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• Fitness landscape concept introduced by S. Wright (1932)



Fitness landscapes
J.A.G.M. de Visser, JK, Nature Reviews Genetics 15, 480-490 (2014)

• General setting: L binary genetic loci τi at which a mutation can be present
(τi = 1) or absent (τi = 0).

• A fitness landscape is a function on the set of 2L genotypes

• A fitness landscape is complex/rugged if it has multiple fitness maxima:
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• Question for this talk: How do rugged fitness landscapes arise from a
nonlinear phenotype-fitness map?



Fisher’s geometric model



“The statistical requirements of the situation, in which one thing
is made to conform to another in a large number of different
respects, may be illustrated geometrically...”

R.A. Fisher, The Genetical Theory of Natural Selection (1930)

O. Tenaillon, Annu. Rev. Ecol. Evol. Sys. (2014)



From simple phenotypes to complex genotypes

• Organism is characterized by n real-valued phenotypic traits xi which form
a vector~x = (x1,x2, ...,xn) in a n-dimensional Euclidean space

• Fitness is a (nonlinear) function F(~x) of the phenotype with a unique
optimum at the origin x1 = x2 = ... = xn = 0

• Universal pleiotropy: Mutations are isotropic random displacements in
phenotypic space (univariate Gaussian)

• Additivity of phenotypes: Given two phenotypic mutations ~m1, ~m2, the
phenotypic effect of the double mutant is ~m12 = ~m1 + ~m2 Martin et al. 2007

• Then the phenotypic landscape F(~x) induces a genotypic landscape

f (τ1, ...,τL) = F

(

~Q+
L

∑
i=1

τi~mi

)

where ~Q represents the wildtype and the ~mi are a fixed set of mutations



Geometry of the genotype-phenotype map

• The mapping

τ →~z(τ) = ~Q+
L

∑
i=1

τi~mi

projects L-dimensional hypercube onto n-dimensional phenotype space

• Figure shows the wild type phenotype (green triangle) and genotypic
fitness maxima (red squares) for L = 3,n = 2



FGM as a spin glass model

• For a parabolic phenotypic fitness function F(~x) = −|~x|2 the genotypic
fitness landscape becomes

f (τ) = −|~Q|2−2
L

∑
i=1

(~Q ·~mi)τi−
L

∑
i, j=1

(~mi ·~m j)τiτ j

which corresponds to an antiferromagnetic Hopfield model with n
continuous patterns and random fields of strength ∼ |~Q|

• The linear part dominates for large |~Q| ⇒ fitness landscape is less rugged
when wildtype phenotype is far from the origin

• The model displays a zero temperature phase transition at

q =
|~Q|
L

= q0 =
1√
2π

≈ 0.39894

where the extensive part of the ground state entropy vanishes
S. Hwang, D. Dean, JK (unpublished)



Genotypic complexity of FGM

S. Hwang. S.-C. Park, JK, Genetics (Early Online)



Number of genotypic maxima

• A common global quantifier of genotypic complexity is the expected number
of genotypic fitness maxima 〈N 〉

• Experience with random field models shows that in many cases

〈N 〉 ∼ exp[Σ∗L] for L → ∞

which defines the genotypic complexity Σ∗ ≥ 0

• Within FGM, a genotype τ = (τ1,τ2, ...,τL) with phenotype

~z = ~Q+
L

∑
i=1

τi~mi

is a fitness maximum iff |~z| < |~z+(1−2τ j)~m j| for all j = 1, ...,L

• This is true with unit probability if the corresponding phenotype is optimal,
i.e. if~z = 0 ⇒ genotypic maxima arise from near-optimal phenotypes



Number of genotypic maxima: Geometry

• Composition of mutation vectors defines a random walk (“polymer”) in
phenotype space with endpoint~z

• To generate genotypic maxima, the polymer needs to be “stretched”
towards the origin



Number of genotypic maxima: Asymptotics

• Expected number of maxima for large L is given by 〈N 〉 ∼ L−(1+n/2) exp[Σ∗L]
where Σ∗ is the solution of the variational problem

Σ∗ = max
φ∈[0,1]

{

−φ logφ − (1−φ) log(1−φ)− q2

2φ

}

with

– φ : fraction of mutations that are present (= have τi = 1)
– q = |~Q|/L: scaled distance of the wild type phenotype to the optimum

• Variational problem encodes a tradeoff between the abundance of
genotypes (“entropy”) and their likelihood to reach the phenotypic optimum
(“energy”)

• The number of maxima decreases with increasing phenotypic dimension,
but to leading (exponential) order it is independent of n



Number of genotypic maxima: Phase transition

• Σ∗(q = 0) = ln2 ⇒ 〈N 〉 ∼ 2L

L1+n/2 , to be compared to an uncorrelated

random fitness landscape (“random energy model”) with 〈N 〉 ∼ 2L

L

• Σ∗ vanishes at a first order phase transition at q = qc ≈ 0.924809 > q0

• For q > qc the number of maxima reaches a finite limit for L → ∞ which
however grows exponentially with n



Coexistence and rare events

• In the coexistence region q0 < q < qc, 〈N 〉 is dominated by rare
realizations with exponentially many maxima, whereas typical realizations
have a moderate number of peaks
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• These rare realizations are those for which the phenotypic displacements
approach close to the optimum z = 0



Interactions between beneficial

mutations in Aspergillus nidulans

S. Schoustra, S. Hwang, JK and J.A.G.M. de Visser, Proc. Roy. Soc. B (2016)



Experimental system

• 244 beneficial mutants of A. nidulans collected from the boundary of
growing colonies in complex (rich) or minimal (poor) medium

• Generated 55 pairwise combinations between mutations of similar effect
using sexual crosses

• Goal: Quantify the dependence of pairwise epistatic interaction

εab = ∆ fab− (∆ fa +∆ fb)

on the strength s = ∆ fa = ∆ fb of single mutations

• Data show clearly that εab < 0 and is negatively correlated with s
(“diminishing returns epistasis”)

• FGM predicts the distribution of εab conditioned on s, the first two moments
of which can be computed analytically



Fit of FGM to data

• ε and s normalized to largest observed mutational effect sm

• Measurement error (inner pink region) is insufficient to explain the observed
variability ⇒ importance of intrinsic stochasticity of FGM

• FGM parameters: Q = 6.89, n = 19.3, s0/sm = 1.41 (rich)
Q = 9.81, n = 34.8, s0/sm = 1.62 (poor)

• How to interpret the differences in n?



Genotypic complexity of the A. nidulans landscapes
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• Rich medium landscape (CM) is more rugged, despite having lower
phenotypic dimension



Conclusions

• Fisher’s geometric model is a good example of a “proof-of-concept” model
in biology Servedio et al., PLOS Biol. 2014

• It demonstrates how genotypic complexity can be explained in terms of
additive phenotypes combined with a simple nonlinear phenotype-fitness
map

• The model also provides a framework for condensing experimental data
into a few phenomenological parameters, but their interpretation is not
straightforward

• From the viewpoint of statistical physics, questions related to the phase
structure and the role of rare events remain to be understood


