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Abstract
We describe new exact results for a model of ionization of a bound state in a 1d delta function
potential, induced by periodic oscillations of the potential of period 2π/ω. In particular we
have obtained exact expressions, in the form of Borel summed transseries for the energy
distribution of the emitted particle as a function of time, ω and strength α of the oscillation
of the potential. These show peaks in the energy distribution, separated by �ω, which look
like single or multi-photon absorption. The peaks are very sharp when the time is large and
the strength of the oscillating potential is small but are still clearly visible for large fields,
and even for time-periods of a few oscillations. These features are similar to those observed
in laser induced electron emission from solids or atoms (Phys Rev Lett 105:257601, 2010).
For large α the model exhibits peak-suppression. The ionization probability is not monotone
in the strength of the oscillating potential: there are windows of much slower ionization
at special pairs (α, ω). This shows that ionization processes by time-periodic fields exhibit
universal features whose mathematical origin are resonances which pump energy into the
system represented by singularities in the complex energy plane. All these features are proven
in our simple model system without the use of any approximations.

Keywords Ionization · Schroedinger equation

1 Introduction

When light of frequency ω shines on a metallic surface or on a gas of atoms one observes the
emission of electrons. This photo-electric effect is generally described to leading order along
the lines in which Einstein first explained the phenomena in 1905 [1,2]: an electron absorbs n
photons, thought of as “localized light particles”, acquiring a kinetic energy K = n�ω− Eb,
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where Eb is the minimum energy necessary to eject the bound electron from the metal or
atom.

To study the ionization process quantitatively elucidating its dependence on the parameters
of the field and of the target, one generally does computations “semi-classically” c.f. [2–
9]. That is, one considers the electromagnetic field produced by the laser as a continuum
non-quantized field; see however [10–15]. The emission process is described by the time-
dependent solutions of a time-dependent non-relativistic Schrödinger equation

i�
∂ψ(x, t)

∂t
= (H0 + V (x, t))ψ. (1)

Here H0 describes the Hamiltonian of the reference system, e.g. a hydrogen atom, with both
bound and free states and V (x, t) = V (x, t + 2π/ω) represents a classical oscillatory field,
started at t = 0. The latter is represented as a vector potential or, in the length gauge, a dipole
field, e.g. V (x, t) = e E · x sinωt [4,13].

Starting with an initial state ψ(x, 0) = ub(x), a bound state of H0 with energy −Eb,
ψ(x, t) is then represented as a superposition of the initial bound state and of the generalized
eigenstates of H0 with momentum �k, u(k, x), i.e. asymptotically free scattering states of
the emitted electron:

ψ(x, t) = θ(t)ei Ebt ub(x) +
∫

Rd
�(k, t)u(k, x)e−i�2k2t/2m dk (2)

where d is the spatial dimension of the system and we have assumed that there is only one
(relevant) bound state.

The different terms in (2) specify the states of the system at t ≥ 0: |θ(t)|2 is the probability
at time t that the particle is still in its bound state and |�(k, t)|2 is the probability density of
finding the ionized electron in the (quasi) free state with momentum �k and energy �

2k2/2m.
The unitarity of the evolution then gives |θ(t)|2 + ∫

Rd |�(k, t)|2dk = 1.
When �ω > Eb, first order perturbation theory in the strength of V (used very judiciously)

yields, for “long times”, emission into states u(k, x)with �
2k2/2m+ Eb = �ω. This is inter-

preted as representing the absorption of one photon even though it is known that perturbation
theory is not valid for “very long times”.

The clever use of first order perturbation theory also yields Fermi’s golden rule of expo-
nential decay of |θ(t)|2 from the initial bound state. To deal with the case of transitions
caused by “n photons”, which one observes as “peaks” in noisy emission data [1], one needs
in principle to go to n’th order perturbation theory. This is very complicated, so it is almost
never attempted in practice. Instead one uses the so called strong field approximation due
to Keldysh and others [1,7,8]; see e.g. the analytical results in [16]. These are basically
uncontrolled approximations which however give qualitative good results. For α = mω

with m integer, usual quantum mechanics perturbation theory does not apply and |θ(t)|2 has
power-law decay.

Description of the model To gain a clearer picture of how resonances from a time-
periodic potential give rise to peaks in the emitted energy distributions which look similar to
n photon absorption, it is desirable to obtain an exact solution of the Schrödinger equation
for arbitrary t, ω and strength of V . To this end we investigated in [17] and [18] a very simple

1d model system with H0 = − ∂2

∂x2
− 2δ(x) and V (x, t) = −2α sin(ωt)δ(x) leading to the

time dependent Schrödinger equation

iψt = −ψxx − 2 (1 + α sinωt) δ(x) ψ (3)

where we use units � = 2m = 1.
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The Hamiltonian H0 has a single bound state ub(x) = e−|x |, x ∈ R, with energy
−Eb = −1, and continuum states

u(k, x) = 1√
2π

(
eikx − ei |kx |

1 + i |k|
)

, x, k ∈ R (4)

The attractive δ function in H0 might imitate the potential seen by an electron in a negative
ion and and has been studied extensively before [19–21].

The oscillatory part is, however, distinct from an oscillatory electromagnetic field with
a dipole-type potential, in particular we have no tunneling. Nevertheless, as already noted,
our model yields results on the ionization rates and energy distributions of the emitted par-
ticles which are similar to those produced by more realistic V (x, t) and seen in numerical
experiments [3].

In [17] θ(t) was proven to go to zero as t → ∞. Its form for small α was obtained by
a combination of analytic results and numerics, and shown to have many features similar
to those obtained experimentally for the ionization of hydrogen-like atoms in a microwave
electric field. There was however no computation of �(k, t). In this paper we present the
physical content of new results for these quantities obtained via new techniques described in
[18]. These show rigorously, for the first timewe believe, resonances in the energy distribution
|�(k, t)|2 which correspond to multiphoton absorption for both short and long times. They
also show existence of regions in the (α, ω) parameter space where the decay of |�|2 is of
power type for physically relevant times. These are based on exact expressions in the form
of multi-instanton expansions [18].

While this model is clearly a caricature of reality, both as far as H0 and V are concerned,
exact solutions of toy models often bring out underlying universal features which explain
real behavior. We believe this to be the case here.

The underlying mathematical structure of ionization by an oscillating field shows poles
and branch points in the complex energy plane which give rise to resonances that look like
photons. These singularities yield a complex behavior of the survival probability. For a generic
amplitude and frequency this probability decays exponentially for a long time, eventually
switching to a power law. Surprisingly, many features are clearly visible even after a few
periods, see Fig. 5.

The motion of singularities in the complex plane as the parameters change leads to what
we will call “windows of stabilization”, ranges of α, ω in which ionization is substantially
slowed down. The mechanism is possibly distinct from the large laser pulse stabilization
described in [22]. The model also exhibits subexponential decay for special parameters and
other unexpected phenomena, see below. This phenomenon is mathematically explained at
the end of the next section.

2 Results

Using the Laplace transform of �, �̂(k, p) = L(�) = ∫ ∞
0 �(k, t)e−pt dt , it was shown in

[18] that the functions �(k, t) and θ(t) have Borel summable transseries (multi-instanton)
expansions in t valid for all t > 0, for all α, ω. The transseries for � has the form

�(k, t) = �(k,∞)

+
√

2

π

|k|
1 − i |k|e

i(1+k2)t
∑
n∈Z

⎛
⎝rne

pnt + e−inωt
∑
j≥3

cnj
t j/2

⎞
⎠ (5)

123



684 O. Costin et al.

Fig. 1 Three-photon ionization: log-plot of 2|�(k, ∞)|2 as a function of ε = k2 − E0, E0 = 0.1999 . . .,
where ω = 0.4, α = 0.01

where pn = −γ + inω, γ > 0, n ∈ Z. This corresponds to an array of poles of �̂(k, p) in
the left half p-plane (the energy space rotated by π

2 ) at distance γ from the imaginary line.
The poles represent resonances and the residues are Gamow vectors [23,24].

Also

�(k,∞) = i√
2π

|k|
1 − i |k|

[
1 + i(1 + k2)θ̂

(−i(1 + k2)
)]

(6)

where θ̂ = L(θ) and k2 = E is the energy of a particle with wave vector k.
For small α and ω > 1, �(k, t) has the explicit leading order

�(k, t) = (2π)− 1
2 |k|α

i |k| − 1

[
2ω + i p0

(1 + k2 + ω)(1 + k2 − ω − i p0)

+ e−iωt e(p0+i+ik2)t

1 + k2 − ω − i p0
− eiωt e(p0+i+ik2)t

1 + k2 + ω − i p0

]
(1 + o(α)) (7)

It follows that, for α → 0, after t → ∞,� becomes a delta function at k2 = ω−1. There
is a similar behavior for ω < 1, the delta function now occurring at k2 = mω − 1, where m
is the smallest integer such that mω > 1. This is illustrated in Fig. 1 where we display the
very sharp peak for α = .01, ω = .4 (som = 3). There is a (Stark) shift of order α2 = 10−4.
The shape is close to a Lorentzian.

There are also other sharp peaks in 2|�(k,∞)|2 for small α, located close to energies
E = nω − 1, n � m. This is shown in Fig. 2 where we also see that the peaks for (n + 1)ω
are smaller than those for nω by a factor of α2.

For larger α, in Fig. 3 we show 2|�(k,∞)|2 for ω = .51, α = 1. The peak near zero
corresponds to 3-”photon” ionization: because of the Stark shift we do not see the 2 photon

peak. Because of this and the prefactor k2

k2+1
in the probability, the first peak gets suppressed;

in realistic experiments this phenomenon is called “peak suppression” [1].
Despite the Stark shift the spacing between the peaks remains close to ω. The fact that

α is large permits us to see that many peaks: one can distinguish peaks corresponding up to
8-photon absorption. As we see from Figs. 3 and4, these peaks are of comparable magnitude
when α is large.
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Fig. 2 Energy spectrum for ω = 1 and α = 0.1

Fig. 3 Log plot of 2|�(k, ∞)|2 as a function of k2 = E for α = 1 and ω = 0.51

Fig. 4 Log plots of 2|�(k, ∞)|2
as a function of k2 = E for
ω = 0.5 and α = 1/2, 1, 2

As α increases even further, the poles move away from the imaginary line, hence the
peaks flatten, and power law decay becomes dominant. This is seen in the log plots in Fig. 4
showing how the peaks broaden when α gets large: they essentially disappear for α � 3.
Here too we see that the distance between the peaks is almost independent of α. This is also
seen in Fig. 5, where for finite times the peaks broaden and get smaller. They are however
still visible when t is of the order of a few periods. The reason for this is that for t not too
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Fig. 5 2|�(k, t)|2 as a function of k2 for ω = 1.51, α = 0.5 at t = 5T , 10T , ∞, where T := 2π
ω . The peaks

are obvious after only 5 oscillations

Fig. 6 Log plot of |θ(t)|2 for ω = 1.51 at α = 0.5, α = 0.98 (power-law decay), and α = 1.3

large, �(k; t) − �(k;∞) decays exponentially (at the rate, e−Re p0t ), and thus the limiting
profile is visible after only a few oscillations if α is not too small.

In Fig. 6 we show several graphs of |θ(t)|2, the survival probability versus t . For α = 0.5
the FermiGolden rule is clearly visible, for all relevant times.At larger times, the t−3 behavior
kicks in, again mixed with oscillations, as predicted by the multi-instanton expansions. At
α = .98 we observe a stabilization window: the decay is power-like and thus slower, except
at very short times. Stabilization amplitude results in more than five orders of magnitude
reduced ionization at t = 200 relative to a smaller amplitude. At α = 1.3 the log-plot shows
an initial exponential behavior, followed by a rough dip when the exponential and polynomial
parts become comparable, resulting in some cancellations, after which the behavior becomes
polynomial, with oscillations.

Another interesting phenomenon which is noted even for small amplitudes, especially
those close to stabilization windows, is the presence of small oscillations superimposed over
the decay profile.

Decay versus windows of stabilization Generally, a time-independent Hamiltonian has,
in energy-space representation, poles corresponding to eigenvalues and a branch point at
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Fig. 7 Small field stabilization window. a Log-plot of |θ(t)|2 up to t = 3104. The slowest decay is for
α = 0.10025 when the poles and branch points are aligned, and it is power-like. b |θ(t)|−2/3: power law
decay of |θ |2. c Shorter time detail
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zero. As a result of a time-periodic forcing of amplitude α and frequency ω the branch point
becomes an ω-spaced array on the real line, while each pole becomes an ω-spaced array of
poles in the lower half-plane. These poles induce large, smooth peaks on the real line, while
the branch-points-caused peaks are much smaller in size, except for special values of (α, ω)

when the poles and branch points are aligned. Generically, due to smoothness, including
around the large peaks, the Fourier transform needed for returning from the (x, E) to the
(x, t) representation decays exponentially. However, when the poles and branch points are
aligned, the smoothness of the peaks is destroyed and the decay is much slower, resulting in a
stabilizationwindow. This is seen in Fig. 7a–c forω = 1.00707106, α = 0.10025. It is useful
to note here that although α is small, perturbation theory does not apply. Fermi’s golden rule
based on perturbation theory predicts exponential decay of the survival probability as seen
for neighboring values of α in the Fig. 7a instead of a power-law, as in Fig. 7b.

We note that the alignment of poles and branch cuts occurs at the pairs (α, ω) where there
is a transition between n and n + 1 photon-requirement for ionization.

3 Concluding remarks

Behavior of θ ,� for large t. The explicit transseries expansions in [18] used in the above
figures are essentially obtained by pushing the inverse Laplace transform contour in the left
half plane, collecting residues (resulting in small exponentials) and Hankel contours around
branch cuts, which are in fact Borel sums of asymptotic series in powers of t−1/2, with leading
power t−3/2. For small α, �(k, t) and θ(t) have exact expressions in α for all t , provided
that certain sums in the exponentials are kept in the exponent as in (7). On the other hand,
a pure power series expansion in α, as used in classical perturbation theory, converges only
for t up to order α−1| logα|. There are exceptions to this convergence, as illustrated above.

All the above results do not use perturbation theory but agree with it when the latter is
applicable. We obtained the plots of � and θ by numerically taking the inverse time Laplace
transform of �̂(k, p) for moderate time, and then by using a stationary phase calculation.
Various features of |�(k, t)|2 are similar to those observed in experiments [1].

This model exhibits small field “windows of stabilization” phenomena, which, based on
the mathematical explanation and our experience with the analytic properties of the solutions
of one-particle Schrödinger equations with periodic forcing, we believe should be universal
in this class of models. This suggests numerical tests to see whether such a phenomenon is
present in more realistic models. It is to be noted that the smaller the field, the narrower the
window of stabilization is.

A more direct connection between our model and the “photon” picture can be made via
Floquet theory [25]. Using a suitable representation for the laser field in a cavity one can
describe the absorption of n (non-localized) photons by an atom in terms of the solution
of a Schrödinger equation. We shall consider the connection between our results and this
formalism in a future work [26].

Acknowledgements We are grateful to the reviewers for bringing to our attention interesting references.
OC was partially supported by the NSF-DMS Grant 1515755 and JLL by the AFOSR Grant FA9550-16-1-
0037. We thank H. Jauslin, H. Spohn and particularly L. DiMauro, C. Blaga and David Huse for very useful
discussions. JLL thanks the Systems Biology division of the Institute for Advanced Study for hospitality
during part of this work.

123



Ionization by an Oscillating Field: Resonances and Photons 689

References

1. Schenk, M.: Krüger M and Hommelhoff P Strong-field above-threshold photoemission from sharp metal
tips. Phys. Rev. Lett. 105, 257601 (2010)

2. Delone, N.B., Krainov, V.P.: Multiphoton Processes in Atoms. Springer, Berlin Heidelberg, New York
(1994)

3. Krug, A., Buchleitner, A.: Microwave ionization of alkali-metal Rydberg states in a realistic numerical
experiment. Phys. Rev. A 66, 053416 (2002)

4. Bauer, D.: Theory of Intense Laser-Matter Interaction. Max-Planck-Institut für Kernphysik, Heidelberg
(2006)

5. Fröhlich, J., Pizzo, A., Schlein, B.: Ionization of atoms by intense laser pulses. Ann. Henri Poincaré 11(7),
1375–1407 (2010)

6. Soffer, A., Weinstein, M.: Time dependent resonance theory. Geom. Funct. Anal. 8, 1086–1128 (1998)
7. Popruzhenko, S.V.: Keldysh theory of strong field ionization: history, applications, difficulties and per-

spectives. J. Phys. B 47(20), 204001 (2014)
8. Protopapas, M.: Atomic physics with super-high intensity lasers. Rep. Prog. Phys. 60, 389 (1997)
9. Costin, O., Soffer, A.: Resonance theory for Schrödinger operators. Commun. Math. Phys. 224, 133–152

(2001)
10. Fried, Z., Eberly, J.H.: Scattering of a high-intensity, low-frequency electromagnetic wave by an unbound

electron. Phys. Rev. 136, 871 (1964)
11. Moore, C.I., Knauer, J.P., Meyerhofer, D.D.: Observation of the transition from thomson to compton

scattering in multiphoton interactions with low-energy electrons. Phys. Rev. Lett. 74, 2439 (1995)
12. Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.: Photons and Atoms. Introduction to quantum elec-

trodynamics. Wiley, New York (1997)
13. Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.: Atom-Photon Interactions. Wiley, NewYork (1992)
14. Guérin, S., Monti, F., Dupont, J.-M., Jauslin, H.R.: On the relation between cavity-dressed states, Floquet

states, RWA and semiclassical models. J. Phys. A 30(20), 7193 (1997)
15. Spohn, H.: Dynamics of Charged Particles and their Radiation Field. Cambridge University Press, Cam-

bridge (2004)
16. Frolov, M.V., Manakov, N.L., Starance, A.F.: Analytic formulas for above threshold ionization or detach-

ment plateau spectra. Phys. Rev. 79(3), 033406 (2009)
17. Costin, O., Lebowitz, J.L., Rokhlenko, A.: Exact results for the ionization of a model quantum system. J.

Phys. A 33, 1–9 (2000)
18. Costin, O., Costin, R D., Lebowitz, J L.: Nonperturbative time dependent solution of a simple ionization

model. Comm. Math. Phys. https://doi.org/10.1007/s00220-018-3105-0, arXiv:1706.07129
19. Elberfeld, W., Kleber, M.: Tunneling from an ultrathin quantum well in a strong electrostatic field: a

comparison of different methods. J. Phys. B 73, 23–32 (1988)
20. Becker, W., Long, S., McIver, J.K.: Modeling harmonic generation by a zero-range potential. Phys. Rev.

A 50, 1540 (1994)
21. Susskind, S.M., Cowley, S.C., Valeo, E.J.: Multiphoton ionization in a short range potential: a nonpertur-

bative approach. Phys. Rev. A 42, 3090 (1990)
22. Eberly, J.H., Kulander, K.C.: Atomic stabilization by super-intense lasers. Science 262, 1229 (1993)
23. Costin, O., Huang, M.: Gamow vectors and Borel summability in a class of quantum systems. J. Stat.

Phys. 144(4), 846?871 (2011)
24. Huang, M.: Gamow vectors in a periodically perturbed quantum system. J. Stat. Phys. 137(3), 569?592

(2009)
25. Kramer, B., Schön, G., Ingold, G.-L., Hn̈ggi, P., Dittrich, T., Zwerger, W.: Quantum Transport and

Dissipation. Wiley, New York (1998)
26. Costin, O., Costin, R D., Jauslin, H., Jauslin, I., Lebowitz, J L.: in preparation

123

https://doi.org/10.1007/s00220-018-3105-0
http://arxiv.org/abs/1706.07129

	Ionization by an Oscillating Field: Resonances and Photons
	To the memory of Pierre Hohenberg
	Abstract
	1 Introduction
	2 Results
	3 Concluding remarks
	Acknowledgements
	References





