

COLLABORATIVE RESEARCH CENTER | SFB 680
Molecular Basis of
Evolutionary Innovations

#### Genotypes, phenotypes and Fisher's geometric model

Joachim Krug Institute for Theoretical Physics University of Cologne

117th Statistical Mechanics Conference, Rutgers University, May 7, 2017





• Fitness landscape concept introduced by S. Wright (1932)

#### Fitness landscapes

J.A.G.M. de Visser, JK, Nature Reviews Genetics 15, 480-490 (2014)

- General setting: L binary genetic loci  $\tau_i$  at which a mutation can be present  $(\tau_i = 1)$  or absent  $(\tau_i = 0)$ .
- A fitness landscape is a function on the set of  $2^L$  genotypes
- A fitness landscape is complex/rugged if it has multiple fitness maxima:



 Question for this talk: How do rugged fitness landscapes arise from a nonlinear phenotype-fitness map?

# Fisher's geometric model

"The statistical requirements of the situation, in which one thing is made to conform to another in a large number of different respects, may be illustrated geometrically..."

R.A. Fisher, The Genetical Theory of Natural Selection (1930)





O. Tenaillon, Annu. Rev. Ecol. Evol. Sys. (2014)

## From simple phenotypes to complex genotypes

- Organism is characterized by n real-valued phenotypic traits  $x_i$  which form a vector  $\vec{x} = (x_1, x_2, ..., x_n)$  in a n-dimensional Euclidean space
- Fitness is a (nonlinear) function  $F(\vec{x})$  of the phenotype with a unique optimum at the origin  $x_1 = x_2 = ... = x_n = 0$
- Universal pleiotropy: Mutations are isotropic random displacements in phenotypic space (univariate Gaussian)
- Additivity of phenotypes: Given two phenotypic mutations  $\vec{m}_1$ ,  $\vec{m}_2$ , the phenotypic effect of the double mutant is  $\vec{m}_{12} = \vec{m}_1 + \vec{m}_2$  Martin et al. 2007
- Then the phenotypic landscape  $F(\vec{x})$  induces a genotypic landscape

$$f( au_1,..., au_L) = F\left(ec{Q} + \sum_{i=1}^L au_i ec{m}_i
ight)$$

where  $\vec{Q}$  represents the wildtype and the  $\vec{m}_i$  are a fixed set of mutations

#### Geometry of the genotype-phenotype map





The mapping

$$au 
ightarrow ec{z}( au) = ec{Q} + \sum_{i=1}^L au_i ec{m}_i$$

projects L-dimensional hypercube onto n-dimensional phenotype space

• Figure shows the wild type phenotype (green triangle) and genotypic fitness maxima (red squares) for L=3, n=2

## FGM as a spin glass model

• For a parabolic phenotypic fitness function  $F(\vec{x}) = -|\vec{x}|^2$  the genotypic fitness landscape becomes

$$f(\tau) = -|\vec{Q}|^2 - 2\sum_{i=1}^{L} (\vec{Q} \cdot \vec{m}_i) \tau_i - \sum_{i,j=1}^{L} (\vec{m}_i \cdot \vec{m}_j) \tau_i \tau_j$$

which corresponds to an antiferromagnetic Hopfield model with n continuous patterns and random fields of strength  $\sim |\vec{Q}|$ 

- The linear part dominates for large  $|\vec{Q}| \Rightarrow$  fitness landscape is less rugged when wildtype phenotype is far from the origin
- The model displays a zero temperature phase transition at

$$q = \frac{|\vec{Q}|}{L} = q_0 = \frac{1}{\sqrt{2\pi}} \approx 0.39894$$

where the extensive part of the ground state entropy vanishes

S. Hwang, D. Dean, JK (unpublished)

# Genotypic complexity of FGM

S. Hwang. S.-C. Park, JK, Genetics (Early Online)

## Number of genotypic maxima

- A common global quantifier of genotypic complexity is the expected number of genotypic fitness maxima  $\langle \mathcal{N} \rangle$
- Experience with random field models shows that in many cases

$$\langle \mathcal{N} \rangle \sim \exp[\Sigma^* L] \text{ for } L \to \infty$$

which defines the genotypic complexity  $\Sigma^* \geq 0$ 

• Within FGM, a genotype  $\tau = (\tau_1, \tau_2, ..., \tau_L)$  with phenotype

$$ec{z} = ec{Q} + \sum_{i=1}^L au_i ec{m}_i$$

is a fitness maximum iff  $|\vec{z}| < |\vec{z} + (1 - 2\tau_j)\vec{m}_j|$  for all j = 1, ..., L

• This is true with unit probability if the corresponding phenotype is optimal, i.e. if  $\vec{z} = 0 \implies$  genotypic maxima arise from near-optimal phenotypes

#### Number of genotypic maxima: Geometry



- Composition of mutation vectors defines a random walk ("polymer") in phenotype space with endpoint  $\vec{z}$
- To generate genotypic maxima, the polymer needs to be "stretched" towards the origin

## Number of genotypic maxima: Asymptotics

• Expected number of maxima for large L is given by  $\langle \mathcal{N} \rangle \sim L^{-(1+n/2)} \exp[\Sigma^* L]$  where  $\Sigma^*$  is the solution of the variational problem

$$\Sigma^* = \max_{\phi \in [0,1]} \left\{ -\phi \log \phi - (1-\phi) \log (1-\phi) - \frac{q^2}{2\phi} \right\}$$

with

- $\phi$ : fraction of mutations that are present (= have  $\tau_i = 1$ )
- $-q = |\vec{Q}|/L$ : scaled distance of the wild type phenotype to the optimum
- Variational problem encodes a tradeoff between the abundance of genotypes ("entropy") and their likelihood to reach the phenotypic optimum ("energy")
- The number of maxima decreases with increasing phenotypic dimension, but to leading (exponential) order it is independent of n

## Number of genotypic maxima: Phase transition



- $\Sigma^*(q=0)=\ln 2 \Rightarrow \langle \mathcal{N} \rangle \sim \frac{2^L}{L^{1+n/2}}$ , to be compared to an uncorrelated random fitness landscape ("random energy model") with  $\langle \mathcal{N} \rangle \sim \frac{2^L}{L}$
- $\Sigma^*$  vanishes at a first order phase transition at  $q=q_c\approx 0.924809>q_0$
- For  $q>q_c$  the number of maxima reaches a finite limit for  $L\to\infty$  which however grows exponentially with n

#### Coexistence and rare events

• In the coexistence region  $q_0 < q < q_c$ ,  $\langle \mathcal{N} \rangle$  is dominated by rare realizations with exponentially many maxima, whereas typical realizations have a moderate number of peaks



• These rare realizations are those for which the phenotypic displacements approach close to the optimum z=0

# Interactions between beneficial mutations in Aspergillus nidulans



S. Schoustra, S. Hwang, JK and J.A.G.M. de Visser, Proc. Roy. Soc. B (2016)

#### **Experimental system**

- 244 beneficial mutants of *A. nidulans* collected from the boundary of growing colonies in complex (rich) or minimal (poor) medium
- Generated 55 pairwise combinations between mutations of similar effect using sexual crosses
- Goal: Quantify the dependence of pairwise epistatic interaction

$$\varepsilon_{ab} = \Delta f_{ab} - (\Delta f_a + \Delta f_b)$$

on the strength  $s = \Delta f_a = \Delta f_b$  of single mutations

- Data show clearly that  $\varepsilon_{ab} < 0$  and is negatively correlated with s ("diminishing returns epistasis")
- FGM predicts the distribution of  $\varepsilon_{ab}$  conditioned on s, the first two moments of which can be computed analytically

#### Fit of FGM to data



- E and s normalized to largest observed mutational effect s<sub>m</sub>
- Measurement error (inner pink region) is insufficient to explain the observed variability 

  importance of intrinsic stochasticity of FGM
- FGM parameters: Q = 6.89, n = 19.3,  $s_0/s_m = 1.41$  (rich) Q = 9.81, n = 34.8,  $s_0/s_m = 1.62$  (poor)
- How to interpret the differences in n?

#### Genotypic complexity of the A. nidulans landscapes



 Rich medium landscape (CM) is more rugged, despite having lower phenotypic dimension

#### Conclusions

- Fisher's geometric model is a good example of a "proof-of-concept" model in biology
   Servedio et al., PLOS Biol. 2014
- It demonstrates how genotypic complexity can be explained in terms of additive phenotypes combined with a simple nonlinear phenotype-fitness map
- The model also provides a framework for condensing experimental data into a few phenomenological parameters, but their interpretation is not straightforward
- From the viewpoint of statistical physics, questions related to the phase structure and the role of rare events remain to be understood