Eq. 2.6, with the initial conditions q(0),p(0) chosen
from the equilibrium distribution and Qi (0) = δi,1, Pi (0) = 0 for all i = 1, 2, . . . , N . Our
quantity of interest is then given by

λ(t) = 1

2Nt

N∑

i=1

〈ln Q2
i (t)〉 . (2.10)

At large times, this gives the maximum Lyapunov exponent of the system

λ = lim
t→∞ λ(t). (2.11)

For an integrable system, it can be shown that the Lyapunov exponent vanishes while for
non-integrable systems they are expected to be positive.

In the following sections, we will numerically study the above characteristics for three
different models.

3 Simulation Results for the NESS

We study the non-equilibrium properties of (a) the quadratically pinned Toda chain at low
and high temperatures and (b) the quartic pinned Toda chain. We also show that the results
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Fig. 1 Temperature profiles
(T -vs x = i/L) for the Toda
chain with harmonic pinning
(Parameters a = b = 1, ν = 2,
z = 2, TL = 0.5, TR = 1.5). The
temperature gradient is almost
negligible at small system size
which is bit unusual, but at larger
system size it develops a small
gradient. Also the current (shown
in inset) is not independent of
system size as one would expect
in a ballistic, however it changes
very slowly with system size

Fig. 2 Temperature profiles for
the Harmonic chain with
harmonic pinning (a = b = 1,
ν = 2, z = 2, TL = 0.5,
TR = 1.5). The temperature is
flat and there is no gradient across
the system. Also the current
(shown in inset) is independent
with system size as N0, which
shows this has ballistic transport

for case (a) of the quadratically pinned Toda lattice are similar to those obtained for a pinned
harmonic lattice.

Details of simulations: In the Langevin simulations with heat baths at two ends of the chain,
the dynamics are integrated with a Brownian velocity-Verlet algorithm [37] with a time step
of dt ≤ 0.005. The system is first to let to run for time ∼ 107 during which it reaches the
steady state. Then statistics for temperature and current in steady state is collected for the
next ∼ 107 times with a gap of 10 units.

(a) Quadratically pinned Toda chain: This corresponds to the case z = 2 in Eq. 2.3.

Low temperature: The transport in this system shows unusual behaviour at low temperatures.
In Fig. 1 we show the temperature and current profile at steady state at low temperature (with
TL = 0.5, TR = 1.5). For small system size, the temperature profile is almost flat, which
might make one think of ballistic transport. However, as noted in [31] this is not true and a
slight temperature gradient develops at larger system sizes with the gradient being extremely
small along with large boundary jumps. This is surprising and reminiscent of a diffusive
system with an extremely long mean free path. As we will discuss now, this low-temperature
behaviour arises because the system is in some sense close to the limit of a harmonic chain.

In Fig. 2we show the temperature and current profiles in the quadratically pinned harmonic
chain with the inter-particle coupling term V (r) = 1

2r
2 and z = 2 at low temperature (with

TL = 0.5, TR = 1.5). This system is known to be integrable and we see expected features of
an integrable system:Aflat temperature profile aswell as a current independent of systemsize.
The value of the current, in this case, can be computed explicitly using the expressions given
in [38] and the simulation results show very good agreement. For completeness, we quote the
formula for NESS current (for N → ∞) in the harmonic case with V (r) = k

2r
2 and z = 2 as
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Table 1 Comparison of bulk temperature defined as Tb = ∑N−1
i=2 Ti /(N − 2) and bulk current Jb =

∑N−1
i=2 Ji /(N −2) for pinned Toda chain and corresponding pinned Harmonic chain for system size N = 32,

TL = 0.5 and TR = 1.5. At this system size the bulk temperature for the harmonic case is very close to
T = 1.0, as can also be seen in Fig. 2

ν Tb JTodab J Harmonic
b

1 1.012 –0.1504 –0.133974

2 1.019 –0.0846 –0.072949

4 1.012 –0.0287 –0.026389

6 1.005 –0.0134 –0.012829

Fig. 3 Temperature profiles for
the Toda chain with harmonic
pinning (a = b = 1, ν = 2,
z = 2, TL = 19, TR = 21). At
high temperatures, there is a
noticeable temperature gradient
as we increase the system size.
Also the current (shown in inset)
decreases with system size as
∼ 1/N

J = TL − TR
4μ3

(
A + 2kμ2 −

√
A(A + 4kμ2)

)
, (3.1)

whereA = k2+ν2μ2.We propose that at the low temperatures, the quadratically pinnedToda
chain [ case (a)] is in some sense close to the quadratically pinned Harmonic chain. Due to
pinning of the potential, at low enough temperatures, the lattice vibrations are very small and
the effect of non-linearity of the Toda potential does not play a significant role. In Table. 1, we
show the average bulk temperature and the current in the Toda chain for N = 32 and see that
at the strongest pinning case, the bulk temperature differs from the harmonic case by about
0.5% and the current by about 4%. The system size scaling of the current is shown in Fig. 5b.

High temperature: At high temperatures (with TL = 19, TR = 21) as shown in Fig. 3,
we find that the diffusive nature is more prominent and we find a much larger temperature
gradient and correspondingly smaller boundary jumps at the two ends. The current now shows
a significant decay with system size but as seen in Fig. 5b, we are still not in the diffusive
J ∼ 1/N regime. This is consistent with the fact that at the largest system size we still
see boundary jumps in the temperature profile. We also note that at the smallest system size
N = 64, the quantity J/(TL − TR) differs from the expected value for the harmonic chain
(which is independent of temperature). In fact this value is much larger than the harmonic
chain value, which is an indication that, in the high temperature case, the pinned Toda chain
is far from the harmonic limit.
(b) Quartic pinned Toda chain: This corresponds to the case z = 4 in Eq. 2.3. In Fig. 4 we
find that for this case the destruction of integrability is manifest even at small system size
and at low temperatures. The system goes to a NESS which is characterized by a non-linear
profilewith very small temperature jumps and one also finds that the current scales diffusively
as shown in Fig. 5b. The non-linear profile is due to the temperature-dependent thermal con-
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Fig. 4 Temperature profiles and
currents for the Toda chain with
quartic pinning (z = 4), with all
other parameters the same as in
Fig. 1. Note that with increasing
N the profile approaches a
smooth curve between TL = 0.5
and TR = 1.5. Inset: Averaged
site-by-site current profile, with
the average current decaying with
system size as ∼ 1/N

N−1

N−1

J
/
(T

L
−

T
R
)

0.67

(a) (b)

Fig. 5 a The thermal conductivity (κ = J N/ dT
dx ) plotted as a function of temperature [T (x) ∈ (0.5, 1.5)] for

the quartic pinned Toda chain for system size N = 4096. The thermal conductivity is a function of temperature
in this system. The thermal conductivity at T = 1 can be seen to be κ ≈ 0.67. b Current scaling with system
size for various setups

ductivity in the system. The average thermal conductivity [defined as κ = J N/(TL − TR)]
is then independent of system size and has the numerical value κ ≈ 0.76. However the fact
that the temperature profile is not linear implies that the thermal conductivity is a function
of temperature and varies significantly within the range 0.5–1.5. In fact we can find the tem-
perature dependent conductivity from the local derivative of the temperature profile, thus
κ = J/ dT

di . This is then plotted in Fig. 5, and this gives us κ ≈ 0.67 for T = 1.

4 Simulation Results for Equilibrium Correlation Functions

We study the differences in equilibrium correlation functions in the three different setups.

Details of simulations: The system is first equilibrated by attaching Langevin baths at all sites
for time 1000 and then the baths are disconnected and the isolated system is let to evolve
while computing necessary observables. The averages for each observable are taken over
105 initial conditions. The time-step is dt ≤ 0.005.

(a) Quadratically pinned Toda chain: Consistent with our findings in the NESS, here
we find again that the evolution of correlation functions in the harmonically pinned Toda
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(a) (b)

Fig. 6 Energy correlations for system size N = 4096 at low temperature T = 1 with Toda parameters
(a = b = 1, ν = 2, z = 2) and averaged over≈ 106 data points with a diffusive scaling of energy correlations.
b Ballistic scaling for energy correlations. We see that at very large times, the equilibrium correlations are
still very close to ballistic scaling, although this is not perfect, which is not surprising since we have seen in
the non-equilibrium simulations that we start seeing significant gradient already at this system size

Fig. 7 Energy correlations for
system size N = 4096 at low
temperature T = 1 for pinned
harmonic chain with parameters
obtained from an expansion of
the Toda potential. As expected
we see ballistic scaling and with
strong resemblance with the
low-temperature Toda data in
Fig. 6. The averaging was over
≈ 106 data points

has different behaviour at low and high temperatures. The spatiotemporal spread of energy
correlations has distinct scaling at low and high temperatures.

Low-temperature: At low temperatures, the correlations of the pinned Toda chain is non-
diffusive as shown in Fig. 6 and we find an envelope of oscillatory correlations giving a
hint that the transport is close to the harmonic case. For the overall envelope the scaling of
correlations is ballistic. Surprisingly, even at the time when the correlations have reached the
boundary, the ballistic peaks still survive along with the oscillatory bulk. This again suggests
that at low temperatures the quadratically pinned Toda is close to the integrable harmonic
potential at short time and small length scales. In Fig. 7 we plot the energy correlations for the
harmonic chain where we again see ballistic scaling. For the set of parameters corresponding
to the low-temperature harmonic limit of the Toda chain, we see that the ballistic peaks at
the ends are in similar positions as that of Fig. 6b and have roughly the same structure. It is
expected that at much longer times (requiring much bigger systems), the ballistic peaks will
eventually disappear and a diffusive central peak will emerge.

High temperature: In the high-temperature case, at small times we again see the ballistic
peaks in the correlations in Fig. 8 but these now quickly disappear and are replaced by a
central peak that scales diffusively. In Fig. 9 we see that the spatiotemporal correlations
have a much better collapse for diffusive scaling than a ballistic scaling. However, from the
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Fig. 8 The unscaled correlation
functions of energy for Toda with
pinning with parameters
(a = b = 1, ν = 2, z = 2). The
system is first prepared in
equilibrium at temperature
T = 20. The initial times show a
ballistic peaks which vanish at
late times

(a) (b)

Fig. 9 Energy correlations for system size N = 4096 at high temperature T = 20 with Toda parameters
(a = b = 1, ν = 2, z = 2) and averaged over ≈ 106 data points with a diffusive scaling of energy
correlations, b ballistic scaling for energy correlations. We see that there is a better collapse of data with
diffusive scaling though we are not yet in the fully diffusive limit. Also note the highly non-Gaussian form

simulated system sizes, we do not yet see a Gaussian central peak. We also note that the
speed of propagation of the ballistic front is twice as that in the low-temperature case.

(b) Quartic pinned Toda chain: For this case, as expected, we find that the equilibrium
correlations spread diffusively as shown in Fig. 10. The energy correlations are now seen to be
Gaussian, with a diffusion constant D ≈ 0.8308. This is in sharp contrast to the quadratically
pinned Toda chain, where even at high temperatures the spread is non-Gaussian. The thermal
conductivity as computed from the equilibrium correlations is given by κ = DCv , where
Cv = N−1∂〈H〉/∂T is the specific heat capacity. From numerics, we compute Cv ≈ 0.83
at T = 1. This gives an estimate of κ ≈ 0.689, which is close to the one obtained from
non-equilibrium simulations (κ ≈ 0.67) at the same temperature.

5 Numerical Results for Lyapunov Exponent

Finally, we examine the breaking of integrability in the system by studying the Lyapunov
exponent λ which is a measure of chaos in the system. For integrable models it is known that
λ = 0 while for non-integrable systems we expect λ > 0. In Fig. 11 we plot λ(t) vs t for the
three different cases while the insets show the same data in log-log scale.
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Fig. 10 Energy correlations for
system size N = 4096 at low
temperature T = 1 with Toda
parameters (a = b = 1, ν = 2,
z = 4) and averaged over 106

data points. The energy
correlations here are purely
Gaussian and are very different
from the quadratically pinned
Toda at both high and low
temperatures. The fitted Gaussian
has the the form
Ae−i2/4Dt/

√
4πDt , with

A ≈ 0.805, D ≈ 0.8308

(a)
(b)

(c)

Fig. 11 The time-dependent quantity λ(t) as defined in Eq. 2.10 is plotted as a function of time for different
models. At large times, this quantity gives the largest Lyapunov exponent in the system. a λ(t) for the
quadratically pinned Toda chain (a = b = 1, ν = 2, z = 2,) for both low temperatures ( dashed lines:
T = 1) and high temperatures (solid line: T = 20). At large times both converge to a finite positive value
and this shows that the system has positive Lyapunov exponent and hence is non-integrable. There is a weak
dependence of the Lyapunov exponent with system size (shown in different colours) for small systems, b λ(t)
for the pinned harmonic chain and the unpinned Toda chain (a = b = 1, ν = 0) which are both integrable.
In both the cases, λ(t) ∼ 1/t for large t , as is seen clearly in the inset. c λ(t) for the quartic pinned Toda
(a = b = 1, ν = 2, z = 4, T = 1) . Here the Lyapunov exponent is positive and large even at low temperatures

(a) Quadratically pinned Toda chain: At large times both at low temperature (T = 1) and
high temperature (T = 20), we see in Fig. 11a, the Lyapunov exponent converge to a finite
positive value. This shows conclusively that the system is non-integrable. However, at low
temperatures, the Lyapunov exponent is much smaller than at high temperatures, which then
explains its near-integrable behaviour. In Fig. 11b we plot λ(t) for the pinned harmonic chain
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and unpinned Toda chain (a = b = 1, ν = 0) which are both integrable. In both cases,
λ(t) ∼ 1/t for large t and so we get a vanishing Lyapunov exponent. Note that for pinned as
well as unpinned harmonic chain, λ(t) remains negative at all times while for the unpinned
Toda λ(t) first becomes positive and then decays to zero as t → ∞.

(b) Quartic pinned Toda chain: In this case, as seen in Fig. 11c, the Lyapunov exponent is
again positive and large even at low temperatures which is consistent with the other strong
non-integrability signatures in the system. The Lyapunov exponent is approximately 0.078
whose value is very close to that of the Lyapunov exponent in quadratic pinned Toda in
high temperatures. However as we have seen previously, the spatiotemporal correlations
in these two models are very different. In the quartic pinned Toda, the equilibrium energy
correlations are Gaussian as expected, while for quartic pinned Toda, the correlations are
non-Gaussian and the scaling is still imperfect at the system sizes studied. This suggests that
the rate of approach to the diffusive transport regime cannot be directly related to the size of
the Lyapunov exponent.

6 Conclusions

Slow relaxation and near-integrable systems have been gaining interest in recent years. Their
peculiar properties possibly hold key to a better understanding of chaos and thermalisation.
We have studied the slow relaxation in an unusual candidate, the pinned Toda chain where
for uniform quadratic pinning, the system shows ballistic like behaviour at low temperatures
and small system size and diffusive like behaviour at large temperature or large system sizes.
We studied this by looking at equilibrium and non-equilibrium transport properties along
with the Lyapunov exponent of the system. We argue that the near-integrable behaviour of
the pinned Toda chain arises from the fact that, for small system size and low temperatures,
the quadratic pinning leads to the system behaving effectively as a pinned harmonic chain.
The anharmonicity appears as a weak perturbation leading to a very large mean free path —
hence the cross-over to diffusive behaviour takes place at very large length and time scales.
In contrast, we find that for a Toda chain with quartic pinning, the integrability breaking and
the cross-over to diffusive transport is much faster, taking place at small system sizes and
low temperatures. For this system we also find that the thermal conductivity obtained from
the non-equilibrium and equilibrium measurements are in close agreement.
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