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Integrable probavility in a nutshell

Study scaling and statistics of complex random systems through
exactly solvable examples which predict larger universality class.

These special systems come from algebraic structures:

today

Representation theory Quantum integrable systems

(Schur/Macdonald processes) (stochastic vertex models)
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Connecting these two sides yields new tools in studying models such
as tilings, stochastic six vertex model and ASEP in full/half space.



But first, what does this bridge yield?

Theorem [C-Dimitrov '17]: For g < p, In long time

ASEP with step Initial data has a transversal scaling M/\

exponent 2/3 with limiting spatial process which Is AN
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absolutely continuous w.r.t. to Brownian motion.

e We have similar results for the stochastic six vertex model (S6V).

e The 1/3 exponent for step initial data was established by [Tracy-Widom '09]
for ASEP and [Borodin-C-Gorin '15] for SeV.

 For determinantal models (e.g. TASEP), the limiting spatial process is well
understood under KPZ scaling (e.g. [Prahofer-Spoln 'O1]).

e The only other non-determinantal model with proved 2/3 exponent the KPZ
equation itself [C-Hammond '13].



But first, what does this bridge yield?

Theorem [Barraguand-Borodin-C-Wheeler '17]:
For ASEP with ¢ < p,a=p/2,v = q/2
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where N(T) is the number of particles in the system when started with
from empty initial data and F¢o:(x) 1s the GOE Tracy-Widom distribution.

e First KPZ class limit for a half-space non-determinantal model.

o [Baik-Rains '01] established analogous one-point TASEP result and
[Imamura-Sasamoto '05], [Baik-Barraquand-C-Suidan '16] established
2/3 transversal exponent and limit process for TASEP.

o [C-Dimitrov '17] method should be able to prove 2/3 for ASEP.



Open ASEP phase diagram

J=(Steady-state average curvent)/(p-q) through very large system:
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Half space results suggest different fluctuation behavior in each phase.



Tiling

We consider a measure on plane partitions (equivalently rihombus
tilings, dimers, or 3d Young diagrams) determined by ¢ and t as:

Prob(r) = (diaz(m) 4_(¢)

where diag(m) =) . mii and

Ar(t) = H(i,j)esupp(ﬁ)(l N tlﬂ&l) .

We associate an ensemble

of non-crossing level lines
which we call the Hall-

Littlewood [ine ensemble.




Tiling

The Hall-Littlewood line ensemble
enjoys a Gibbs resampling property.

Given the curve above and
below, the law of the middle
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[C-Dimitrov '17] (building on [C-Hammond '11,'13]) develop
machinery to show spatial tightness from such Gibbs properties.



Tiling

Taking M, N large seems to yields a limit shape -- what is it?.
We prove edge fluctuation exponent 1/3, transversal exponent 2/3.




SoV

Stochastic six vertex model [Gwa-Spolhn '93], [Borodin-C-Gorin '1.5]

(Gauge -transform of the a,b,c model where weights sum for fixed input to 1.)

3 3 2 1 <— Height function h(x,N) records number of
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Tiling <--> SeV
[Borodin-Bufetov-Wheeler '17] relate these two models so that

h(x, N) equals in law N — L1(x) !
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With by =t - 1=

| - __ diag(m)
and by — 11—_1;% With Prob(m) = ( A (1)

Proved by relating tiling to a vertex model and using Yang-Baxter.



SeV -> ASEP

Taking by = €q, bo =€ep, N=¢'T, 2 =¢ T+ I, and € to 0
the S6V height function converges to that of ASEP.
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This is just like how the a,b,c & vertex model goes to XXZ spin chain
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Half space tiling -> S6V -> ASEP

There is a similar story for a half space tiling model and a half
space SeV / ASEP proved in [Barvaquand -Borodin-C-Wheeler '17]
also using Yang-Baxter, plus reflection equations.
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t-Boson vertex model

m m — 1 m + 1 m m m — 1 m + 1 m
H ,»In m m m m m m
1 a (1 —tmtlh a b 1 b(1 — ™+ 1

Plane partition (tiling) a formed by increasing, then decreasing interlacing
partitions. t-Boson weights induce a measure on such a sequence.

Setting a;b; = ¢ we get back our original measure.
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Yang-Baxter equation
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The sum is over all internal vertices and on the right is a vertex
from the S6V model (rotated 45 degrees) with weights:
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Follows single vertex t-Boson YBE by tensoring and taking a limit.



Yang-Baxter equation

Using the YBE to switch the red and grey rows
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relates law of the tiling base to that of the S6V output arrows.
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Summary

< Relate S6V height function to "Hall-Littlewood" tiling base.
The tiling is a special case of Macdonald processes at g=0.

< Using properties of Macdonald / Hall-Littlewood / Schur

symmetric functions we compute certain expectations explicitly

and perform one-point asymptotics (not explained in this talk).

<& Using the tiling's Gibbs property, we can extend the one-point
1/3 exponent tightness to the transversal 2/3 exponent.

< Both models admit [imits to ASEP and the KPZ equation and
hence this provides a means to study those models too.

< Some questions: Tiling limit shape? Asymptotics for more general
boundary rates? Two-sided open ASEP? Higher spin models?



