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Abstract
We investigate the solution of the equation ∂tE(x, t) − iD∂2

xE(x, t) =
λ|S(x, t)|2E(x, t), for x in a circle and S(x, t) a Gaussian stochastic field
with a covariance of a particular form. It is shown that the coupling λc at which
〈|E|〉 diverges for t � 1 (in suitable units), is always less or equal for D > 0
than D = 0.

PACS numbers: 05.10.Gg, 02.50.Ey, 52.38.−r

1. Introduction

In a recent work, Asselah, Dai Pra, Lebowitz and Mounaix (ADLM) [1] analysed the
divergence of the average solution to the following diffusion–amplification problem:{

∂tE(x, t) − D�E(x, t) = λS(x, t)2E(x, t)

t � 0 x ∈ � ⊂ R
d and E(x, 0) = 1.

(1)

Here D � 0 is the diffusion constant, � is a d-dimensional torus, λ > 0 is a coupling
constant to the statistically homogeneous Gaussian driver field S(x, t) with 〈S(x, t)〉 = 0 and
〈S(x, t)2〉 = 1. They proved that, under some reasonable assumptions on the covariance of S,
the average solution of (1) with D > 0 diverges at an earlier (or equal) time than when D = 0.
Put otherwise, fix T such that 〈E(x, T )〉 = ∞ for λ > λc and 〈E(x, T )〉 < ∞ for λ < λc.
Then λc is smaller than (or equal to) λc, the value of λ at which such a divergence occurs for
D = 0. ADLM conjectured that this result should also apply to the case where D is replaced
by iD, i.e. where diffusion is replaced by diffraction, the case of physical interest considered
by Rose and DuBois in [2].

The difficulty in proving the above conjecture lies in controlling the complex Feynman
path integral, compared to that of the Feynman–Kac formula for the diffusive case. One cannot
a priori exclude the possibility that destructive interference effects between different paths
make the sum of divergent contributions finite, raising the value of the coupling constant at

0305-4470/04/205289+06$30.00 © 2004 IOP Publishing Ltd Printed in the UK 5289

http://stacks.iop.org/ja/37/5289


5290 Ph Mounaix and J L Lebowitz

which the average amplification diverges. To understand this diffraction-induced interference
between paths, we investigate here the diffraction case in a one–dimensional model (d = 1)

in which the Gaussian driver field S has a special form specified in section 2. We prove in
section 3 that 〈|E(x, T )|〉 = ∞ for λ > λc with λc � λc. Possible generalizations are
discussed in section 4.

2. Model and definitions

We consider the diffraction–amplification equation{
∂tE(x, t) − i

2�E(x, t) = λ|S(x, t)|2E(x, t)

x ∈ �1 and E(x, 0) = 1
(2)

where λ > 0 is the coupling constant and �1 is a circle of unit circumference. The case
in which the circle has circumference L and/or there is a constant D multiplying �E is
straightforwardly obtained by rescaling x, t and λ. The driver amplitude S(x, t) is a spacetime
homogeneous complex Gaussian random field with{

〈S(x, t)〉 = 〈S(x, t)S(x ′, t ′)〉 = 0

〈S(x, t)S∗(x ′, t ′)〉 = C(x − x ′, t − t ′)
(3)

and C(0, 0) = 1. We can write S(x, t) in the form

S(x, t) =
∑
n∈Z

ξn(t) e2iπnx (4)

with ξn(t) Gaussian random functions satisfying{
〈ξn(t)〉 = 〈ξn(t)ξm(t ′)〉 = 0

〈ξn(t)ξ
∗
m(t ′)〉 = δnmCn(t − t ′)

(5)

with Cn(0) ≡ εn � 0 and
∑

εn = 1. We now assume that only a finite number of εn are
non-vanishing

εn = 0 for |n| > N N < ∞ (6)

reducing the right-hand side (rhs) of equation (4) to a finite sum of M = 2N + 1 terms, from
n = −N to n = N . We further assume that

ξn(t) = √
εnφn(t)sn (7)

where the φn(t) are specified functions of t and the sn are independent complex Gaussian
random variables with{

〈sn〉 = 〈snsm〉 = 0

〈sns
∗
m〉 = δnm.

(8)

It then follows from (5), (7) and (8) that

φn(t) = exp(iωnt) ωn real (9)

yielding

C(x − x ′, t − t ′) =
N∑

n=−N

εn ei[2πn(x−x ′)+ωn(t−t ′)]. (10)

In the following we take ωn = an2, a > 0, which is the case of interest in optics where the
spacetime behaviour of C(x, t) corresponds to a diffraction along x as t increases. The last
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and most restrictive assumption we make is that the φn�0(t) are orthogonal functions of t in
[0, 1], which specifies a. One finds

ωn = 2πn2 i.e. φn(t) = exp(2iπn2t). (11)

Equation (2) can thus be rewritten as

∂tE(x, t) − i

2
�E(x, t) = λs†γ (x, t)sE(x, t) (12)

where s is the M-line Gaussian random vector the elements of which are the sn, and γ (x, t) is
an M × M Hermitian matrix with elements

γnm(x, t) = √
εnεm e−2iπ[(n−m)x+(n2−m2)t]. (13)

Finally, the critical coupling λc and its diffraction-free counterpart λc are defined by

λc = inf{λ > 0 : 〈|E(0, 1)|〉 = +∞} (14)

λc = inf{λ > 0 : 〈eλ
∫ 1

0 S(0,t)2dt 〉 = +∞} (15)

where 〈·〉 denotes the average over the realizations of S. Equations (14) and (15) give the
values of λ at which 〈|E(x, t)|〉 diverges after one unit of time with and without diffraction
respectively.

3. Comparison of λc and λc

We begin with two lemmas that will be useful in the following. Let Eγ (x, t) be the solution to
equation (12) for a given realization of s.

Lemma 1. For every x ∈ R and t ∈ [0, 1], and every M × M unitary matrix P, one has
〈|Eγ (x, t)|〉 = 〈|EP †γP (x, t)|〉.
Proof. Let B(x, t) be the set of all the continuous paths x(τ), with t ∈ [0, 1], τ � t , and
x(τ) ∈ R, arriving at x(t) = x. Writing the solution to equation (12) as a Feynman path
integral, one has

〈|Eγ (x, t)|〉 =
∫

C
M

e−|s|2

πM

∣∣∣∣
∫

x(·)∈B(x,t)

exp

(∫ t

0

[ i

2
ẋ(τ )2 + λs†γ (x(τ), τ )s

]
dτ

)

×d[x(·)]
∣∣∣∣ ∏

n

d2sn

=
∫

C
M

e−s†PP †s

πM

∣∣∣∣
∫

x(·)∈B(x,t)

exp

(∫ t

0

[ i

2
ẋ(τ )2 + λs†PP †γ (x(τ), τ )PP †s

]
dτ

)

×d[x(·)]
∣∣∣∣ ∏

n

d2sn

=
∫

C
M

e−|σ |2

πM

∣∣∣∣
∫

x(·)∈B(x,t)

exp

(∫ t

0

[ i

2
ẋ(τ )2 + λσ †P †γ (x(τ), τ )Pσ

]
dτ

)

×d[x(·)]
∣∣∣∣ ∏

n

d2σn = 〈|EP †γP (x, t)|〉.

Here we have used PP † = 1 and made the change of variables sn → σn, where the σn are
the components of σ ≡ P †s. Note that lemma 1 applies also to the diffraction-free case by
eliminating the path integral and setting x(τ) ≡ x. �
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Let κn (n ∈ N) be the eigenvalues of the M ×M Hermitian matrix
∫ 1

0 γ (0, t) dt . One has
the following lemma:

Lemma 2. λc = (supn κn)
−1.

Proof. Using equation (13) one finds, after a suitable permutation of lines and columns, that∫ 1
0 γ (0, t) dt can be written in the block-diagonal form

∫ 1

0
γ (0, t) dt =




ε0 0 · · ·
0 g1 0 · · ·
... 0

. . . 0 · · ·
... 0 gN−1 0

... 0 gN




(16)

with

gj =
(

εj
√

εj ε−j√
εj ε−j ε−j

)
(17)

the diagonalization of which yields the M eigenvalues κn. These eigenvalues are easily found
to be ε0, εj + ε−j and 0. The matrix diagonalizing (16), P, is a unitary matrix given by

P =




1 0 · · ·
0 p1 0 · · ·
... 0

. . . 0 · · ·
... 0 pN−1 0

... 0 pN




(18)

with

pj =
( √

εj /(εj + ε−j )
√

ε−j /(εj + ε−j )√
ε−j /(εj + ε−j ) −√

εj /(εj + ε−j )

)
. (19)

Using the diffraction-free version of lemma 1 with P given by equations (18) and (19), one
obtains 〈

eλ
∫ 1

0 S(0,t)2dt
〉 =

∫
C

M

e−|σ |2

πM
eλσ †[

∫ 1
0 P †γ (0,t)P dt]σ

∏
n

d2σn

=
∏
n

∫ +∞

0
e(λκn−1)un dun (20)

with un ≡ |σn|2, from which lemma 2 follows straightforwardly. One can now prove the
proposition: �
Proposition. λc � λc.

Proof. From lemma 1 with P given by equations (18) and (19), one has

〈|E(0, 1)|〉 =
∫

C
M

e−|σ |2

πM

∣∣∣∣
∫

x(·)∈B(0,1)

exp

(∫ 1

0

[ i

2
ẋ(τ )2 + λσ †P †γ (x(τ), τ )Pσ

]
dτ

)

×d[x(·)]
∣∣∣∣∏

n

d2σn. (21)
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For this integral to exist it is necessary that

lim
|σ |→+∞

e−|σ |2
∣∣∣∣
∫

x(·)∈B(0,1)

exp

(∫ 1

0

[ i

2
ẋ(τ )2 + λσ †P †γ (x(τ), τ )Pσ

]
dτ

)
d[x(·)]

∣∣∣∣ = 0 (22)

for all the directions σ/|σ | in C
M . We will now show that this cannot happen for λ � λ̄c.

Let κm = supn κn. From lemma 2 one has κm = 1/λc. Now, consider equation (22) for
σn = 0, n �= m, and σm = z ∈ C. One finds after some straightforward algebra

σ †P †γ (x, t)Pσ =
[

1

λc

− αmλc sin2(2πkx)

]
|z|2 (23)

and

e−|σ |2
∣∣∣∣
∫

x(·)∈B(0,1)

exp

(∫ 1

0

[ i

2
ẋ(τ )2 + λσ †P †γ (x(τ), τ )Pσ

]
dτ

)
d[x(·)]

∣∣∣∣
= e(λ/λc−1)|z|2

∣∣∣∣
∫

x(·)∈B(0,1)

exp

(∫ 1

0

[ i

2
ẋ(τ )2 − λ|z|2αmλc sin2 (2πkx(τ))

]
dτ

)

×d[x(·)]
∣∣∣∣ (24)

where αm = 4εkε−k if κm = εk + ε−k , which defines k, and αm = 0 if κm = ε0. There are two
possibilities:

(i) If αm = 0 one has

e−|σ |2
∣∣∣∣
∫

x(·)∈B(0,1)

exp

(∫ 1

0

[ i

2
ẋ(τ )2 + λσ †P †γ (x(τ), τ )Pσ

]
dτ

)
d[x(·)]

∣∣∣∣
= e(λ/λc−1)|z|2

∣∣∣∣
∫

x(·)∈B(0,1)

exp

(∫ 1

0

i

2
ẋ(τ )2 dτ

)
d[x(·)]

∣∣∣∣ = e(λ/λc−1)|z|2 .

(25)

If λc > λc this expression diverges as |z| tends to infinity, which is in contradiction with
equation (22).

(ii) If αm �= 0 the leading term of the asymptotic expansion of the path integral (24) in the large
|z| limit is given by the contribution of the paths near x(τ) = 0. Expanding sin2(2πkx)

around x = 0 at the lowest order and performing the resulting Gaussian integral, one
obtains the asymptotics

e−|σ |2
∣∣∣∣
∫

x(·)∈B(0,1)

exp

(∫ 1

0

[ i

2
ẋ(τ )2 + λσ †P †γ (x(τ), τ )Pσ

]
dτ

)
d[x(·)]

∣∣∣∣
∼

√
2e(λ/λc−1)|z|2 exp(−|z|πk

√
αmλλc) (|z| → +∞). (26)

Again, if λc > λc the rhs of this expression diverges as |z| tends to infinity, which
completes the proof of the proposition. �

4. Discussion and perspectives

As a conclusion we would like to outline a possible way of fitting the ideas behind this
calculation to a more general proof of the conjecture. First, it should be noticed that what
makes the proof here possible is the slow decrease of the asymptotic behaviour of the path
integral on the rhs of equation (24) as |z| → +∞. Namely, denoting by f (|z|) this path
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integral, one has ∀ε > 0, lim|z|→+∞ |f (|z|)| exp(ε|z|2) = +∞ (cf equations (25) and (26)),
which proves the conjecture by leading to a contradiction with equation (22).

Now, consider the case in which S(x, t) is given by a finite Karhunen–Loève-type
expansion S(x, t) = ∑

n sn�n(x, t) with x ∈ R
d , t ∈ [0, T ], and �n(x, t) not necessarily

periodic in time3. With such an expression for S(x, t) on the rhs of equation (1), one finds that
the equation for E(x, t) takes on the same form as in (12) with γnm(x, t) = �n(x, t)�m(x, t)∗.
One can now systematically replace, from equation (21) on, the matrix diagonalizing∫ 1

0 γ (0, t) dt by the one diagonalizing �[y(·)] ≡ ∫ T

0 γ (y(t), t) dt , where y(·) ∈ B(0, T )

is a continuous path maximizing the largest eigenvalue of �[x(·)].4 Denoting by κc this
maximized largest eigenvalue, one expects the rhs of equation (24) to be replaced by

e(λκc−1)|z|2
∣∣∣∣
∫

x(·)∈B(0,T )

exp

(∫ T

0

[ i

2
ẋ(τ )2 − λ|z|2V (x(τ), τ )

]
dτ

)
d[x(·)]

∣∣∣∣ (27)

where V (x, t) is a real potential given by some linear combination of the γnm(x, t) and such
that

inf
x(·)∈B(0,T )

∫ T

0
V (x(τ), τ ) dτ = 0. (28)

The proof would then proceed along exactly the same lines as in this note: denote by f (|z|) the
path integral in equation (27), if one can prove that ∀ε > 0, lim|z|→+∞ |f (|z|)| exp(ε|z|2) > 0
(which seems to be the difficult part of the matter), then we will have proved λc � κ−1

c .
Finally, since 1/λc is the largest eigenvalue of �[x(·) = 0], it is necessarily smaller than
(or equal to) κc, and λc � κ−1

c implies λc � λc. Note that equation (24) is a particular case of
equations (27) and (28) with κc = 1/λc and V (x, t) = αmλc sin2(2πkx).
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